請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10106
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳錫侃 | |
dc.contributor.author | Ying-Hsuan Li | en |
dc.contributor.author | 李映萱 | zh_TW |
dc.date.accessioned | 2021-05-20T21:02:22Z | - |
dc.date.available | 2016-07-26 | |
dc.date.available | 2021-05-20T21:02:22Z | - |
dc.date.copyright | 2011-07-26 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-18 | |
dc.identifier.citation | 1. 蔡幸甫, 輕金屬在新世代產品的應用與商機. 經濟部產業技術服務推廣計畫 科技專案成果, 2002.08.
2. Batist, R.d., HIGH DAMPING MATERIALS : MECHANISMS AND APPLICATIONS. J. Phys. Colloques, 1983. Volume 44, Number C9, (Fourth European Conference on Internal Friction and Ultrasonic Attenuation in Solids): p. 39-50. 3. Mizubayashi, H., Y. Ishikawa, and H. Tanimoto, Study of hydrogenated amorphous alloys as high-strength and high-damping materials. Journal of Alloys and Compounds, 2003. 355(1-2): p. 31-36. 4. Nayeb-Hashemi, A.A. and J.B. Clark, Phase diagrams of binary magnesium alloys. ASM International in Metals Park, Ohio, 1988. 5. 蔡文力, AZ80及LAZ1110鎂合金制振能之研究, 國立臺灣大學材料科學與工程學研究所碩士論文. 2009, 台北. 6. 林克駿, Mg-11wt.%Li及Mg-14wt.%Li鎂鋰合金制振能之研究, 國立東華大學材料科學與工程學研究所碩士論文. 2010, 花蓮. 7. Kainer(Ed.), K.U., Magnesium – Alloys and Technology. WILEY-VCH Verlag GmbH & Co. KG aA, Weinheim, 2003. 8. Mordike, B.L. and T. Ebert, Magnesium: Properties -- applications -- potential. Materials Science and Engineering A, 2001. 302(1): p. 37-45. 9. Smith, W.F., Structure And Properties Of Engineering Alloys, 2nd ed. McGraw-Hill Inc., 1993. 10. Avedesian, M.M. and H. Baker, Magnesium and Magnesium Alloys. ASM Specialty Handbook, 1999. 11. Das, S., Magnesium for automotive applications: Primary production cost assessment. JOM Journal of the Minerals, Metals and Materials Society, 2003. 55(11): p. 22-26. 12. 陳錦修, 鎂合金在汽車工業之應用. 工業材料雜誌, 2002. 186(鎂合金產業專欄): p. 148-152. 13. Hume-Rothery, W., R.E. Smallman, and C.W. Haworth, The structure of metals and alloys (4th ed.). Metals and Metallurgy Trust of the Institution of Metals and the Institution of Metallurgists 1969. 14. Raynor, G.V., The physical metallurgy of magnesium and its alloys. London : Pergamon,, 1959. 5(International series of monographs on metal physics and physical metallurgy ). 15. Friedrich, H.E. and B.L. Mordike, Magnesium Technology:Metallurgy, Design Data, Applications. Springer Berlin Heidelberg, 2006. 16. Beck, A.V., The technology of magnesium and its alloys (Translated from German). London, F.A. Hughes & Co. Ltd., 1940. 17. Okamoto, H., Al-Mg (aluminum-magnesium). Journal of Phase Equilibria, 1998. 19(6): p. 598-598. 18. Caceres, C.H., et al., Effects of solidification rate and ageing on the microstructure and mechanical properties of AZ91 alloy. Materials Science and Engineering A, 2002. 325(1-2): p. 344-355. 19. Shaw, C. and H. Jones, The contributions of different alloying additions to hardening in rapidly solidified magnesium alloys. Materials Science and Engineering A, 1997. 226-228: p. 856-860. 20. 賴耿陽, 非鐵金屬材料. 復漢出版社, 1998: p. 173-191. 21. G, S., Magnesium Taschenbuch. VEB Verlag Technik, 1954. 22. Gu, X., et al., In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials, 2009. 30(4): p. 484-498. 23. Metenier, P., et al., Superplastic behavior of a fine-grained two-phase Mg-9wt.%Li alloy. Materials Science and Engineering: A, 1990. 125(2): p. 195-202. 24. Cahn, R.W., P. Hassan, and E.J. Kramer, Materials Sciences and Technology. Characterization of Materials., 1992. 25. 王建義, 超輕量鎂合金開發. 工業材料雜誌, 2002. 184: p. 132-136. 26. Lu, L., K.K. Thong, and M. Gupta, Mg-based composite reinforced by Mg2Si. Composites Science and Technology, 2003. 63(5): p. 627-632. 27. Mabuchi, M., K. Kubota, and K. Higashi, Tensile strength, ductility and fracture of magnesium-silicon alloys. Journal of Materials Science, 1996. 31(6): p. 1529-1535. 28. Han, L., H. Hu, and D.O. Northwood, Effect of Ca additions on microstructure and microhardness of an as-cast Mg-5.0 wt.% Al alloy. Materials Letters, 2008. 62(3): p. 381-384. 29. Lu, Y., et al., Effects of rare earths on the microstructure, properties and fracture behavior of Mg-Al alloys. Materials Science and Engineering A, 1999. 278(1-2): p. 66-76. 30. Wu, A.-r. and C.-q. Xia, Study of the microstructure and mechanical properties of Mg-rare earth alloys. Materials & Design, 2007. 28(6): p. 1963-1967. 31. Wang, S.C., C.P. Chou, and Y.C. Fann, Microstructures and mechanical properties of modified AZ31-Zr-Sc alloys. Materials Science and Engineering: A, 2008. 485(1-2): p. 428-438. 32. 陳鴻賓 and 高道德, 金屬物理性能及試驗. 全華圖書, 1986: p. 17-91. 33. Dowling, N.E., Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue. Prentice Hall, Inc. New Jersey, 1999. 2nd ed.: p. 757-764. 34. Dynamic Mechanical Analyzer DMA2980 Manual, TA Instrument, U.S.A. 2000. 35. Nowick, A.S. and B.S. Berry, Anelastic relaxation in crystalline solids Materials science series [v. 1], ed. B.S.j.a. Berry. 1972, New York: Academic Press. 36. Zhang, J., et al., Effects of secondary phases on the damping behaviour of metals, alloys and metal matrix composites. Materials Science and Engineering: R: Reports, 1994. 13(8): p. 325-389. 37. Snoek, J.L., Effect of small quantities of carbon and nitrogen on the elastic and plastic properties of iron. Physica, 1941. 8(7): p. 711-733. 38. Zener, C., Stress Induced Preferential Orientation of Pairs of Solute Atoms in Metallic Solid Solution. Physical Review, 1947. 71(1): p. 34. 39. Blanter, M.S., et al., Internal Friction in Metallic Materials. Springer-Verlag Berlin Heidelberg, 2007. 40. Hasiguti, R.R., Thermal unpinning of dislocations--Hasiguti peaks of internal friction. Journal of the Less Common Metals, 1972. 28(2): p. 249-255. 41. Ke, T.S., On the physical models of the cold-work (Snoek-Koster) internal-friction peaks in BCC metals. Scripta Metallurgica, 1982. 16(3): p. 225-232. 42. Ke, T.S., Micro-mechanism of grain boundary relaxation in metals. Scripta Metallurgica et Materialia, 1990. 24(2): p. 347-352. 43. Zener, C., Theory of the Elasticity of Polycrystals with Viscous Grain Boundaries. Physical Review, 1941. 60(12): p. 906. 44. Ke, T.i.-S., Experimental Evidence of the Viscous Behavior of Grain Boundaries in Metals. Physical Review, 1947. 71(8): p. 533. 45. Watanabe, H., et al., Elastic and damping properties from room temperature to 673 K in an AZ31 magnesium alloy. Scripta Materialia, 2004. 51(4): p. 291-295. 46. Weller, M., H. Clemens, and G. Haneczok, The high-temperature damping background in intermetallic alloys. Materials Science and Engineering: A, 2006. 442(1-2): p. 138-141. 47. Kiss, S., R. Schaller, and W. Benoit, Heating-rate dependent internal friction background in aluminium. physica status solidi (a), 1985. 92(2): p. K109-K112. 48. Proceedings of the International Symp. on High Damping Materials (HDM-1, 2002). Tokyo, Japan, eds.: N. Igata and S. Takeuchi, also appearing in J. Alloys Comp. 355(2003) 1-240., Aug.22-24, 2002. 49. Processing of the 2nd International Symp. on High Damping Materials (HDM-2,2005). Kyoto, Japan, eds.: N. Igata and S. Takeuchi, also appearing in Key Eng. Mater. 319 (2006) 1-240., Sep.9-10, 2005,. 50. ASTM B275-02, Standard Practice for Codification of Certain Nonferrous Metals and Alloys, Cast and Wrought, Annual Book of ASTM Standards, vol. 02.02, (2002) 1-15. 51. Czerwinski, F., Magnesium and Its Alloys, in Magnesium Injection Molding. 2008, Springer US. p. 1-79. 52. Lee, Y.C., A.K. Dahle, and D.H. StJohn, Grain refinement of magnesium. In Kaplan HI, Hryn JN, and Clow BB (eds) Magnesium Technology 2000,TMS,Warrendale,Pennsylvania,USA,, 2000: p. 211-218. 53. Jr., W.W., S.P. Timoshenko, and D.H. Young, Vibration Problems in Engineering. John Wiley & Sons, New York, 1990: p. 52. 54. Determination of Density of Compacted or Sintered Metal Powder Products. MPIF Standard 42, 1999 ed. 55. ASTM E8/E8M-09, Standard Test Methods for Tension Testing of Metallic Materials, Annual Book of ASTM Standards, vol. 03.01, 2009. 56. Liu, T., et al., Microstructure evolution of Mg-14% Li-1% Al alloy during the process of equal channel angular pressing. Materials Science and Engineering: A, 2007. 460-461: p. 499-503. 57. Sugimoto, K., et al., EFFECT OF CRYSTAL ORIENTATION ON AMPLITUDE-DEPENDENT DAMPING IN MAGNESIUM. Trans Jpn Inst Metals, 1975. 16(10): p. 647-655. 58. Sugimoto, K., et al., STUDY OF DAMPING CAPACITY IN MAGNESIUM ALLOYS. Trans Jpn Inst Met, 1977. 18(3): p. 277-288. 59. Hao, G.L., et al., Internal friction peaks associated with the precipitation in AZ91 magnesium alloy. Physica B: Condensed Matter, 2007. 391(1): p. 186-192. 60. Xie, C.Y., E. Carreno-Morelli, and R. Schaller, Low frequency internal friction associated with precipitation in AlMgSi alloys. Scripta Materialia, 1998. 39(2): p. 225-230. 61. Mabuchi, M., Y. Chino, and H. Iwasaki, Tensile properties at room temperature to 823 K of Mg-4Y-3RE alloy. Materials Transactions, 2002. 43(8): p. 2063-2068. 62. Mabuchi, M., et al., Tensile properties of directionally solidified AZ91 Mg alloy. Materials Transactions, 2003. 44(4): p. 436-439. 63. Schoeck, G., E. Bisogni, and J. Shyne, The activation energy of high temperature internal friction. Acta Metallurgica, 1964. 12(12): p. 1466-1468. 64. Riviere, A., Measurement of high damping: techniques and analysis. Journal of Alloys and Compounds, 2003. 355(1-2): p. 201-206. 65. Chang, S.H., et al., Cold-rolling effect on damping capacity of high-temperature damping background for AZ80 magnesium alloy. Journal of Alloys and Compounds, 2009. 487(1-2): p. 142-145. 66. Lakki, A., et al., Mechanical loss, creep, diffusion and ionic conductivity of ZrO2-8 mol%Y2O3 polycrystals. Journal of the European Ceramic Society, 2000. 20(3): p. 285-296. 67. Haferkamp, H., et al., Development, processing and applications range of magnesium lithium alloys. Materials Science Forum, 2000. 350: p. 31-42. 68. Trojanova, Z., et al., Internal friction in microcrystalline magnesium reinforced by alumina particles. Journal of Alloys and Compounds, 2000. 310(1-2): p. 396-399. 69. Granato, A. and K. Lucke, Application of dislocation theory to internal friction phenomena at high frequencies. Journal of Applied Physics, 1956. 27(7): p. 789-805. 70. Granato, A. and K. Lucke, Theory of Mechanical Damping Due to Dislocations. Journal of Applied Physics, 1956. 27(6): p. 583-593. 71. Hu, X.S., et al., A study of damping capacities in pure Mg and Mg-Ni alloys. Scripta Materialia, 2005. 52(11): p. 1141-1145. 72. Wu, S.K., et al., Low-frequency damping properties of dual-phase Mg-xLi-0.5Zn alloys. Journal of Alloys and Compounds, 2008. 465(1-2): p. 210-215. 73. Treco, R.M., AIME Regional Conference on Reactive Metals. 1956: p. 136. 74. A. Portevin and F.L. Chatelier, Comp Rend Acad Sci Paris, 1923. 176: p. 507. 75. Cottrell, A.H., LXXXVI. A note on the Portevin-Le Chatelier effect. Philosophical Magazine Series 7, 1953. 44(355): p. 829 - 832. 76. Chihab, K., et al., The kinetics of the Portevin-Le Chatelier bands in an Al-5at%Mg alloy. Scripta Metallurgica, 1987. 21(2): p. 203-208. 77. Kuo, C.M., C.H. Tso, and C.H. Lin, Plastic instability of Al-Mg alloys during stress rate change test. Materials Science and Engineering: A, 2009. 519(1-2): p. 32-37. 78. Guo, W.G., et al., The characteristics of plastic flow and a physically-based model for 3003 Al-Mn alloy upon a wide range of strain rates and temperatures. European Journal of Mechanics - A/Solids. 30(1): p. 54-62. 79. Chen, J., et al., Plastic flow and ductile rupture of a 2198 Al-Cu-Li aluminum alloy. Computational Materials Science, 2011. 50(4): p. 1365-1371. 80. Wang, C., Y. Xu, and E. Han, Portevin-Le Chatelier effect of LA41 magnesium alloys. Frontiers of Materials Science in China, 2007. 1(1): p. 105-108. 81. Rodriguez, P., Serrated plastic flow. Bulletin of Materials Science, 1984. 6(4): p. 653-663. 82. Alamo, A. and A.D. Banchik, Precipitation phenomena in the Mg-31 at% Li-1 at% Al alloy. Journal of Materials Science, 1980. 15(1): p. 222-229. 83. Hsu, C.C., J.Y. Wang, and S. Lee, Room Temperature Aging Characteristic of MgLiAlZn Alloy. Materials Transactions, 2008. vol. 49, No. 11(The Japan Institute of Metals): p. 2728-2731. 84. Song, G.S., M. Staiger, and M. Kral, Some new characteristics of the strengthening phase in [beta]-phase magnesium-lithium alloys containing aluminum and beryllium. Materials Science and Engineering A, 2004. 371(1-2): p. 371-376. 85. Wang, J.Y., Mechanical properties of room temperature rolled MgLiAlZn alloy. Journal of Alloys and Compounds, 2009. 485(1-2): p. 241-244. 86. Kim, Y.W., et al., WidmanstAtten Type Solidification in Squeeze Casting of Mg-Li-Al Alloys. Scripta Materialia, 1998. 38(6): p. 923-929. 87. Kral, M.V., B.C. Muddle, and J.F. Nie, Crystallography of the bcc/hcp transformation in a Mg-8Li alloy. Materials Science and Engineering: A, 2007. 460-461: p. 227-232. 88. Cullity, B.D. and S.R. Stock, ELEMENTS OF X-RAY DIFFRACTION. Pentice-Hall, Inc. Upper Saddle River, New Jersey, 2001. 89. McDonald, J.C., Precipitation Phenomena in the β Phase of Mg-Li-Al Alloys of Low Aluminum Content. J. of the Institute of Metals, 1969. Vol. 97, no. 12: p. 353-362. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10106 | - |
dc.description.abstract | 本研究針對極輕質LZ141及LZ171鎂鋰合金,進行固溶處理與室溫軋延等處理方法來改變其顯微組織,並利用動態機械分析儀(DMA)來測試其於各溫度下之制振能大小,以及藉由顯微組織觀察、XRD分析、硬度及拉伸試驗等,協助了解不同熱機處理條件對LZ141及LZ171合金的機械性質與制振能機制之影響。研究結果顯示,LZ141合金經固溶處理再室溫軋延70%,可明顯改善P1峰之制振能,使其在25℃即可達tanδ=0.025。另外,對不同熱機處理條件之LZ141合金分析其高溫制振背景(HTDB)活化能,發現其活化能與經DMA測試結束後之平均晶粒大小成正比,表示晶粒越小者具有越多可滑移之晶界,同時可提供越多的原子擴散通道,因此形成其HTDB所需之活化能也越低,但同時也會降低其潛變強度。對於含17wt.%鋰之LZ171合金,其比重降至1.32g/cm3,但也因鋰含量較高而使LZ171的制振能較LZ141合金差,且室溫軋延對P1峰制振能的提升效果有限,但隨著加工量的增加,P2峰會漸往低溫移動而有助於改善低溫之制振能。此外,雖LZ171合金之制振性質較差,但其機械強度卻不遜於LZ141合金,對於相同熱軋延條件之板材,LZ141合金之抗拉強度為127MPa,LZ171合金則為126MPa。本研究同時探討LAZ1110合金經固溶處理與室溫軋延等處理後之機械性質,並了解其室溫下時效之強化機制。研究結果顯示,LAZ1110合金經固溶處理後於室溫時效,約20hr可達到最高強度之peak ageing,此時抗拉強度可達245MPa,硬度最高為91.7Hv,之後其強度及硬度便隨著時效時間的增加而降低,約在500hr之後可達到平衡,硬度值固定在68Hv上下。若在固溶處理後立即施以室溫軋延,其強度可進一步提升至289MPa,並可有效減緩室溫時效的強度劣化趨勢並使其在較短的時間內達到平衡,約250hr即可達到平衡,硬度值平衡在75Hv。另外由XRD分析結果發現,室溫軋延會促進θ相之析出。 | zh_TW |
dc.description.abstract | Cold-rolling and solid-solution treatments are conducted to strengthen extremely light LZ141 and LZ171 Mg-Li alloys. Damping capacities (DCs), microstructure observation, XRD tests, micro-Vickers hardness and tensile tests of strengthened LZ141/LZ171 alloys are investigated. Experimental results show that the DC (tanδ) can reach 0.025 at room temperature for solid-soluted and then 70% cold-rolled (SSCR) LZ141 alloy. For various thermo-mechanical treated LZ141 alloy, the activation energy of HTDB increases with increasing the grain size of the alloy after it has been heated in DMA load-cell up to 300℃. This indicates that the finer grain size can enhance the grain boundary sliding and accelerate the diffusion process simultaneously and therefore lessen the activation energy of HTDB. In the tanδ curve of LZ171 alloy, cold-rolled LZ171 alloy exhibits inconspicuous P1 peak, but P2 peak shift toward lower temperature with the higher degree of cold-rolling which can improve DC at lower temperature. Although LZ171 alloy has worser DC than LZ141 due to its higher Li content, there is not much difference of tensile strength in between these two alloys. The tensile strength of as hot-rolled LZ141 alloy and that 70% of CR LZ141 alloy is 127MPa and 170MPa, respectively, and that of LZ171 alloy is 126MPa for as hot-rolled and 180MPa for SSCR. The strengthening mechanism of LAZ1110 alloy is also investigated in this study. Solid-soluted LAZ1110 alloy reaches the maximum hardness (91.7Hv) after ageing at room temperature for 20hr. At this maximum hardness, 80% cold-rolled LAZ1110 alloy would enhance θ phase precipitation and cause the hardness decrease slightly, but retard the degradation of the hardness simultaneously when the specimen is aged at room temperature. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T21:02:22Z (GMT). No. of bitstreams: 1 ntu-100-R98527036-1.pdf: 10335234 bytes, checksum: a0ab712c72889e71c3a7465d152fe0c8 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 致謝 i
摘要 iii Abstract v 目錄 vii 第一章 前言 1 1-1 前言 1 1-2 研究動機 1 第二章 文獻回顧 3 2-1 簡介 3 2-2 鎂合金之成分與命名方法 3 2-3 添加合金元素對鎂合金之影響 4 2-3-1 常見之合金元素 4 2-3-1-1 鋁(Al) 4 2-3-1-2 鋅(Zn) 5 2-3-1-3 錳(Mn) 5 2-3-1-4 鋯(Zr) 5 2-3-1-5 鋰(Li) 6 2-3-1-6 矽(Si) 6 2-3-1-7 鈣(Ca) 6 2-3-1-8 稀土元素(RE) 7 2-3-2 微量添加元素 7 2-3-2-1 鈹(Be) 7 2-3-2-2 鈧(Sc) 7 2-3-2-3 雜質:鐵(Fe)、鎳(Ni)、銅(Cu) 8 2-4 材料的阻尼特性 8 2-4-1 阻尼現象及意義 8 2-4-2 滯彈性阻尼 8 2-4-3內耗的量測 10 2-5 金屬材料之阻尼機制 11 2-5-1 點缺陷制振峰 11 2-5-1-1 Snoek峰 11 2-5-1-2 Zener峰 11 2-5-2 差排制振峰 12 2-5-3 晶界制振峰 12 2-5-4 高溫制振背景值(HTDB) 13 2-6 高制振能材料[39] 14 第三章 實驗步驟與方法 27 3-1 實驗材料 27 3-1-1 LZ141合金 27 3-1-2 LZ171合金 27 3-1-3 LAZ1110合金 28 3-2 實驗流程 28 3-3 密度測量 28 3-4 室溫軋延 29 3-5 固溶處理 29 3-6 顯微組織觀察 30 3-7 XRD分析 30 3-8 DMA測量分析 30 3-8-1 DMA2980儀器架構 31 3-8-2 DMA2980實驗參數設定 31 3-8-3 夾具選擇之考量 32 3-8-4 DMA試片之製備 32 3-9 維氏硬度測試(Micro-Vickers Hardness Test) 32 3-10 拉伸試驗 33 第四章 Mg-14wt.%Li-1wt.%Zn合金之探討 43 4-1 熱軋延(Hot-rolled)之LZ141板材 43 4-1-1 密度量測 43 4-1-2顯微組織觀察與機械性質測試 43 4-1-3 制振能試驗 44 4-1-4 頻率對熱軋延LZ141合金制振能的影響 44 4-2 室溫軋延之LZ141合金材 46 4-2-1 顯微組織觀察與硬度試驗 46 4-2-2 室溫軋延對LZ141合金制振能之影響 46 4-2-3 室溫軋延後頻率對LZ141合金制振能之影響 47 4-3固溶處理後再經室溫軋延之LZ141合金 48 4-3-1 固溶處理之LZ141合金性質 48 4-3-2 固溶處理再室溫軋延對LZ141合金機械性質之影響 49 4-3-3 固溶處理再室溫軋延對LZ141合金制振能之影響 50 4-4 高溫至振背景值(HTDB)之探討 51 4-4-1 HTDB活化能之數據分析 51 4-4-2固溶處理及(或)室溫軋延對LZ141合金HTDB之影響 52 第五章 Mg-17wt.%Li-1wt.%Zn合金之探討 71 5-1 熱軋延之LZ171合金板材 71 5-1-1 密度量測 71 5-1-2 顯微組織觀察及強度試驗 71 5-1-3 基本制振特性 72 5-1-4 LZ171合金P1制振峰活化能之探討 73 5-1-5 振幅對鎂鋰合金制振能的影響 74 5-2 室溫軋延之LZ171合金板材 75 5-2-1 顯微組織觀察與機械性質測試 75 5-2-2 室溫軋延對LZ171合金制振能之影響 76 5-2-3 頻率對室溫軋延後LZ171合金制振能之影響 76 5-3 固溶處理之LZ171合金 77 5-4 固溶處理後再經室溫軋延之LZ171合金 79 5-4-1 顯微組織觀察與機械性質測試 79 5-4-2 固溶處理再室溫軋延對LZ171合金制振能之影響 79 第六章 Mg-11wt.%Li-1wt.%Al合金之探討 99 6-1 經擠製之LAZ1110合金板材 99 6-2 固溶處理與室溫時效 100 6-2-1 固溶處理之LAZ1110合金 100 6-2-2 室溫時效對LAZ1110之影響 101 6-3 固溶處理後再室溫軋延之影響 102 6-3-1 室溫軋延之LAZ1110合金 102 6-3-2 固溶處理再室溫軋延之LAZ1110合金 103 第七章 結論 117 參考文獻 121 | |
dc.language.iso | zh-TW | |
dc.title | Mg-xLi (x=11, 14, 17wt.%)鎂鋰合金制振能之研究 | zh_TW |
dc.title | Studies on Damping Capacities of Mg-xLi (x=11, 14, 17wt.%) Magnesium Alloys | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 薛人愷,王建義,薄慧雲 | |
dc.subject.keyword | 鎂鋰合金,制振能,高溫制振背景,活化能,室溫時效,熱機處理, | zh_TW |
dc.subject.keyword | Mg-Li alloy,damping capacity,high temperature damping background,activation energy,room temperature ageing,thermo-mechanical treatment, | en |
dc.relation.page | 126 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2011-07-18 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf | 10.09 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。