請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100187完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂廷璋 | zh_TW |
| dc.contributor.advisor | Ting-Jang Lu | en |
| dc.contributor.author | 區家韻 | zh_TW |
| dc.contributor.author | Natasya Hermawan | en |
| dc.date.accessioned | 2025-09-24T16:47:14Z | - |
| dc.date.available | 2025-09-25 | - |
| dc.date.copyright | 2025-09-24 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-12 | - |
| dc.identifier.citation | Ahmed, H. M. Ethnomedicinal, phytochemical and pharmacological investigations of Perilla frutescens (L.) Britt. Molecules, 2018, 24(1), 102. https://doi.org/10.3390/molecules24010102
Almeida, H. H. S.; Fernandes, I. P.; Amaral, J. S.; Rodrigues, A. E.; Barreiro, M. F. Unlocking the potential of hydrosols: transforming essential oil byproducts into valuable resources. Molecules, 2024, 29(19), 4660. https://doi.org/10.3390/molecules29194660 An, P.; Yang, X.; Yu, J.; Qi, J.; Ren, X.; Kong, Q. α-Terpineol and terpene-4-ol, the critical components of tea tree oil, exert antifungal activities in vitro and in vivo against Aspergillus niger in grapes by inducing morphous damage and metabolic charges of fungus. Food Control, 2019, 98, pp. 42-53. https://doi.org/10.1016/j.foodcont.2018.11.013 Anmol, R. J.; Marium, S.; Hiew, F. T.; Han, W. C.; Kwan, L. K.; Wong, A. K. Y.; Khan, F.; Sarker, M. M. R.; Chan, S. Y.; Kifli, N.; Ming, L. C. Phytochemical and therapeutic potential of Citrus grandis (L.) Osbeck: a review. J. Evid. Based Integr. Med., 2021, 26. https://doi.org/10.1177/2515690X211043741 Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem., 2006, 99(1), pp. 191-203. https://doi.org/10.1016/j.foodchem.2005.07.042 Baser, K. H. C.; Demirci, B. Dönmez, A. A. Composition of the essential oil of Perilla frutescens (L.) britton from Turkey. Flavour Fragr. J., 2003, 18, pp. 122-123. https://doi.org/10.1002/ffj.1174 Benalaya, I.; Alves, G.; Lopes, J.; Silva, L. R. A review of natural polysaccharides: sources, characteristics, properties, food, and pharmaceutical applications. Int. J. Mol. Sci., 2024, 25(2), 1322. https://doi.org/10.3390/ijms25021322 Ciupei, D.; Colişar, A.; Leopold, L.; Stănilă, A.; Diaconeasa, Z. M. Polyphenols: from classification to therapeutic potential and bioavailability. Foods, 2024, 13(24), 4131. https://doi.org/10.3390/foods13244131 Das, S. C.; Hossain, M.; Hossain, M. Z.; Jahan, N.; Uddin, M. A. Chemical analysis of essential oil extracted from pomelo sourced from Bangladesh. Heliyon, 2022, 8(12), e11843. https://doi.org/10.1016/j.heliyon.2022.e11843 Dat, U. T.; Tran, T. K. N.; Tran, T. H.; Pham, Q. L.; Dinh, T. T. T.; Tran, Q. T. Volatile composition of Perilla frutescens (L.) essential oil in Thai Binh Province, Vietnam extracted by microwave-assisted distillation method. IOP Conf. Ser. Mater. Sci. Eng., 2021, 1092, 012093. http://doi.org/10.1088/1757-899X/1092/1/012093 Deguchi, Y. and Ito, M. Rosmarinic acid in Perilla frutescens and perilla herb analyzed by HPLC. J. Nat. Med., 2020, 74, pp. 341-352. https://doi.org/10.1007/s11418-019-01367-8 Díaz-Reinoso, B.; Rivas, S.; Rivas, J.; Domínguez, H. Subcritical water extraction of essential oils and plant oils. Sustain. Chem. Pharm., 2023, 36, 101332. https://doi.org/10.1016/j.scp.2023.101332 dos Santos, É. R. Q.; Maia, J. G. S.; Fontes-Júnior, E. A.; Maia, C. do S. F. Linalool as a therapeutic