Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99769
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝長澤zh_TW
dc.contributor.advisorChang-Tse Hsiehen
dc.contributor.author甘佳盛zh_TW
dc.contributor.authorKah-Sen Kamen
dc.date.accessioned2025-09-17T16:37:46Z-
dc.date.available2025-09-18-
dc.date.copyright2025-09-17-
dc.date.issued2025-
dc.date.submitted2025-08-18-
dc.identifier.citation[1] I. Affleck, J. Harvey, L. Palla, and G. Semenoff. The Chern-Simons term versus the monopole. Nuclear Physics B, 328(3):575–584, 1989.
[2] M. Al-Hashimi and U.-J. Wiese. Discrete accidental symmetry for a particle in a constant magnetic field on a torus. Annals of Physics, 324(2):343–360, Feb. 2009.
[3] B. A. Bernevig. Topological Insulators and Topological Superinsulators. Princeton University Press, 2013.
[4] D. Birmingham, M. Blau, M. Rakowski, and G. Thompson. Topological field theory. Physics Reports, 209(4):129–340, 1991.
[5] A. Carosso. Geometric Quantization, 2018.
[6] J.-Y. Chen. Abelian Topological Order on Lattice Enriched with Electromagnetic Background, 2020.
[7] Y.-A. Chen and S. Tata. Higher cup products on hypercubic lattices: Application to lattice models of topological phases. Journal of Mathematical Physics, 64(9), Sept. 2023.
[8] M. Cheng and N. Seiberg. Lieb-Schultz-Mattis, Luttinger, and 't Hooft – anomaly matching in lattice systems. SciPost Physics, 15(2), Aug. 2023.
[9] M. Creutz. Gauge fixing, the transfer matrix, and confinement on a lattice. Phys. Rev. D, 15:1128–1136, Feb 1977.
[10] S. Deser, R. Jackiw, and S. Templeton. Topologically Massive Gauge Theories. Annals Phys., 140:372–411, 1982. [Erratum: Annals Phys. 185, 406 (1988)].
[11] M. Diamantini, P. Sodano, and C. Trugenberger. Gauge theories of Josephson junction arrays. Nuclear Physics B, 474(3):641–677, 1996.
[12] G. V. Dunne. Aspects of Chern-Simons Theory, 1999.
[13] G. V. Dunne, R. Jackiw, and C. A. Trugenberger. ”topological” (chern-simons) quantum mechanics. Phys. Rev. D, 41:661–666, Jan 1990.
[14] D. Eliezer and G. Semenoff. Anyonization of lattice Chern-Simons theory. Annals of Physics, 217(1):66–104, 1992.
[15] L. Fazza and T. Sulejmanpasic. Lattice quantum Villain Hamiltonians: compact scalars, U(1) gauge theories, fracton models and quantum Ising model dualities. Journal of High Energy Physics, 2023(5), May 2023.
[16] E. Fradkin. Field Theories of Condensed Matter Physics. Cambridge University Press, New York, 2013.
[17] E. Fradkin. Quantum Field Theory: An Integrated Approach. Princeton University Press, New Jersey, 2021.
[18] E. Fradkin and L. Susskind. Order and disorder in gauge systems and magnets. Phys. Rev. D, 17:2637–2658, May 1978.
[19] M. Fruchart and D. Carpentier. An introduction to topological insulators. Comptes Rendus. Physique, 14(9–10):779–815, Oct. 2013.
[20] M. P. A. Fröhlich, J. Quantum field theories of vortices and anyons. Communications in Mathematical Physics, 121:117–223, 1989.
[21] D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett. Generalized global symmetries. Journal of High Energy Physics, 2015(2), Feb. 2015.
[22] P. Gorantla, H. T. Lam, N. Seiberg, and S.-H. Shao. A modified Villain formulation of fractons and other exotic theories. Journal of Mathematical Physics, 62(10), Oct. 2021.
[23] J. Greensite. An Introduction to the Confinement Problem. Springer Berlin, Berlin, 2020.
[24] S. GUKOV, E. MARTINEC, G. MOORE, and A. STROMINGER. CHERN–SIMONS GAUGE THEORY AND THE AdS3/CFT2 CORRESPONDENCE, page 1606–1647. WORLD SCIENTIFIC, Feb. 2005.
[25] R. Iengo and K. Lechne. Anyon quantum mechanics and Chern-Simons theory. Physics Reports, 213(4):179–269, 1992.
[26] R. Jackiw. Topics in planar physics. Nuclear Physics B - Proceedings Supplements, 18(1):107–170, 1990.
