請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10046
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 薛景中(Jing-Jong Shyue) | |
dc.contributor.author | Chi-Jen Chang | en |
dc.contributor.author | 張几人 | zh_TW |
dc.date.accessioned | 2021-05-20T20:58:06Z | - |
dc.date.available | 2011-08-01 | |
dc.date.available | 2021-05-20T20:58:06Z | - |
dc.date.copyright | 2011-08-01 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-27 | |
dc.identifier.citation | 1. M. Karas, et al, Influence of the Wavelength in High-Irradiance Ultraviolet Laser Desorption Mass Spectrometry of Organic Molecules. Analytical Chemistry, 1985. 57(14): p.2935–2939.
2. M. Karas, , et al, Matrix-Assisted Ultraviolet Laser Desorption of Non-Volatile Compounds. International Journal of Mass Spectrometry and Ion Processes, 1987. 78: p.53–68. 3. K. Tanaka, et al, Protein and Polymer Analyses up to m/z 100,000 by Laser Ionization Time-of flight Mass Spectrometry. Rapid Communications in Mass Spectrometry, 1988. 2(8): p.151–153. 4. J.E. Delmore, et al, Tube ion source for the study of chemical effects in surface ionization. International Journal of Mass Spectrometry and Ion Processes, 1991. 108(2-3): p.179-187. 5. F. Kötter and A. Benninghoven, Secondary ion emission from polymer surfaces under Ar+, Xe+ and SF5+ ion bombardment. Applied Surface Science, 1998. 133(1-2): p.47-57. 6. K. Boussofiane-Baudin, et al, Secondary ion emission under cluster impact at low energies (5–60 keV); influence of the number of atoms in the projectile. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1994. 88(1-2): p.160-163. 7. Y. Le Beyec, Cluster impacts at keV and MeV energies: Secondary emission phenomena. International Journal of Mass Spectrometry and Ion Processes, 1998. 174(1-3): p.101-117. 8. Bang-Ying Yu, et al, Sputter Damage in Si (001) Surface by Combination of C60+ and Ar+ Ion Beams. Applied Surface Sciences, 2008. 255(5): p.2490-2493. 9. Yu-Chin Lin, et al, Sputter-Induced Chemical Transformation in Oxoanions by Combination of C60+ and Ar+ Ion Beams Analyzed with X-ray Photoelectron Spectrometry. Analyst, 2009. 134 (5): p.945-951. 10. Douglas A. Skoog, Principles of instrumental analysis, third edition. Saunders college publishing, 1984. Chapter.18: p.528-529. 11. Douglas A. Skoog, Principles of instrumental analysis, third edition. Saunders college publishing, 1984. Chapter.18: p.529-530. 12. Douglas A. Skoog, Principles of instrumental analysis, third edition. Saunders college publishing, 1984. Chapter.18: p.530-531. 13. H.D. Beckey, Field desorption mass spectrometry: A technique for the study of thermally unstable substances of low volatility. International Journal or Mass Spectrometry and Ion Physics, 1969. 2(6): p.500-502. 14. H.U. Winkler and H.D. Beckey, Field desorption mass spectrometry of peptides. Biochemical and Biophysical Research Communications, 1972. 46(2): p.391-398. 15. J. B. Fenn, et al, Electrospray ionization for mass spectrometry of large biomolecules. Science, 1989. 246(4926): p.64-71. 16. L. Konermann and D. J.Douglas, Equilibrium unfolding of proteins monitored by electrospray ionization mass spectrometry: Distinguishing two-state from multi-state transitions. Rapid Communications in Mass Spectrometry, 1998. 12 (8): p.435–442. 17. M. Karas and F. Hillenkamp, Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Analytical Chemistry, 1988. 60(20): p.2299–2301. 18. R.C. Beavis and B.T. Chait, Matrix-assisted laser-desorption mass spectrometry using 355 nm radiation. Rapid Communications in Mass Spectrometry, 1989. 3(12): p.436–439. 19. M. Karas and U. Bahr, Laser Desorption Ionization Mass Spectrometry of Large Biomolecules. Trends in Analytical Chemistry, 1990. 9(10): p.321–325. 20. H.R. Morris, et al, Fast atom bombardment: a new mass spectrometric method for peptide sequence analysis. Biochemical and Biophysical Research Communications, 1981. 101(2): p.623–631. 21. M. Barber, et al, Fast atom bombardment of solids (F.A.B.): a new ion source for mass spectrometry. Journal of the Chemical Society, Chemical Communications, 1981. (7): p.325–327. 22. D. F. Torgerson, et al, New approach to the mass spectroscopy of non-volatile compounds. Biochemical and Biophysical Research Communications, 1974. 60(2): p.616-621. 23. R.D. Macfarlane and D.F. Torgerson, Californium-252 plasma desorption mass spectroscopy. Science, 1976. 191(4230): p.920-925. 24. R. G. Cooks, et al, Advances in Mass Spectrometry, Longevaille, P., Ed.; Heyden & Son: London, 1989. Vol. 11A. 25. K. J. Wu and R. W. Odom, Matrix-enhanced secondary ion mass spectrometry: a method for molecular analysis of solid surfaces. Analytical Chemistry, 1996. 68(5): p.873-882. 26. L. Adriaensen, et al, Matrix-enhanced secondary ion mass spectrometry: the influence of MALDI matrices on molecular ion yields of thin organic films. Rapid Communications in Mass Spectrometry, 2005. 19(8): p.1017-1024. 27. B. Hagenhoff, et al, ToF-SIMS: Surface Analysis by Mass Spectrometry, IM Publications and SurfaceSpectra Limited, 2001. p.285-308. 28. H. Nygren, et al, A cell preparation method allowing subcellular localization of cholesterol and phosphocholine with imaging TOF-SIMS. Colloids and Surfaces B: Biointerfaces, 2003. 30: p.87-/92. 29. Vasil Vorsa, et al, Femtosecond photoionization of ion beam desorbed aliphatic and aromatic amino acids: fragmentation via α-cleavage reactions. The Journal of Physical Chemistry B, 1999. 103(37): p.7889-7895. 30. K. Wittmaack, Secondary-ion emission from silicon bombarded with atomic and molecular noble-gas ions. Surface Science, 1979. 90(2): p.557-563. 31. S.S. Johar and D.A. Thompson, Spike effects in heavy-ion sputtering of Ag, Au and Pt thin films. Surface Science, 1979. 90(2): p.319-330. 32. H. H. Andersen and H. L. Bay, Nonlinear effects in heavy‐ion sputtering. Journal of Applied Physics, 1974. 45(2): p.953-954. 33. M.G. Blain, et al, A new experimental method for determining secondary ion yields from surfaces bombarded by complex heterogeneous ions. Journal of Vacuum Science & Technology A, 1990. 8(3): p.2265-2268. 34. Z. Postawa, et al, Enhancement of sputtering yields due to C60 versus Ga bombardment of Ag{111} as explored by molecular dynamics simulations. Analytical Chemistry, 2003. 75(17): p.4402-4407. 35. Z. Postawa, et al, Microscopic Insights into the Sputtering of Ag{111} Induced by C60 and Ga Bombardment. The Journal of Physical Chemistry B, 2004. 108(23): p.7831-7838. 36. John S. Fletcher, et al, C60, buckminsterfullerene: its impact on biological ToF-SIMS analysis. Surface and Interface Analysis, 2006. 38(11): p.1393-1400. 37. H.W. Kroto, et al, C60: Buckminsterfullerene. Nature, 1985. 318 (6042): p.162–163. 38. Michael J. Van Stipdonk, et al, A Comparison of Desorption Yields from C60 to Atomic and Polyatomic Projectiles at keV Energies. Rapid Communications in Mass Spectrometry, 1996. 10(15): p.1987-1991. 