and medicinal tool in depression treatment: a review. Curr. Neuropharmacol, 2022, 20(6), pp. 1073-1092. https://doi.org/10.2174/1570159X19666210920094504 Fujiwara, Y. and Ito, M. Molecular cloning and characterization of a Perilla frutescens cytochrome P450 enzyme that catalyzes the later steps of perillaldehyde biosynthesis. Phytochemistry, 2017, 134, pp. 26-37. https://doi.org/10.1016/j.phytochem.2016.11.009 Gaich, T. and Mulzer, J. Chiral pool synthesis: starting from terpenes. In Carreira, E. M. and Yamamoto, H. (Eds.), Comprehensive Chirality, 2012, pp. 163-206. Amsterdam: Elsevier Science. https://doi.org/10.1016/B978-0-08-095167-6.00202-0 Gmehling, J. and Kleiber, M. Vapor-liquid equilibrium and physical properties for distillation. In Górak, A. and Sorensen, E. (Eds.), Distillation: Fundamentals and Principles, 2014, pp. 45-95. Cambridge, MA: Academic Press. https://doi.org/10.1016/B978-0-12-386547-2.00002-8 Gurtler, J. B. and Garner, C. M. A review of essential oils as antimicrobials in foods with special emphasis on fresh produce. J. Food Prot., 2022, 85(9), pp. 1300-1319. https://doi.org/10.4315/JFP-22-017 Hou, T.; Netala, V. R.; Zhang, H.; Xing, Y.; Li, H.; Zhang, Z. Perilla frutescens: a rich source of pharmacological active compounds. Molecules, 2022, 27(11), 3578. https://doi.org/10.3390/molecules27113578 Ilc, T.; Parage, C.; Boachon, B.; Navrot, N.; Werck-Reichhart, D. Monoterpenol oxidative metabolism: role in plant adaptation and potential applications. Front. Plant. Sci., 2016, 7, 509. https://doi.org/10.3389/fpls.2016.00509 Kong, H.; Zhou, B.; Hu, X.; Wang, X.; Wang, M. Protective effect of Perilla (Perilla frutescens) leaf essential oil on the quality of a surimi-based food. J. Food Process. Preserv., 2018, 42(3), 13540. https://doi.org/10.1111/jfpp.13540 Kovačević, Z.; Čabarkapa, I.; Šarić, L.; Pajić, M.; Tomanić, D.; Kokić, B.; Božić, D. D. Natural solutions to antimicrobial resistance: the role of essential oils in poultry meat preservation with focus on gram-negative bacteria. Foods, 2024, 13(23), 3905. https://doi.org/10.3390/foods13233905 Lainez-Cerón, E.; Jiménez-Munguía, M. T.; López-Malo, A.; Ramírez-Corona, N. Effect of process variables on heating profiles and extraction mechanisms during hydrodistillation of eucalyptus essential oil. Heliyon, 2021, 7(10), e08234. https://doi.org/10.1016/j.heliyon.2021.e08234 López-Fernández, O.; Domínguez, R.; Pateiro, M.; Munekata, P. E. S.; Rocchetti, G.; Lorenzo, J. M. Determination of polyphenols using liquid chromatography-tandem mass spectrometry technique (LC-MS/MS): a review. Antioxidants, 2020, 9(6), 479. https://doi.org/10.3390/antiox9060479 Lu, Q.; Huang, N.; Peng, Y.; Zhu, C.; Pan, S. Peel oils from three citrus species: volatile constituents, antioxidant activities and related contributions of individual components. J. Food Sci. Technol., 2019, 56(10), pp. 4492-4502. https://doi.org/10.1007/s13197-019-03937-w Miersch, O.; Neumerkel, N.; Dippe, M.; Stenzel, I.; Wasternack, C. Hydroxylated jasmonates are commonly occurring metabolites of jasmonic acid and contribute to a partial switch-off in jasmonate signaling. New Phytol., 2008, 177(1), pp. 114-127. https://doi.org/10.1111/j.1469-8137.2007.02252.x Mohanta, B.; Sen, D. J.; Mahanti, B.; Nayak, A. K. Recent advances in the extraction, purification, and antioxidant activities of fruit polysaccharides: a review. Food Hydrocoll. Health, 2023, 5, 100163. https://doi.org/10.1016/j.fhfh.2023.100163 Mojzer, E. B.; Hrnčič, M. K.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules, 2016, 21(7), 901. https://doi.org/10.3390/molecules21070901 Nichols, L. (n.d.). Separation theory. LibreTexts. Retrieved February 17, 2025, from https://chem.libretexts.org/@go/page/95716 Nikfar, S. and Behboudi, A. F. Limonene. In Wexler, P. (Ed.), Encyclopedia of Toxicology (Third Edition), 2014, pp. 78-82. Cambridge, MA: Academic Press. Panche, A. N.; Diwan, A. D.; Chandra, S. R. Flavonoids: an overview. J. Nutr. Sci., 2016, 5, e47. https://doi.org/10.1017/jns.2016.41 Pandey, V. K.; Islam, R. U.; Shams, R.; Dar, A. H. A comprehensive review on the application of essential oils as bioactive compounds in nano-emulsion based edible coatings of fruits and vegetables. Appl. Food Res., 2022, 2(1), 100042. https://doi.org/10.1016/j.afres.2022.100042 Pandey, K. B. and Rizvi, S. I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2009, 2(5), pp. 270-278. https://doi.org/10.4161/oxim.2.5.9498 Pavlíková, N. Caffeic acid and diseases—mechanisms of action. Int. J. Mol. Sci., 2022, 24(1), 588. https://doi.org/10.3390/ijms24010588 Petersen, M. and Simmonds, M. S. J. Rosmarinic acid. Phytochem., 2003, 62(2), pp. 121-125. https://doi.org/10.1016/S0031-9422(02)00513-7 Raffo, A.; Baiamonte, I.; De Benedetti, L.; Lupotto, E.; Marchioni, I.; Nardo, N.; Cervelli, C. Exploring volatile aroma and non-volatile bioactive compounds diversity in wild populations of rosemary (Salvia rosmarinus Schleid.). Food Chem., 2023, 404A, 134532. https://doi.org/10.1016/j.foodchem.2022.134532 Rao, B. R. R. Hydrosols and water-soluble essential oils of aromatic plants: future economic products. Indian Perfumer, 2012, 56(3), pp. 29-33. Rao, B. R. R. Hydrosols and water-soluble essential oils: medicinal and biological properties. In Govil, J. N. and Bhattacharya, S. (Eds.), Recent Progress in Medicinal Plants Volume 36 Essential Oils I, 2013, pp. 119-140. Houston, TX: Studium Press LLC. (ISBN: 1-933699-96-5). Rathee, P.; Sehrawat, R.; Rathee, P.; Khatkar, A.; Akkol, E. K.; Khatkar, S.; Redhu, N.; Türkcanoğlu, G.; Sobarzo-Sánchez, E. Polyphenols: natural preservatives with promising applications in food, cosmetics and pharma industries; problems and toxicity associated with synthetic preservatives; impact of misleading advertisements; recent trends in preservation and legislation. Materials, 2023, 16(13), 4793. https://doi.org/10.3390/ma16134793 Salehi, M. and Rashidinejad, A. Multifaceted roles of plant-derived bioactive polysaccharides: a review of their biological functions, delivery, bioavailability, and applications within the food and pharmaceutical sectors. Int. J. Biol. Macromol., 2025, 290, 138855. https://doi.org/10.1016/j.ijbiomac.2024.138855 Seo, W. H. and Baek, H. H. Characteristic aroma-active compounds of Korean perilla (Perilla frutescens Britton) leaf. J. Agric. Food Chem., 2009, 57(24), pp.11537-11542. https://doi.org/10.1021/jf902669d Shaaban, H. A. E.; El-Ghorab, A. H.; Shibamoto, T. Bioactivity of essential oils and their volatile aroma components: review. J. Essent. Oil Res., 2012, 24(2), pp. 203-212. http://dx.doi.org/10.1080/10412905.2012.659528 Sharifi-Rad, J.; Sureda, A.; Tenore, G. C.; Daglia, M.; Sharifi-Rad, M.; Valussi, M.; Tundis, R.; Sharifi-Rad, M.; Loizzo, M. R.; Ademiluyi, A. O.; Sharifi-Rad, R.; Ayatollahi, S. A.; Iriti, M. Biological