[27] T. Jacobson and T. Sulejmanpasic. Modified Villain formulation of Abelian ChernSimons theory. Physical Review D, 107(12), June 2023.
[28] T. Jacobson and T. Sulejmanpasic. Canonical quantization of lattice Chern-Simons theory, 2024.
[29] J. K. Jain. Composite Fermions. Cambridge University Press, 2007.
[30] A. Kan, L. Funcke, S. Kühn, L. Dellantonio, J. Zhang, J. F. Haase, C. A. Muschik, and K. Jansen. Investigating a (3 + 1)D topological θ-term in the Hamiltonian formulation of lattice gauge theories for quantum and classical simulations. Phys. Rev. D, 104:034504, Aug 2021.
[31] J. B. Kogut. An introduction to lattice gauge theory and spin systems. Rev. Mod. Phys., 51:659–713, Oct 1979.
[32] M. Kohmoto. Topological invariant and the quantization of the hall conductance. Annals of Physics, 160(2):343–354, 1985.
[33] K. S. Lam. Topics in Contemporary Mathematical Physics, Second Edition. World Scientific Publishing, 2016.
[34] G. Moore. Introduction to Chern-Simons Theories. 2019.
[35] V. P. Nair. Geometric Quantization and Applications to Fields and Fluids. Springer Cham, 2025.
[36] M. Nakahara. Geometry, Topology and Physics. Institute of Physics Publishing, 2003.
[37] Q. Niu, D. J. Thouless, and Y.-S. Wu. Quantized hall conductance as a topological invariant. Phys. Rev. B, 31:3372–3377, Mar 1985.
[38] C. Peng, M. C. Diamantini, L. Funcke, S. M. A. Hassan, K. Jansen, S. Kühn, D. Luo, and P. Naredi. Hamiltonian Lattice Formulation of Compact Maxwell-Chern-Simons Theory, 2024.
[39] A. Polyakov. Gauge Fields and Strings. Harwood Academic Publishers, Switzerland, 1987.
[40] A. POLYAKOV. FERMI-BOSE TRANSMUTATIONS INDUCED BY GAUGE FIELDS. Modern Physics Letters A, 03(03):325–328, 1988.
[41] A. P. Polychronakos. Abelian Chern-Simons theories in 2 + 1 dimensions. Annals of Physics, 203(2):231–254, 1990.
[42] A. P. Polychronakos. On the quantization of the coefficient of the abelian chernsimons term. Physics Letters B, 241(1):37–40, 1990.
[43] H. J. Rothe. Lattice Gauge Theories: An Introduction, Fourth Edition. World Scientific Publishing, 2012.
[44] S. Sachdev. Quantum Phases of Matter. Cambridge University Press, 2023.
[45] R. Savit. Duality in field theory and statistical systems. Rev. Mod. Phys., 52:453– 487, Apr 1980.
[46] J. Smit. Introduction to Quantum Fields on a Lattice. Cambridge University Press, 2002.
[47] T. Sulejmanpasic and C. Gattringer. Abelian gauge theories on the lattice: θ-Terms and compact gauge theory with(out) monopoles. Nuclear Physics B, 943:114616, June 2019.
[48] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs. Quantized hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett., 49:405–408, Aug 1982.
[49] S. B. Treiman, R. Jackiw, B. Zumino, and E. Witten. Current Algebra and Anomalies. Princeton University Press, 1985.
[50] C. A. Trugenberger. Superinsulators, Bose Metals and High-Tc Superinsulators: The Quantum Physics of Emergent Magnetic Monopoles. World Scientific Publishing, 2022.
[51] X. G. Wen and Q. Niu. Ground-state degeneracy of the fractional quantum hall states in the presence of a random potential and on high-genus riemann surfaces. Phys. Rev. B, 41:9377–9396, May 1990.
[52] F. Wilczek. Quantum Mechanics of Fractional-Spin Particles. Phys. Rev. Lett., 49:957–959, Oct 1982.
[53] E. Witten. Quantum Field Theory and the Jones Polynomial. Commun. Math. Phys., 121:351–399, 1989.
[54] E. Witten. Three lectures on topological phases of matter. La Rivista del Nuovo Cimento, 39(7):313–370, June 2016.
[55] Z.-A. Xu and J.-Y. Chen. Lattice Chern-Simons-Maxwell Theory and its Chirality, 2025.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99769-
dc.description.abstract在本論文中,我們介紹了陳-西蒙斯(Chern-Simons, CS)理論與麥克斯韋-陳-西蒙斯(Maxwell-Chern-Simons, MCS)理論,並展示了它們所具有的一些有趣特性,例如能級量子化、分数量子統計等。我們接著在平面和環面上對 MCS 理論進行量子化。同時,我們也簡要介紹了陳數(Chern number)。特別地,計算定義在空間環面上的U(1) MCS 理論的平直(零)模的陳數,是本論文的主要目標。我們發現,為了實現這一目標,有必要引入扭曲邊界條件。最後,我們採用了修改後的 Villain 表達式與轉移矩陣方法推導了晶格 MCS 理論的哈密頓量。我們發現該晶格哈密頓量在結構上與連續情況相似,但由於引入了杯積(cup product)而產生了一些有趣的修正。最終,在晶格上計算陳數的過程,與連續情況頗為相似。zh_TW
dc.description.abstractIn this thesis, we introduce Chern-Simons (CS) theory and Maxwell-Chern-Simons (MCS) and demonstrate they exhibits some interesting features, such as level quanitzation, fractional statistics, etc. We proceed by quantizing the MCS on a plane and torus. We also give a brief introduction to the Chern number. In particular, the calculation of the Chern number of the flat (zero) modes of $U(1)$ MCS on a spatial torus comprises our primary goal. We find that, to achieve this aim, it is necessary to employ the twisted boundary conditions. Finally, we use the modified Villain formulation and transfer matrix methods to derive the Hamiltonian of lattice MCS theory. We see that the lattice Hamiltonian has similar structure as in the continuum, except some interesting modifications coming from the use of cup product. Finally, the computation of the Chern number on the lattice turns out to be reminiscent of the case in the continuum.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:37:46Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-17T16:37:46Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgements iii
摘要 v
Abstract vii
Contents ix
Chapter 1 Introduction 1
Chapter 2 Chern-Simons Theory 5
2.1 Chern-Simons coupled to matter fields . . . . . . . . . . . . . . . . . 5
2.2 Wilson line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Path Integral Quantization: Linking of knots . . . . . . . . . . . . . 12
2.4 Level quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Chapter 3 Maxwell-Chern-Simons Theory 17
3.1 Introduction to MCS . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Canonical Quantization in Plane . . . . . . . . . . . . . . . . . . . . 20
3.3 Canonical Quantization on the Torus . . . . . . . . . . . . . . . . . . 27
Chapter 4 Chern Number Calculation 35
4.1 Introduction to Chern Number . . . . . . . . . . . . . . . . . . . . . 35
4.2 Chern Number by Generalized Toroidal B.C. (Twisted B.C.) . . . . . 38
4.3 Chern Number for Degenerate Cases: MCS on torus . . . . . . . . . 41
Chapter 5 Lattice MCS Theory 45
5.1 Introduction: Modified Villain Formulation . . . . . . . . . . . . . . 45
5.2 Lattice U(1) Chern-Simons Theory . . . . . . . . . . . . . . . . . . 50
5.2.1 Failure of naive CS action . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.2 Construction of Lattice CS action: Lagrangian Formulation . . . . . 52
5.3 Hamiltonian formulation of lattice MCS . . . . . . . . . . . . . . . . 56
5.3.1 Transfer Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3.2 Lattice Maxwell Terms . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.3 Lattice MCS Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . 61
5.3.4 Chern Number on lattice (Zero modes on lattice) . . . . . . . . . . 68
Chapter 6 Epilogue 69
References 71
Appendix A — Quick Review: Cup Product on Cubic Lattice in 3D 77
-
dc.language.isoen-
dc.subject晶格規范場論zh_TW
dc.subject拓撲場論zh_TW
dc.subject陳數zh_TW
dc.subject馬克斯偉陳西蒙斯zh_TW
dc.subjectMaxwell-Chern-Simonsen
dc.subjectChern Numberen
dc.subjectLattice Gauge Theoryen
dc.subjectTopological Field Theoryen
dc.title馬克斯偉-陳-西蒙斯: 陳數與晶格規范場論zh_TW
dc.titleMaxwell Chern-Simons: Chern Number and Lattice Gauge Theoryen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee沈家賢;賀培銘;高賢忠zh_TW
dc.contributor.oralexamcommitteeChia-Hsien Shen;Pei-Ming Ho;Hsien-Chung Kaoen
dc.subject.keyword拓撲場論,陳數,晶格規范場論,馬克斯偉陳西蒙斯,zh_TW
dc.subject.keywordTopological Field Theory,Chern Number,Lattice Gauge Theory,Maxwell-Chern-Simons,en
dc.relation.page78-
dc.identifier.doi10.6342/NTU202504384-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-18-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
dc.date.embargo-lift2025-09-18-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf722.15 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved