請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99771完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝長澤 | zh_TW |
| dc.contributor.advisor | Chang-Tse Hsieh | en |
| dc.contributor.author | 黃福祥 | zh_TW |
| dc.contributor.author | Fu-Hsiang Huang | en |
| dc.date.accessioned | 2025-09-17T16:38:08Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-19 | - |
| dc.identifier.citation | [1] C. M. Bender and S. Boettcher. Logarithmic conformal field theories as limits of ordinary cfts and some physical applications. J. Phys. A: Math. Theor., 46(494001), 2013.
[2] V. Gurarie. Logarithmic operators and logarithmic conformal field theories. J. Phys. A: Math. Theor., 46:494003, 2013. [3] H. G. Kausch. Curiosities at c = −2. [arXiv: 9510149 [hep-th]], 1995. [4] Horst G. Kausch. Symplectic Fermions, volume 583. Nucl. Phys. B, 2000. [5] W. M. Koo and H. Saleur. Representations of the virasoro algebra from lattice models. Nucl. Phys. B, 426:459–504, 1994. [6] C. M. Bender and S. Boettcher. Real spectra in Non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett., 80(5243), 1998. [7] R. Vasseur, J. L. Jacobsen, and H. Saleur. Indecomposability parameters in chiral logarithmic conformal field theory. Nucl. Phys. B, 851:314–345, 2011. [8] A. M. Gainutdinov, N. Read, and H. Saleur. Continuum limit and symmetries of the periodic gl(1|1) spin chain. Nucl. Phys. B, 871:245–288, 2013. [9] C.-Y. Ju and F.-H. Huang. Quantum state evolution and berry potentials at exceptional points and quantum phase transitions. [arXiv:2403.16503 [hepth]], 2024. [10] C.-Y. Ju, A. Miranowicz, G.-Y. Chen, and F. Nori. Non-Hermitian Hamiltonians and no-go theorems in quantum information. Phys. Rev. A, 100(062118), 2019. [11] C.-Y. Ju, A. Miranowicz, Y.-N. Chen, G.-Y. Chen, and F. Nori. Emergent parallel transport and curvature in Hermitian and Non-Hermitian quantum mechanics. Quantum, 8(1277), 2024. [12] D. C. Brody. Biorthogonal quantum mechanics. J. Phys. A: Math. Theor., 47(035305), 2014. [13] V. Gurarie and A. W. W. Ludwig. Conformal field theory at central charge c = 0 and two-dimensional critical systems with quenched disorder. In M. Goosens, F. Mittelbach, and A. Samarin, editors, From Fields to Strings: Circumnavigating Theoretical Physics, volume 1, pages 185–207. World Scientific Pub Co Inc, 2005. [14] A. Milsted and G. Vidal. Extraction of conformal data in critical quantum spin chains using the koo-saleur formula. Phys. Rev. B, 96(245105), 2017. [15] S. Ryu and J. Yoon. Unitarity of Symplectic Fermion in alpha-vacua with Negative Central Charge, volume 130. Phys. Rev. L, 2023. [16] J. Belletête, A. M. Gainutdinov, J. L. Jacobsen, H. Saleur, and R. Vasseur. On the correspondence between boundary and bulk lattice models and (logarithmic) conformal field theories. J. Phys A: Math. Theor., 50(484002), 2017. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99771 | - |
| dc.description.abstract | 共形不變性通常出現在臨界系統中,此時關聯長度發散,這種情況在無能隙的厄米量子系統(熱力學極限下)中尤為常見。然而,當厄米性被破壞時,情況會變得更加微妙。在本工作中,我們提出了一個僅包含質量項與二階導數項、而不含一階導數(動能)項的 (1 + 1) 維非厄米自由費米子量子場論。有趣的是,該系統具有線性色散的無能隙譜。我們通過構造一組滿足 Virasoro 代數且中心荷c = −2 的無限多算符,證明該模型在低能下具有共形不變性,這反映了系統的非么正性。此外,該模型的希爾伯特空間呈現不可分解的 Jordan-cell 結構,表明它是一個對數共形場論。我們同時給出此非厄米場論的晶格實現,並從中識別出一個表徵系統不可分解性的普適量。結果顯示,我們模型的中心荷與不可分解參數與辛費米子理論完全一致,暗示兩者之間存在密切聯繫。 | zh_TW |
| dc.description.abstract | Conformal invariance typically emerges in critical systems where the correlation length diverges, as is generally the case for Hermitian quantum systems without a spectral gap in the thermodynamic limit. However, the situation becomes more subtle when Hermiticity is broken. In this work, we propose a (1+1)-dimensional non-Hermitian freefermion quantum field theory containing only mass and second-derivative terms, without a first-derivative (kinetic) term. Interestingly, this system possesses a gapless spectrum with linear dispersion. By constructing an infinite set of operators that satisfy the Virasoro algebra, we demonstrate that this model is conformally invariant at low energy, with a resulting central charge of −2, reflecting the system’s non-unitarity. Furthermore, the Hilbert space of this model exhibits indecomposable Jordan-cell structures, indicating that the theory is a logarithmic conformal field theory. We also give a lattice realization of our proposed non-Hermitian field theory, from which we identify a universal quantity characterizing the system’s indecomposability. It turns out that the central charge and indecomposability parameter of our model are identical to those of the symplectic fermion theory, suggesting a close connection between the two. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:38:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:38:08Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee p.i
Acknowledgements p.iii 摘要 p.v Abstract p.vii Contents p.ix List of Figure p.xi Chapter1 Introduction p.1 1.1 Background and motivation p.1 1.2 Outline p.3 Chapter2 Non-Hermitian quantum mechanics p.5 2.1 Real Spectrum and PT symmetry p.5 2.2 Biorthogonal bases p.7 Chapter3 The indecomposibility parameter and the logarithmic conformal field theory p.11 3.1 Logarithmic conformal field theory p.11 3.2 Indecomposability Parameters p.16 3.2.1 c → 0 catastrophe p.17 3.2.2 Symplectic fermions p.19 Chapter4 The non-Hermitian model and the Virasoro algebra p.25 4.1 Non-Hermitian free-fermion field theory and the Virasoro operators p.25 4.2 Conformal symmetry from the Virasoro algebra p.30 4.3 Central charge p.33 4.4 Lattice realization p.36 4.5 Indecomposability parameter p.41 Chapter5 Summary p.49 References p.53 | - |
| dc.language.iso | en | - |
| dc.subject | 非厄密特量子力學 | zh_TW |
| dc.subject | 對數共形場論 | zh_TW |
| dc.subject | 不可約化參數 | zh_TW |
| dc.subject | 維拉宿代數 | zh_TW |
| dc.subject | 辛費米子 | zh_TW |
| dc.subject | 量子場論 | zh_TW |
| dc.subject | Indecomposability Parameters | en |
| dc.subject | Non-Hermitian Quantum mechanics | en |
| dc.subject | Quantum field theory | en |
| dc.subject | Symplectic fermion | en |
| dc.subject | Virasoro algebra | en |
| dc.subject | Logarithmic conformal field theory | en |
| dc.title | 一維非厄密特量子系統之不可約化參數 | zh_TW |
| dc.title | Indecomposability Parameters in Non-Hermitian Quantum Systems in One Dimension | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 沈家賢;朱家誼 | zh_TW |
| dc.contributor.oralexamcommittee | Chia-Hsien Shen;Chia-Yi Ju | en |
| dc.subject.keyword | 非厄密特量子力學,對數共形場論,不可約化參數,維拉宿代數,辛費米子,量子場論, | zh_TW |
| dc.subject.keyword | Non-Hermitian Quantum mechanics,Logarithmic conformal field theory,Indecomposability Parameters,Virasoro algebra,Symplectic fermion,Quantum field theory, | en |
| dc.relation.page | 54 | - |
| dc.identifier.doi | 10.6342/NTU202504331 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-19 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| dc.date.embargo-lift | 2025-09-18 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 1.47 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
