請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101151完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林峯輝 | zh_TW |
| dc.contributor.advisor | Feng-Huei Lin | en |
| dc.contributor.author | 鄒策 | zh_TW |
| dc.contributor.author | Tse Tsou | en |
| dc.date.accessioned | 2025-12-31T16:07:48Z | - |
| dc.date.available | 2026-01-01 | - |
| dc.date.copyright | 2025-12-31 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-12-22 | - |
| dc.identifier.citation | [1] Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R. L., Soerjomataram, I., & Jemal, A. (2024). Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 74(3), 229–263.
[2] Lalinia, M., & Sahafi, A. (2024). Colorectal polyp detection in colonoscopy images using YOLO-V8 network. Signal, Image and Video Processing, 18, 2047–2058. [3] Thélin, C., & Sikka, S. (2015). Epidemiology of colorectal cancer —Incidence, lifetime risk factors statistics and temporal trends. InTech. [4] Biller, L. H., & Schrag, D. (2021). Diagnosis and treatment of metastatic colorectal cancer: A review. JAMA, 325(7), 669–685. [5] Hall, W. A., & Smith, J. J. (2023). Achieving a cure without total mesorectal excision in rectal adenocarcinoma. Journal of Clinical Oncology, 41(2), 173–180. [6] Koulouris, A., Tsagkaris, C., Messaritakis, I., Gouvas, N., Sfakianaki, M., Trypaki, M., Spyrou, V., Christodoulakis, M., Athanasakis, E., Xynos, E., Tzardi, M., Mavroudis, D., & Souglakos, J. (2021). Resectable colorectal cancer: Current perceptions on the correlation of recurrence risk, microbiota and detection of genetic mutations in liquid biopsies. Cancers, 13(14), 3522. [7] Kruger, C. A., & Abrahamse, H. (2019). Targeted photodynamic therapy as potential treatment modality for the eradication of colon cancer. Multidisciplinary Approach for Colorectal Cancer. IntechOpen. [8] Longley, D., Harkin, D., & Johnston, P. (2003). 5-Fluorouracil: Mechanisms of action and clinical strategies. Nature Reviews Cancer, 3, 330–338. [9] Haynes, J., & Manogaran, P. (2025). Mechanisms and strategies to overcome drug resistance in colorectal cancer. International Journal of Molecular Sciences, 26(5), 1988. [10] Radenković, N., Nikodijević, D., Jovankić, J., Blagojević, S., & Milutinović, M. (2024). Resistance to 5-fluorouracil: The molecular mechanisms of development in colon cancer cells. European Journal of Pharmacology, 983, 176979. [11] Häfner, M. F., & Debus, J. (2016). Radiotherapy for colorectal cancer: Current standards and future perspectives. Visceral Medicine, 32(3), 172–177. [12] Jabbour, S. K., Patel, S., Herman, J. M., Wild, A., Nagda, S. N., Altoos, T., Tunceroglu, A., Azad, N., Gearheart, S., Moss, R. A., Poplin, E., Levinson, L. L., Chandra, R. A., Moore, D. F., Chen, C., Haffty, B. G., & Tuli, R. (2012). Intensity-modulated radiation therapy for rectal carcinoma can reduce treatment breaks and emergency department visits. International Journal of Surgical Oncology, 2012, 891067. [13] Do, N. L., Nagle, D., & Poylin, V. Y. (2011). Radiation proctitis: Current strategies in management. Gastroenterology Research and Practice, 2011, 917941. [14] Coelho, D., Estêvão, D., Oliveira, M. J., et al. (2025). Radioresistance in rectal cancer: Can nanoparticles turn the tide? Molecular Cancer, 24, 35. [15] Li, C. M. Y., Tomita, Y., Dhakal, B., Li, R., Li, J., Drew, P., Price, T., Smith, E., Maddern, G. J., & Fenix, K. A. (2023). Use of cytokine-induced killer cell therapy in patients with colorectal cancer: A systematic review and meta-analysis. Journal for Immunotherapy of Cancer, 11(4), e006764. [16] Ciardiello, D., Vitiello, P. P., Cardone, C., Martini, G., Troiani, T., Martinelli, E., & Ciardiello, F. (2019). Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. Cancer Treatment Reviews, 76, 22–32. [17] Manzi, J., Hoff, C. O., Ferreira, R., Pimentel, A., Datta, J., Livingstone, A. S., Vianna, R., & Abreu, P. (2023). Targeted therapies in colorectal cancer: Recent advances in biomarkers, landmark trials, and future perspectives. Cancers, 15(11), 3023. [18] Zhong, L., Li, Y., Xiong, L., et al. (2021). Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduction and Targeted Therapy, 6, 201. [19] Dhillon, S. (2018). Regorafenib: A review in metastatic colorectal cancer. Drugs, 78(11), 1133–1144. [20] Mayenga, M., Falvo, N., Mahé, I., Jannot, A. S., Gazeau, B., Meyer, G., Gendron, N., Sanchez, O., Djennaoui, S., & Planquette, B. (2023). Cancer-associated thrombosis on bevacizumab: Risk of recurrence and bleeding when bevacizumab is stopped or continued. Cancers, 15(15), 3893. [21] Wang, X., Sun, W., Shi, H., et al. (2022). Organic phosphorescent nanoscintillator for low-dose X-ray-induced photodynamic therapy. Nature Communications, 13, 5091. [22] Wang, G. D., Nguyen, H. T., Chen, H., Cox, P. B., Wang, L., Nagata, K., Hao, Z., Wang, A., Li, Z., & Xie, J. (2016). X-ray induced photodynamic therapy: A combination of radiotherapy and photodynamic therapy. Theranostics, 6(13), 2295–2305. [23] Rodrigues, J. A., & Correia, J. H. (2023). Photodynamic therapy for colorectal cancer: An update and a look to the future. International Journal of Molecular Sciences, 24(15), 12204. [24] Donnelly, R. F., McCarron, P. A., & Woolfson, D. A. (2007). Derivatives of 5-aminolevulinic acid for photodynamic therapy. Perspectives in Medicinal Chemistry, 1. [25] Schumacker, P. T. (2006). Reactive oxygen species in cancer cells: Live by the sword, die by the sword. Cancer Cell, 10(3), 175–176. [26] Liu, B., Chen, Y., & St Clair, D. K. (2008). ROS and p53: A versatile partnership. Free Radical Biology and Medicine, 44(8), 1529–1535. [27] Konan, Y. N., Gurny, R., & Allémann, E. (2002). State of the art in the delivery of photosensitizers for photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 66(2), 89–106. [28] Simelane, N. W., Kruger, C. A., & Abrahamse, H. (2020). Photodynamic diagnosis and photodynamic therapy of colorectal cancer in vitro and in vivo. RSC Advances, 10(68), 41560–41576. [29] Hu, J., Song, J., Tang, Z., Wei, S., Chen, L., & Zhou, R. (2021). Hypericin-mediated photodynamic therapy inhibits growth of colorectal cancer cells via inducing S phase cell cycle arrest and apoptosis. European Journal of Pharmacology, 900, 174071. [30] Zhou, Z., Zhang, L., Zhang, Z., & Liu, Z. (2021). Advances in photosensitizer-related design for photodynamic therapy. Asian Journal of Pharmaceutical Sciences, 16(6), 668–686. [31] Agostinis, P., Berg, K., Cengel, K. A., Foster, T. H., Girotti, A. W., Gollnick, S. O., ... & Kessel, D. (2021). Photodynamic therapy for the treatment and diagnosis of cancer–A review of the current clinical status. Frontiers in Chemistry, 9, 686303. [32] Gao, J., Chen, Z., Li, X., Yang, M., Lv, J., Li, H., & Yuan, Z. (2022). Chemiluminescence in combination with organic photosensitizers: Beyond the light penetration depth limit of photodynamic therapy. International Journal of Molecular Sciences, 23(20), 12556. [33] Song, X., Petrovic, S., & Sundar, S. (n.d.). A case-based reasoning approach to dose planning in radiotherapy. [34] Jain, S. M., Nagainallur Ravichandran, S., Murali Kumar, M., Banerjee, A., Sun-Zhang, A., Zhang, H., & Pathak, S. (2024). Understanding the molecular mechanism responsible for developing therapeutic radiation-induced radioresistance of rectal cancer and improving the clinical outcomes of radiotherapy: A review. Cancer Biology & Therapy, 25(1). [35] Hashiguchi, S., Kusuzaki, K., Murata, H., Takeshita, H., Hashiba, M., Nishimura, T., Ashihara, T., & Hirasawa, Y. (2002). Acridine orange excited by low-dose radiation has a strong cytocidal effect on mouse osteosarcoma. Oncology, 62(1), 85–93. [36] Fan, W., Huang, P., & Chen, X. (2016). Overcoming the Achilles' heel of photodynamic therapy. Chemical Society Reviews, 45(23), 6488–6519. [37] Trushina, D. B., Borodina, T. N., Belyakov, S., & Antipina, M. N. (2022). Calcium carbonate vaterite particles for drug delivery: Advances and challenges. Materials Today Advances, 14, 100214. [38] Terribili, L., Rateau, R., Szucs, A. M., Maddin, M., & Rodriguez-Blanco, J. D. (2023). Impact of rare earth elements on CaCO3 crystallization: Insights into kinetics, mechanisms, and crystal morphology. Crystal Growth & Design, 24(2), 632–645. [39] Lam, S. F., Bishop, K. W., Mintz, R., Fang, L., & Achilefu, S. (2021). Calcium carbonate nanoparticles stimulate cancer cell reprogramming to suppress tumor growth and invasion in an organ-on-a-chip system. Scientific Reports, 11(1), 9246. [40] Ramasamy, V., Thenpandiyan, E., Suresh, G., Sathishpriya, T., & Sagadevan, S. (2023). A novel and simple approach of rare earth ions (Y3+ and La3+) decorated nano calcium carbonate/polyethylene glycol for photocatalytic degradation of organic pollutants in wastewater. Optical Materials, 142, 114130. [41] Albright, J. N. (1971). American Mineralogist, 56(3–4), 620–624. [42] Abliz, A., Xu, L., Wan, D., Duan, H., Wang, J., Wang, C., & Liu, C. (2019). Effects of yttrium doping on the electrical performances and stability of ZnO thin-film transistors. Applied Surface Science, 475, 565–570. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/101151 | - |
| dc.description.abstract | 結腸直腸癌多年位居國人癌症死因前三位,除了傳統療法,新興療法不斷被開發。其中光動力治療受限於光源穿透深度、光敏感症狀,多數情況僅用於表淺癌症病灶治療。本研究利用 X 光穿透力強的特性,以釔摻雜碳酸鈣作為放射增敏劑,照射 X 光後產生能夠毒殺大腸癌細胞的活性氧族,達到 X 光光動力治療的效果。
以溶液共沉澱法合成釔摻雜碳酸鈣,過程中使用褐藻酸溶液作為分散劑控制粒徑大小,且使其不易團聚,調控 pH 值促成碳酸鈣粒子生成。經由 X 光照射圖譜以及掃描式電子顯微鏡確定材料結晶相、化學組成。釔摻雜碳酸鈣於顯微鏡下呈現 5 微米以內之顆粒大小,且與純碳酸鈣相比出現了形貌變化。 以材料萃取液搭配 L929 細胞進行生物相容性測試,在 WST-1 以及live/dead 兩種試驗下皆展現良好生物相容性;而後以 MC-38 小鼠結腸癌細胞進行體外實驗,與單純低劑量 X 光照射組別相比,添加材料的 X 光光動力組別明顯呈現較低的細胞活性和較高的細胞毒性,在 live/dead 螢光染色觀測也發現 X 光光動力組別有較大面積的結腸癌細胞凋亡。 | zh_TW |
| dc.description.abstract | Colorectal cancer has been among the top three causes of cancer-related deaths, and while conventional therapies remain standard, emerging treatment strategies are continuously being developed. Photodynamic therapy (PDT) is limited by shallow penetration and phototoxicity, making it suitable for superficial lesions mostly. In this study, we utilize the strong penetration ability of X-ray and use yttrium-doped CaCO3 as a radiosensitizer. Upon irradiation, the material generates reactive oxygen species (ROS) capable of killing colon cancer cells, achieving an X-ray activated photodynamic effect.
Y-doped CaCO3 was synthesized via co-precipitation method using alginate as a dispersing agent to control particle size and prevent aggregation. The crystalline phase and chemical composition were confirmed by X-ray diffraction and scanning electron microscopy. Y-doped CaCO3 particles were under 5 μm in size and showed morphological changes compared to pure CaCO3. Biocompatibility tests using L929 fibroblasts demonstrated good compatibility in both WST-1 and live/dead assays. In vitro experiment with MC-38 colon cancer cells showed that, compared to the group with low-dose X-ray alone, the X-ray activated Y-doped CaCO3 exhibited significantly lower cell viability and higher cytotoxicity. Live/dead fluorescence imaging also revealed extensive cancer cell apoptosis in the treated group. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-12-31T16:07:48Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-12-31T16:07:48Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 中文摘要 iii 英文摘要 iv 目次 v 圖次 vii 表次 viii 第一章 簡介 1 1.1 前言 1 1.2 解剖與病理 2 1.3 診斷方法 3 1.4 治療方法 4 1.4.1 概述 4 1.4.2 外科手術 4 1.4.3 化學藥物治療 5 1.4.4 放射線治療 6 1.4.5 免疫治療 8 1.4.6 標靶治療 9 1.4.7 光動力治療 10 1.5 研究目的 11 第二章 理論基礎 13 2.1 光動力療法 13 2.1.1 機制 13 2.1.2 光敏劑 14 2.1.3 激發光源 16 2.2 X 光致光動力治療 18 2.3 主體材料—釔摻雜碳酸鈣 19 第三章 實驗方法 21 3.1 材料製備 21 3.2 材料分析 22 3.2.1 掃描式電子顯微鏡(SEM) 22 3.2.2 X 光繞射分析儀(XRD) 22 3.2.3 能量散射光譜儀(EDS) 23 3.2.4 X 光光電子能譜儀(XPS) 24 3.3 生物相容性測試 25 3.3.1 細胞株培養 25 3.3.2 測試組別設計 25 3.3.3 WST-1 細胞活性測試 26 3.3.4 LIVE/DEAD 活性分析 26 3.4.1 MC-38 WST-1、LDH 測試 27 3.4.2 MC-38 LIVE/DEAD 分析 27 第四章 結果與討論 28 4.1 材料性質分析 28 4.1.1 X 光繞射分析 28 4.1.2 表面型態分析 30 4.1.3 化學成分分析 31 4.1.4 化學鍵結分析 32 4.2 生物相容性 34 4.2.1 WST-1 細胞活性測試 34 4.2.2 LIVE/DEAD 螢光測試 34 4.3 IN VITRO 體外實驗 36 4.3.1 MC-38 WST-1 細胞活性 36 4.3.2 MC-38 LDH 毒性測試 37 4.3.3 MC-38 LIVE/DEAD 螢光測試 37 第五章 結論 40 參考文獻 41 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | X光光動力治療 | - |
| dc.subject | 放射增敏劑 | - |
| dc.subject | 釔摻雜碳酸鈣 | - |
| dc.subject | 活性氧族 | - |
| dc.subject | X-ray induced photodynamic therapy | - |
| dc.subject | radiosensitizer | - |
| dc.subject | yttrium-doped CaCO₃ | - |
| dc.subject | reactive oxygen species | - |
| dc.title | 合成與評估釔摻雜碳酸鈣作為光敏劑之X光誘導光動力治療在大腸直腸癌的應用 | zh_TW |
| dc.title | Synthesis and Evaluation of Yttrium-doped CaCO₃ as Photosensitizer for X-ray Induced Photodynamic Therapy for Colorectal Cancer | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 郭士民;曾峰毅;黃義侑 | zh_TW |
| dc.contributor.oralexamcommittee | Shyh Ming Kuo;FON-YIH TSUANG;Yi-You Huang | en |
| dc.subject.keyword | X光光動力治療,放射增敏劑釔摻雜碳酸鈣活性氧族 | zh_TW |
| dc.subject.keyword | X-ray induced photodynamic therapy,radiosensitizeryttrium-doped CaCO₃reactive oxygen species | en |
| dc.relation.page | 46 | - |
| dc.identifier.doi | 10.6342/NTU202504819 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-12-22 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 材料科學與工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 未授權公開取用 | 17.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