activities of essential oils: from plant chemoecology to traditional healing systems. Molecules, 2017, 22(1), 70. https://doi.org/10.3390/molecules22010070 Sharma, S.; Singh, B.; Kaur, G.; Srivastava, Y.; Sandhu, R. S. Nutritional, bioactive, and health potential of pomelo (Citrus maxima): an exotic underutilized fruit. Curr. Res. Nutr. Food Sci., 2024, 12(2). https://doi.org/10.12944/CRNFSJ.12.2.35 Shen, S.; Wang, S.; Yang, C.; Wang, C.; Zhou, Q.; Zhou, S.; Zhang, R.; Li, Y.; Wang, Z.; Dai, L.; Peng, W.; Hao, Y.; Guo, H.; Cao, G.; Liu, X.; Yao, F.; Xu, Q.; Fernie, A. R.; Luo, J. Elucidation of the melitidin biosynthesis pathway in pummelo. J. Integr. Plant Biol., 2023, 65(11), pp. 2505-2518. https://doi.org/10.1111/jipb.13564 Stauffer, E.; Dolan, J. A.; Newman, R. Extraction of ignitable liquid residues from fire debris. In Fire Debris Analysis, 2018, pp. 377-439. Cambridge, MA: Academic Press. https://doi.org/10.1016/B978-012663971-1.50015-4 Tavares, C. S.; Gameiro, J. A.; Roseiro, L. B.; Figueiredo, A. C. Hydrolates: a review on their volatiles composition, biological properties and potential uses. Phytochem. Rev., 2022, 21, pp. 1661-1737. https://doi.org/10.1007/s11101-022-09803-6 Tavares, C. S.; Martins, A.; Miguel, M. G.; Carvalheiro, F.; Duarte, L. C.; Gameiro, J. A.; Figueiredo, A. C.; Roseiro, L. B. Bioproducts from forest biomass II. Bioactive compounds from the steam-distillation by-products of Cupressus lusitanica Mill. And Cistus ladanifer L. wastes. Ind. Crops Prod., 2020, 158, 112991. https://doi.org/10.1016/j.indcrop.2020.112991 Tian, J.; Zeng, X.; Zhang, S.; Wang, Y.; Zhang, P.; Lü, A.; Peng, X. Regional variation in components in antioxidant and antifungal activities of Perilla frutescens essential oils in China. Ind. Crops Prod., 2014, 59, pp. 69-79. https://doi.org/10.1016/j.indcrop.2014.04.048 Tongnuanchan, P. and Benjakul, S. Essential oils: extraction, bioactivities, and their uses for food preservation. J. Food Sci., 2014, 79(7), pp. 1231-1249. https://doi.org/10.1111/1750-3841.12492 Tripoli, E.; La Guardia, M.; Giammanco, S.; Di Majo, D.; Giammanco, M. Citrus flavonoids: molecular structure, biological activity and nutritional properties: a review. Food Chem., 2003, 104(2), pp. 466-479. https://doi.org/10.1016/j.foodchem.2006.11.054 Tuan, N. T.; Dang, L. N.; Huong, B. T. C.; Danh, L. T. One step extraction of essential oils and pectin from pomelo (Citrus grandis) peels. Chem. Eng. Process.-Process Intensif., 2019, 147, 107550. https://doi.org/10.1016/j.cep.2019.107550 Tyagi, K.; Lui, A. C. W.; Zhang, S.; Peck, G. M. Folin-Ciocâlteu, RP-HPLC (reverse phase-high performance liquid chromatography), and LC-MS (liquid chromatography-mass spectrometry) provide complementary information for describing cider (Malus spp.) apple juice. J. Food Compos. Anal., 2025, 137A. https://doi.org/10.1016/j.jfca.2024.106844 Wandee, Y.; Uttapap, D.; Mischnick, P. Yield and structural composition of pomelo peel pectins extracted under acidic and alkaline conditions. Food Hydrocoll., 2019, 87, pp. 237-244. https://doi.org/10.1016/j.foodhyd.2018.08.017 Wu, X.; Dong, S.; Chen, H.; Guo, M.; Sun, Z.; Luo, H. Perilla frutescens: a traditional medicine and food homologous plant. Chin. Herb. Med., 2023, 15(3), 369-375. https://doi.org/10.1016/j.chmed.2023.03.002 