Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99705
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊家榮zh_TW
dc.contributor.advisorChia-Ron Yangen
dc.contributor.author周敬軒zh_TW
dc.contributor.authorChing-Hsuan Chouen
dc.date.accessioned2025-09-17T16:26:00Z-
dc.date.available2025-09-18-
dc.date.copyright2025-09-17-
dc.date.issued2025-
dc.date.submitted2025-07-22-
dc.identifier.citation1. Koudstaal T, Funke-Chambour M, Kreuter M, Molyneaux PL, Wijsenbeek MS. Pulmonary fibrosis: from pathogenesis to clinical decision-making. Trends Mol Med. 2023; 29(12): 1076-1087. doi: 10.1016/j.molmed.2023.08.010.
2. Martinez FJ, Collard HR, Pardo A, Raghu G, Richeldi L, Selman M, Swigris JJ, Taniguchi H, Wells AU. Idiopathic pulmonary fibrosis. Nat Rev Dis Primers. 2017; 3: 17074. doi: 10.1038/nrdp.2017.74.
3. Pergolizzi JV Jr, LeQuang JA, Varrassi M, Breve F, Magnusson P, Varrassi G. What Do We Need to Know About Rising Rates of Idiopathic Pulmonary Fibrosis? A Narrative Review and Update. Adv Ther. 2023; 40(4): 1334-1346. doi: 10.1007/s12325-022-02395-9.
4. Vancheri C, Failla M, Crimi N, Raghu G. Idiopathic pulmonary fibrosis: a disease with similarities and links to cancer biology. Eur Respir J. 2010; 35(3): 496-504. doi: 10.1183/09031936.00077309.
5. Richeldi L, Collard HR, Jones MG. Idiopathic pulmonary fibrosis. Lancet. 2017; 389(10082): 1941-1952. doi: 10.1016/S0140-6736(17)30866-8.
6. ehr J, Prasse A, Wirtz H, Koschel D, Pittrow D, Held M, Klotsche J, Andreas S, Claussen M, Grohé C, Wilkens H, Hagmeyer L, Skowasch D, Meyer JF, Kirschner J, Gläser S, Kahn N, Welte T, Neurohr C, Schwaiblmair M, Bahmer T, Oqueka T, Frankenberger M, Kreuter M. Survival and course of lung function in the presence or absence of antifibrotic treatment in patients with idiopathic pulmonary fibrosis: long-term results of the INSIGHTS-IPF registry. Eur Respir J. 2020; 56(2): 1902279. doi: 10.1183/13993003.02279-2019.
7. Moor CC, Mostard RLM, Grutters JC, Bresser P, Aerts JGJV, Dirksen CD, Kimman ML, Wijsenbeek MS. Patient expectations, experiences and satisfaction with nintedanib and pirfenidone in idiopathic pulmonary fibrosis: a quantitative study. Respir Res. 2020; 21(1): 196. doi: 10.1186/s12931-020-01458-1.
8. Wu D, Zhang Z, Chen X, Yan Y, Liu X. Angel or Devil ? - CDK8 as the new drug target. Eur J Med Chem. 2021; 213: 113043. doi: 10.1016/j.ejmech.2020.113043.
9. Roninson IB, Győrffy B, Mack ZT, Shtil AA, Shtutman MS, Chen M, Broude EV. Identifying Cancers Impacted by CDK8/19. Cells. 2019; 8(8): 821. doi: 10.3390/cells8080821.
10. Massagué J. TGFβ signalling in context. Nat Rev Mol Cell Biol. 2012; 13(10): 616-630. doi: 10.1038/nrm3434.
11. Kolahian S, Fernandez IE, Eickelberg O, Hartl D. Immune Mechanisms in Pulmonary Fibrosis. Am J Respir Cell Mol Biol. 2016; 55(3): 309-322. doi: 10.1165/rcmb.2016-0121TR.
12. Hsu JY, Hsu KC, Sun C, Chou CH, Lin TE, Sung TY, Tseng HJ, Yen SC, Yang CR, Huang WJ. Design, synthesis, and biological evaluation of indolin-2-one derivatives as novel cyclin-dependent protein kinase 8 (CDK8) inhibitors. Biomed Pharmacother. 2023; 159: 114258. doi: 10.1016/j.biopha.2023.114258.
13. Ho TY, Sung TY, Pan SL, Huang WJ, Hsu KC, Hsu JY, Lin TE, Hsu CM, Yang CR. The study of a novel CDK8 inhibitor E966-0530-45418 that inhibits prostate cancer metastasis in vitro and in vivo. Biomed Pharmacother. 2023; 162: 114667. doi: 10.1016/j.biopha.2023.114667.
14. Bacci ED, O'Quinn S, Leidy NK, Murray L, Vernon M. Evaluation of a respiratory symptom diary for clinical studies of idiopathic pulmonary fibrosis. Respir Med. 2018; 134: 130-138. doi: 10.1016/j.rmed.2017.11.011.
15. Lederer DJ, Martinez FJ. Idiopathic Pulmonary Fibrosis. N Engl J Med. 2018; 378(19): 1811-1823. doi: 10.1056/NEJMra1705751.
16. Olukogbon KL, Thomas P, Colasanti R, Hope-Gill B, Williams EM. Breathing pattern and breathlessness in idiopathic pulmonary fibrosis: An observational study. Respirology. 2016; 21(2): 344-349. doi: 10.1111/resp.12686.
17. Tanaka Y, Suzuki Y, Hasegawa H, Yokomura K, Fukada A, Inoue Y, Hozumi H, Karayama M, Furuhashi K, