請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100961完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 顏炳郎 | zh_TW |
| dc.contributor.advisor | Ping-Lang Yen | en |
| dc.contributor.author | 盧順彥 | zh_TW |
| dc.contributor.author | Shun-Yan Lu | en |
| dc.date.accessioned | 2025-11-26T16:15:57Z | - |
| dc.date.available | 2025-11-27 | - |
| dc.date.copyright | 2025-11-26 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-15 | - |
| dc.identifier.citation | 1. Latest report: fossil fuel CO2 emissions reach record high again in 2024. https://cosmosmagazine.com/earth/climate/latest-report-fossil-fuel-co2-emissions-reach-record-high-again-in-2024/
2. 減碳能力初探. https://kmweb.moa.gov.tw/knowledgebase.php?id=423311 3. Chukewad, Y. M., Chadha, S., Jagdale, K. S., Elkunchwar, N., Rosa, U. A., & Omohundro, Z. (2024). Tractor Three-Point hitch control for an independent lower arms system. AgriEngineering, 6(2), 1725-1746. https://doi.org/10.3390/agriengineering6020100 4. Baek, S. Y., Baek, S. M., Jeon, H. H., Kim, W. S., Kim, Y. S., Sim, T. Y., Choi, K. H., Hong, S. J., Kim, H., & Kim, Y. J. (2022). Traction Performance Evaluation of the Electric All-Wheel-Drive Tractor. Sensors (Basel, Switzerland), 22(3), 785. https://doi.org/10.3390/s22030785 5. Ueka, Y., Yamashita, J., Sato, K., & Doi, Y. (2013). Study on the development of the electric tractor. Engineering in Agriculture Environment and Food, 6(4), 160–164. https://doi.org/10.1016/s1881-8366(13)80003-1 6. Liu, J., Xia, C., Jiang, D., Shang, G., Han, J., & Sun, Y. (2021). Determination and application of maximum efficiency curve of crawler electric tractor motors. Mathematical Problems in Engineering, 2021, 1–10. https://doi.org/10.1155/2021/1310926 7. Melo, R. R., Antunes, F. L., Daher, S., Vogt, H. H., Albiero, D., & Tofoli, F. L. (2019). Conception of an electric propulsion system for a 9 kW electric tractor suitable for family farming. IET Electric Power Applications, 13(12), 1993–2004. https://doi.org/10.1049/iet-epa.2019.0353 8. Zhan, P., Qiang, Y., Jiang, Z., Yang, R., & Wie, L. (2024). Study on Mechanism and Suppression Method of Flow-Induced Noise in High-Speed Gear Pump. Archives of Acoustics, 49–60. https://doi.org/10.24425/aoa.2023.146824 9. Fitch, E. C. (2019, April 22). Cavitation Explained and illustrated | Machinery Lubrication. Machinery Lubrication. Available : https://www.machinerylubrication.com/Read/380/cavitation-wear-hydraulic 10. Yang, G. L., Li, M. X., Wang, J. Z., & Yin, D. Y. (2014). A new way to eliminate the phenomenon of trapping oil in gear pumps. Applied Mechanics and Materials, 628, 181–185. https://doi.org/10.4028/www.scientific.net/amm.628.181 11. Moshele, P., Stenzel, M. R., Drolet, D., & Arnold, S. F. (2024). Comparing Antoine parameter sources for accurate vapor pressure prediction across a range of temperatures. Annals of Work Exposures and Health, 68(4), 409–419. https://doi.org/10.1093/annweh/wxae010 12. Monarch MK-V.(2025).Available: https://www.monarchtractor.com/mk-v-electric-tractor?hsCtaAttrib=151144840578 13. Electric Tractor 74HP: T4. (n.d.). Electric Tractor 74Hp: T4 | New Holland UK.Available https://agriculture.newholland.com/en-gb/europe/products/agricultural-tractors/t4-electric-power 14. Fendt e100 V Vario.(n.d).Available: https://www.fendt.com/int/agricultural-machinery/e-tractors/fendt-e100-v-vario 15. Gimitelli, A. (n.d.-b). Medium heavy Rotavator tiller for tractor - working width 125cm - manuall sideshift - mod. DFM-125. https://www.deleks.be/en/p/957/medium-heavy-rotavator-tiller-for-tractor-working-width-125cm-manuall-sideshift-mod-dfm-125 16. STM32F446RE - STMicroElectronics. (n.d.). STMicroelectronics. https://www.st.com/en/microcontrollers-microprocessors/stm32f446re.html 17. MODUL CAN - MCP2551 - ARDUINO ITP. (n.d.). https://www.empik.com/modul-can-mcp2551-arduino-itp-inny-producent,p1388727202,elektronika-p 18. 5V 4路繼電器高低電平驅動板. (n.d.). 源達科技股份有限公司. https://web.hocom.tw/h/ProductDetail?key=809116097559&productId=387148 19. AlexChip. (2023, February 7). IC LM358 Pinout, Circuits & Equivalent. CihipDataSheet. https://chipdatasheet.com/ic/lm358-pinout-circuits-equivalent/ 20. Useful information on External Gear Pumps (n.d).Available https://www.michael-smith-engineers.co.uk/resources/useful-info/external-gear-pumps 21. Abdelhameed, M. M., Abdelaziz, M. A., & Bakarman, A. (2014). The velocity control of the electro-hydraulic servo system. International Journal of Research in Engineering and Technology, 3(11), 73–79. https://ijret.org/volumes/2014v03/i11/IJRET20140311012.pdf 22. Chai, H., Yang, G., Wu, G., Bai, G., & Li, W. (2020). Research on Flow Characteristics of Straight Line Conjugate Internal Meshing Gear Pump. Processes, 8(3), 269. https://doi.org/10.3390/pr8030269 23. Daniel E. (2007). Noise and hearing loss: a review. The Journal of school health, 77(5), 225–231. https://doi.org/10.1111/j.1746-1561.2007.00197.x | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100961 | - |
| dc.description.abstract | 目前,農業上大多使用柴油曳引機為主。然而,若能將曳引機電動化,不僅可以降低碳排放,也能使操作者的使用環境更加安靜。因此,本研究將KAMCO的Tera Trac配備MTM開發之72V BLDC主馬達,並搭配72V驅動器(VT01-PCU),同時串聯兩個36V、120Ah的電池作為總電源輸出,使其實現該曳引機的電動化。 齒輪泵浦作為電動曳引機的核心零件,本研究分別使用型號P225與P206定量齒輪泵浦(Kompass)。在實驗過程中,在出口端接上油壓表來量測管內壓力,並根據測量結果計算出吸入端的壓力。使用的油品為10w40,並依據Antoine方程式推算出20°C至70°C之間的飽和蒸汽壓。實驗結果顯示,P225型齒輪泵浦在吸入端的壓力在25°C之後持續低於10w40油品的飽和蒸汽壓,從而引發了氣蝕現象並產生劇烈噪音。相對而言,P206型齒輪泵浦的吸入端壓力在20°C至70°C範圍內均高於該油品的飽和蒸汽壓,因此未出現氣蝕現象。 在馬達性能測試了該曳引機分別在耕耘深度10和16公分且烏龜一檔至兔子一檔下的轉速、電壓、電流。本研究相較於Ueka et al.在10kW馬達、耕耘深度18公分的旱田下,平均功耗為7.2kW,效率為72%;本研究使用之馬達在耕耘深度16公分的旱田,平均功耗約6kW,效率達80%。經比較,本研究馬達效率更高。在續航力方面,Ueka et al.於1.08 km/h行駛速度、耕耘深度10公分的情況下能持續作業約一小時,而本研究在各檔位下提供了更長的作業時間,在農用電動曳引機的作業上更有優勢。 | zh_TW |
| dc.description.abstract | Currently, diesel tractors are predominantly used in agriculture. However, if tractors were electrified, it would not only reduce carbon emissions but also provide a quieter operating environment for the operators. Therefore, this study equips KAMCO's Tera Trac with a 72V BLDC main motor developed by MTM, paired with a 72V driver (VT01-PCU), and connects two 36V, 120Ah batteries in series to provide total power output, thereby achieving the electrification of the tractor. The gear pump, as the core component of the electric tractor, uses the P225 and P206 gear pumps (Kompass) in this study. During the experiment, a pressure gauge was connected to the outlet to measure the internal pressure of the pipe, and the pressure at the inlet was calculated based on the measurement results. The oil used was 10w40, and the saturated vapor pressure from 20°C to 70°C was calculated using the Antoine equation. The experimental results showed that the pressure at the inlet of the P225 gear pump remained below the saturated vapor pressure of the 10w40 oil after 25°C, leading to cavitation and producing loud noise. In contrast, the pressure at the inlet of the P206 gear pump remained above the saturated vapor pressure of the oil from 20°C to 70°C, preventing cavitation. In the motor performance tests, the tractor's speed, voltage, and current were measured at tilling depths of 10 and 16 cm and gears 1 to 3. Compared to Ueka et al.'s study with a 10kW motor at a tilling depth of 18 cm in dry fields, where the average power consumption was 7.2kW and efficiency was 72%, the motor used in this study consumed about 6kW with an efficiency of 80% at a 16 cm tilling depth in dry fields. When compared, the motor in this study demonstrated higher. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:15:57Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-11-26T16:15:57Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目次 iv 圖次 vii 表次 x 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 文獻回顧 3 1.3.1曳引機之設計概念與作業特性 3 1.3.2曳引機電動化之設計應用 4 1.3.3齒輪泵浦噪音與抑制 8 1.3.4現有電動曳引機市場概況與現有產品分析 10 1.4 章節瀏覽 12 第二章 電動曳引機之機構與系統架構 13 2.1 電動及引擎曳引機之規格 13 2.2 電動曳引機硬體架構 15 2.2.1動力傳遞系統 19 2.2.2電池與控制系統 21 2.2.3油路系統 22 2.3 電動曳引機之車控模組 24 2.3.1Power Distribute Unit(PDU) 24 2.3.2Vehicle Control Unit (VCU) 25 2.4 軟體開發環境 28 2.4.1開發環境 28 第三章 齒輪泵浦降噪與量測 29 3.1 齒輪泵浦之降噪 29 3.1.1齒輪泵浦硬體配置 29 3.1.2齒輪泵浦性能計算 30 3.1.3 10w40之飽和蒸汽壓 34 3.2 齒輪泵浦噪音量測方法 35 第四章 實驗及結果與討論 36 4.1 實驗方法 36 4.1.1實驗場域 36 4.1.2實驗流程 37 4.2 齒輪泵浦噪音分析 38 4.2.1.噪音分析 38 4.2.2.齒輪泵浦壓力分析 43 4.2.3.飽和蒸汽壓分析 45 4.3 電動曳引機性能分析 47 4.3.1.耕耘深度10公分之馬達性能 47 4.3.2.耕耘深度16公分之馬達性能 52 第五章 結論與未來展望 57 5.1 結論 57 5.2 未來與展望 58 參考文獻 59 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 曳引機 | - |
| dc.subject | 電動化 | - |
| dc.subject | 齒輪泵浦 | - |
| dc.subject | 飽和蒸汽壓 | - |
| dc.subject | 氣蝕現象 | - |
| dc.subject | Tractor | - |
| dc.subject | Electrfication | - |
| dc.subject | Gear pump | - |
| dc.subject | Saturated vapor | - |
| dc.subject | Cavitation | - |
| dc.title | 小型電動曳引機開發 | zh_TW |
| dc.title | Development of a Small Electric Tractor | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃柏維;吳益彰;李汪盛 | zh_TW |
| dc.contributor.oralexamcommittee | Bo-Wei Huang;Yi-Zhang Wu;Wang-Sheng Li | en |
| dc.subject.keyword | 曳引機,電動化齒輪泵浦飽和蒸汽壓氣蝕現象 | zh_TW |
| dc.subject.keyword | Tractor,ElectrficationGear pumpSaturated vaporCavitation | en |
| dc.relation.page | 60 | - |
| dc.identifier.doi | 10.6342/NTU202503436 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-15 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物機電工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf 未授權公開取用 | 4.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