Zhu, L.; Guan, L.; Wang, K.; Ren, C.; Gao, Y.; Li, J.; Yan, S.; Zhang, X.; Yao, X.; Zhou, Y.; Li, B.; Lu, S. Recent trends in extraction, purification, structural characterization, and biological activities evaluation of Perilla frutescens (L.) Britton polysaccharide. Front. Nutr., 2024, 22(11), 1359813. https://doi.org/10.3389/fnut.2024.1359813 Zou, C.; Fang, Y.; Lin, N.; Liu, H. Polysaccharide extract from pomelo fruitlet ameliorates diet-induced nonalcoholic fatty liver disease in hybrid grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀). Fish Shellfish Immun., 2021, 119, 114-127. https://doi.org/10.1016/j.fsi.2021.09.034 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100187 | - |
| dc.description.abstract | 本研究以柚子 (Citrus maxima) 皮和三種紫蘇 (Perilla frutescens) 葉-青紫蘇、赤紫蘇與白紫蘇為材料,透過蒸餾系統分離與收集多種具生物活性成分-精油、純露、多酚和多醣區分物,研究結果顯示,蒸餾能有效分離富含揮發性萜類的精油與純露至蒸餾所得的水相,同時促進多酚與多醣釋放於殘留水層中並達到濃縮之效果。在揮發性成分分析顯示,柚子皮中主要揮發性化合物為 ᴅ-檸檬烯 (ᴅ-Limonene),綠紫蘇與紅紫蘇中富含紫蘇醛 (perillaldehyde),白紫蘇中則富含紫蘇酮 (perilla ketone),進一步以各種液相層析技術分析非揮發性成分,結果顯示,結果顯示柚子、青紫蘇與白紫蘇的多醣主要由半乳糖醛酸組成,而紅紫蘇則以葡萄糖為主。分子量分析顯示所有樣品皆為非均勻分布,其具有甲基化修飾之結果亦證實其屬於高甲氧基多醣。這些發現突顯蒸餾系統的潛力,不僅可同時分離且回收揮發性與非揮發性成分,更可作為一個整合平台,進一步獲得具有功能性與營養保健價值的多重區分物進行後續鑑定。柚子果皮展現出成為食品加工用果膠型多醣的潛力,而紫蘇葉則提供結構多樣的多醣,具有潛在的生物活性。整體而言,本研究為農業副產品的高值化利用提供了一種永續的萃取策略。 | zh_TW |
| dc.description.abstract | This study investigated the use of a steam distillation system for the fractionation and recovery of multiple bioactive components¬¬¬—essential oils, hydrosols, polyphenols, and polysaccharides—from pomelo (Citrus maxima) peel and three types of perilla (Perilla frutescens) leaves: green, red, and white perillas. Results demonstrated that steam distillation successfully recovered essential oils and hydrosols rich in volatile terpenes, while also facilitating the release of polyphenols and polysaccharides into the aqueous distillates and residues. Volatile compounds analysis with gas chromatography-mass spectrometry revealed that ᴅ-Limonene dominates pomelo peel, green and red perillas are rich in perillaldehyde, while perilla ketone is the major component in white perilla. Profiling analysis with various liquid chromatography techniques characterized the non-volatile fractions. Pomelo, green perilla, and white perilla polysaccharides were primarily composed of galacturonic acid, whereas red perilla is mainly comprised of glucose. Molecular weight analysis indicated heterogeneous distributions for all samples, and degree of methylation confirmed their classification of high-methoxyl polysaccharides. These findings highlight the potential of steam distillation not only for recovering volatile and non-volatile compounds but also as an integrated platform for obtaining multiple fractions for subsequent characterization for their functional and nutraceutical properties. Pomelo peel emerged as a promising source of pectin-type polysaccharides suitable for food processing applications, while perilla offered structurally diverse polysaccharides with potential bioactivities. Overall, this work contributes to the valorization of agricultural by-products through sustainable extraction strategies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-24T16:47:14Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-24T16:47:14Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgement ii
摘要 iv Abstract v Table of contents vi List of figures ix List of tables xiv List of appendices xv Chapter 1. Introduction 1 Chapter 2. Literature review 3 2.1. Steam distillation 3 2.2. Essential oils 5 2.3. Hydrosols 7 2.4. Polyphenols 9 2.5. Polysaccharides 10 2.6. Pomelo 13 2.7. Perilla 14 Chapter 3. Research purpose and framework 17 3.1. Research purpose 17 3.2. Research framework 18 Chapter 4. Materials and methods 19 4.1. Materials 19 4.1.1. Samples 19 4.1.2. Reagent 19 4.1.3. Standard and reference samples 19 4.1.4. Appliances and materials 20 4.1.5. Instruments 20 4.1.5.1. Gas chromatography-mass spectrometry (GC-MS) 20 4.1.5.2. Ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) 21 4.1.5.3. High-performance anion-exchange chromatography-pulsed amperometric detector (HPAEC-PAD) 21 4.1.5.4. High-performance size-exclusion chromatography-refractive index detector (HPSEC-RI) 21 4.1.5.5. High-performance liquid chromatography-refractive index detector (HPLC-RI) 22 4.2. Methods 23 4.2.1. Pomelo and perilla sample preparation 23 4.2.1.1. Fresh sample 23 4.2.1.2. Dried sample 23 4.2.2. Sample extraction and fractionation 23 4.2.2.1. Steam distillation 23 4.2.2.2. Hot-water extraction 24 4.2.3. Isolation of essential oils, hydrosols, polyphenols, and polysaccharides 24 4.2.3.1. Essential oils 25 4.2.3.2. Hydrosols 25 4.2.3.4. Polyphenols and polysaccharides 25 4.2.4. Analysis of volatile compounds composition 26 4.2.5. Profiling of phenolic acids and flavonoids 27 4.2.6. Characterization of polysaccharides 27 4.2.6.1. Total carbohydrates content analysis 27 4.2.6.2. Monosaccharide composition analysis 28 4.2.6.3. Molecular weight distribution analysis 29 4.2.6.4. Degree of methylation and acetylation analysis 30 Chapter 5. Results and discussion 32 5.1. Yield of extraction and fractions 32 5.2. Volatile compounds profiling by GC-MS 32 5.3. Phenolic acids and flavonoids profiling by LC-MS/MS 38 5.4. Polysaccharides characterization 39 5.4.1. Polysaccharides yield 40 5.4.2. Monosaccharide composition 41 5.4.3. Molecular weight distribution 44 5.4.4. Degree of methylation and acetylation 46 Chapter 6. Conclusions 48 References 49 Appendices 57 | - |
| dc.language.iso | en | - |
| dc.subject | 蒸餾 | zh_TW |
| dc.subject | 紫蘇 | zh_TW |
| dc.subject | 揮發性成分 | zh_TW |
| dc.subject | 多酚 | zh_TW |
| dc.subject | 多醣 | zh_TW |
| dc.subject | volatile compounds | en |
| dc.subject | steam distillation | en |
| dc.subject | polysaccharides | en |
| dc.subject | polyphenols | en |
| dc.subject | Perilla frutescens | en |
| dc.title | 以蒸餾系統區分柚子與紫蘇精油、純露、多酚與多醣 | zh_TW |
| dc.title | Steam distillation system for fractionation of essential oils, hydrosols, polyphenols, and polysaccharides from pomelo and perilla | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 賴喜美;張永和;許瑞瑱;王惠珠 | zh_TW |
| dc.contributor.oralexamcommittee | Hsi-Mei Lai;Yung-Ho Chang;Rachel Hsu;Huei-Ju Wang | en |
| dc.subject.keyword | 蒸餾,紫蘇,揮發性成分,多酚,多醣, | zh_TW |
| dc.subject.keyword | steam distillation,Perilla frutescens,volatile compounds,polyphenols,polysaccharides, | en |
| dc.relation.page | 96 | - |
| dc.identifier.doi | 10.6342/NTU202504210 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-14 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 食品科技研究所 | - |
| dc.date.embargo-lift | 2030-08-06 | - |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-08-06 | 2.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