39. S.C.C. Wong, et al, Development of a C60+ ion gun for static SIMS and chemical imaging. Applied Surface Science, 2003. 203-204: p.219-222. 40. D. Weibel, et al, A C60 Primary Ion Beam System for Time of Flight Secondary Ion Mass Spectrometry: Its Development and Secondary Ion Yield Characteristics. Analytical Chemistry, 2003. 75(7): p.1754-1764. 41. N. Sanada, et al, Extremely low sputtering degradation of polytetrafluoroethylene by C60 ion beam applied in XPS analysis. Surface and Interface Analysis, 2004. 36(3): p.280-282. 42. R. Kersting, et al, Influence of primary ion bombardment conditions on the emission of molecular secondary ions. Applied Surface Science, 2004. 231-232: p.261-264. 43. A. Tempez, et al, Orthogonal time-of-flight secondary ion mass spectrometric analysis of peptides using large gold clusters as primary ions. Rapid Communications in Mass Spectrometry, 2004. 18(4): p.371-376. 44. D. E. Weibei, et al, C60 cluster ion bombardment of organic surfaces. Applied Surface Science, 2004. 231-232: p.146-152. 45. E.A. Jones, et al, ToF-SIMS analysis of bio-systems: Are polyatomic primary ions the solution? Applied Surface Science, 2006. 252(19): p.6844-6854. 46. G. Gillen, et al, Depth profiling using C60+ SIMS—deposition and topography development during bombardment of silicon. Applied Surface Science, 2006. 252(19): p.6521-6525. 47. N. Davies, et al, Development and experimental application of a gold liquid metal ion source. Applied Surface Science, 2003. 203-204: p.223-227. 48. D. Touboul, et al, Improvement of biological time-of-flight-secondary ion mass spectrometry imaging with a bismuth cluster ion source. Journal of The American Society for Mass Spectrometry, 2005. 16(10): p. 1608-1618. 49. S. parry and N. Winograd, High-resolution ToF-SIMS imaging of eukaryotic cells preserved in a trehalose matrix. Analytical Chemistry, 2005. 77(24): p.7950-7957. 50. John S. Fletcher, et al, ToF-SIMS 3D biomolecular imaging of xenopus laevis oocytes using buckminsterfullerene (C60) primary ions. Analytical Chemistry, 2007. 79(6): p.2199-2206. 51. A. Wucher, et al, Molecular depth profiling of histamine in ice using a buckminsterfullerene probe. Analytical Chemistry, 2004. 76(24): p.7234-7242. 52. A. Wucher, et al, Molecular depth profiling in ice matrices using C60 projectiles. Applied Surface Science, 2004. 231-232: p.68-71. 53. J. Cheng and N. Winograd, Depth profiling of peptide films with TOF-SIMS and a C60 probe. Analytical Chemistry, 2005. 77(11): p.3651–3659. 54. Y. Y. Chen, et al, X-ray photoelectron spectrometry depth profiling of organic thin films using C60 sputtering. Analytical Chemistry, 2008. 80(2): p.501-505. 55. W.C. Lin, et al, The role of the auxiliary atomic ion beam in C60+–Ar+ co-sputtering. Analyst, 2011. 136(5): p.941-946. 56. B. Y. Yu, et al, Depth profiling of organic films with X-ray photoelectron spectroscopy using C60+ and Ar+ co-sputtering. Analytical Chemistry, 2008. 80(9): p. 3412-3415. 57. B.Y. Yu, et al, Effect of fabrication parameters on three-dimensional nanostructures and device efficiency of polymer light-emitting diodes. ACS NANO, 2010. 4(5): p.2547-2554. 58. Y. W. You, et al, Molecular Dynamic-Secondary Ion Mass Spectrometry (D-SIMS) Excited by C60+-Ar+ Co-Sputtering. Journal of the American Society of Mass Spectrometry (submitted on 2011/4/2). 59. Wikimedia Commons. SIMS - Secondary Ion Mass Spectrometry, instrument scheme. 60. Douglas A. Skoog, Principles of instrumental analysis, third edition. Saunders college publishing, 1984. Chapter.18: p.536, Figure 18-10. 61. Douglas A. Skoog, Principles of instrumental analysis, third edition. Saunders college publishing, 1984. Chapter.18: p.532, Figure 18-5. 62. Douglas A. Skoog, Principles of instrumental analysis, third edition. Saunders college publishing, 1984. Chapter.18: p.534, Figure 18-8. 63. Website on Electro-Optics Research Center, University of Texas at Arlington. Research - Ellipsometry - schematic of the geometry of an ellipsometry experiment. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10046 | - |
dc.description.abstract | 以簇離子(cluster ions)作為濺射離子源的時間飛行二次離子質譜儀(TOF-SIMS)已被證明是分析生物樣本之頗具發展潛力的一項技術,其中碳簇離子(C60+)已引起廣大的研究興趣。隨著高質量的分子離子飛濺而出,可在不預先分離或同位素標記情況下同時偵測多種分子。目前多數研究是使用靜態二次離子質譜儀作分析,但其在縱深分佈分析上步驟較為複雜且偵測極限較差,因此本研究主要使用動態二次離子質譜儀分析技術。摻雜胜肽的海藻糖基質試片,被用作檢視平行偵測和定量分析生物性樣品時相關參數的模型。海藻糖基質同時混合不同種類與濃度的胜肽,經由實驗發現,於海藻糖分子中胜肽分子的二次離子訊號相對強度是直接正比於其在基質中的濃度。因此,透過繪製各胜肽存在於海藻糖基質的比例對比於其二次離子的相對強度圖,即可得到各種胜肽相對於基質的校正曲線。實驗證實利用這些曲線,即可達成各胜肽在基質中的平行檢測、識別及定量分析。另外,為了抑制高能量C60+離子濺射造成並因而限制後續濺射分析的碳沉積,同時使用低能量Ar+離子共同濺射摻雜胜肽之海藻糖試片。其顯示共同濺射的技術較單獨使用C60+離子濺射可產生較為穩定的分子離子訊號,依此特性,共同濺射技術更適用於分析厚度較大的樣品。此外實驗亦發現,負責產生分子離子的主要仍為C60+離子,輔助濺射的Ar+離子其電流設定並不影響定量分析中校正曲線數值。 | zh_TW |
dc.description.abstract | Using pulsed primary cluster ions, especially for C60+ cluster ion, time-of-flight secondary ion mass spectrometry (ToF-SIMS) has been shown to be a promising technique for analyzing biological specimens. With molecular secondary ions of high mass, multiple molecules can be identified at the same time without prior separation or isotope labeling. While current reports are based on static-SIMS that makes depth profile more complicated, a dynamic-SIMS based technique is reported in this work. Mixed trehalose and peptides were used as a model for evaluating the parameters that lead to parallel detection and quantification of biomaterials. Trehalose is mixed with different peptides separately with varied concentrations of peptides. It is found that the normalized secondary ion intensity of peptide as respect to trehalose is direct proportional to its concentration in the matrix. Therefore, by plotting the percentages of peptides exist in trehalose versus their normalized SIMS intensities, calibration curves of each peptide are obtained. Using these curves, it is shown that parallel detection, identification, and quantification of multiple peptides in the matrix can be achieved. To suppress the associated carbon deposition with high energy C60+ bombardment that leads to suppressed ion intensity in prolonged profiling, a low energy Ar+ is used to co-sputter the peptide-doped trehalose thin film. It is shown that the co-sputtering technique yields more steady molecular ion intensity than single C60+ beam. In other words, the co-sputtering is more suitable for analyzing thick specimens. Furthermore, because the C60+ is responsible for generating the molecular ions, it is found that the does of the auxiliary Ar+ does not change calibration curve for quantification. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T20:58:06Z (GMT). No. of bitstreams: 1 ntu-100-R98527069-1.pdf: 12130386 bytes, checksum: af6b26fa8f4efc5fe41392093e13f271 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 口試委員會審定書..........................................Ι
致謝....................................................II 中文摘要.................................................III Abstract..................................................IV 圖目錄...................................................VII 表目錄.....................................................X 第一章 緒論................................................1 第二章 文獻回顧............................................3 2.1 質譜儀於解析生物及有機分子之應用...................3 2.2 二次離子質譜儀於解析生物及有機分子之議題...........7 2.2.1 簇離子與多原子離子應用於二次離子質譜儀的演進..9 2.2.2 簇離子與多原子離子濺射機制...................10 2.3 C60+離子濺射源於二次離子質譜儀的應用 .............12 2.3.1 C60+離子濺射源於SIMS中之優勢 ─ 二次離子產率提高..........................................12 2.3.2 C60+離子濺射源於SIMS中之優勢 ─ 損傷機率低..13 2.3.3 C60+離子濺射源於SIMS中之優勢 ─ 有利縱深分佈分析.........................................13 2.3.4 C60+離子濺射源於SIMS中之優勢 ─ 有助於影像建立...........................................15 2.4 C60+離子濺射中以基質(matrix)協助之分析物縱深分佈分析.................................................19 2.5 C60+-Ar+共同濺射離子源之應用.......................20 2.5.1 C60+-Ar+共同濺射離子源濺射機制...............20 2.5.2 Ar+輔助濺射離子源之控制......................21 2.5.3 C60+-Ar+共同濺射離子源成效與特性 ─ 縱深分佈分析...........................................22 2.5.4 C60+-Ar+共同濺射離子源成效與特性 ─ 協助影像建立...........................................23 第三章 實驗...............................................26 3.1 藥品與基材........................................26 3.2 實驗儀器簡介......................................27 3.2.1 二次離子質譜儀..............................27 3.2.2 橢圓儀......................................31 3.2.3 X光光電子光譜術.............................33 3.3 實驗步驟..........................................35 3.3.1 試片清洗與製備..............................35 3.3.1.1 試片製備─塊材......................35 3.3.1.2 試片製備─薄膜......................35 3.3.2 薄膜厚度量測................................36 3.3.3 SIMS量測....................................36 3.3.4 XPS量測.....................................37 第四章 實驗結果與討論.....................................38 4.1 海藻糖及各胜肽之定性分析.......................38 4.1.1 以Ar+離子源單獨濺射......................38 4.1.2 以C60+離子源單獨濺射.....................38 4.1.3 以C60+- Ar+離子源共同濺射................41 4.2 用於定量之分子量訊號穩定性.....................52 4.3 濺射離子源對訊號穩定性之比較...................54 4.3.1 C60+-Ar+離子源共同濺射與單獨以C60+離子源濺射對塊材訊號穩定性的比較.................54 4.3.2 Ar+離子源之電流對訊號穩定度的影響........55 4.4 海藻糖及各類胜肽之塊材定量分析.................57 4.4.1 胜肽摻雜之海藻糖塊材定量分析測試.........58 4.4.2 Ar+輔助濺射離子源於共同濺射時的角色定位..60 4.4.3 Ar+離子源於濺射塊材時對定量分析穩定性的影響.......................................61 4.5 胜肽-海藻糖薄膜的測定..........................62 4.5.1 使用掃描閘道(raster gating)對薄膜縱深分佈分 析的影響................................62 4.5.2 C60+-Ar+離子源共同濺射與單獨以C60+離子源濺 射對薄膜訊號穩定性的比較.................64 4.5.3 薄膜組成元素分析.........................68 4.5.4 薄膜厚度與濺射速率測定...................69 4.5.5 Ar+離子源於濺射薄膜時對定量分析穩定性的影響.......................................70 4.5.6 胜肽摻雜之海藻糖薄膜定量分析測試....................71 第五章 結論...............................................73 參考文獻..................................................75 | |
dc.language.iso | zh-TW | |
dc.title | 以C60+-Ar+共濺射與動態二次離子質譜術平行偵測與定量胜肽分子 | zh_TW |
dc.title | Parallel Detection and Quantification of Thin-Film Peptides with Dynamic-Secondary Ion Mass Spectrometry (D-SIMS) Excited by C60+-Ar+ Co-Sputtering | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張哲政(Che-Chen Chang),虞邦英(Bang-Ying Yu),康佳正(Chia-Cheng Kan) | |
dc.subject.keyword | 表面分析,動態二次離子質譜儀,C60+-Ar+共同濺射,縱深分佈分析,生物偵測, | zh_TW |
dc.subject.keyword | surface analysis,dynamic-SIMS,C60+-Ar+ co-sputter,depth-profile,biological detection, | en |
dc.relation.page | 79 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2011-07-27 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf | 11.85 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。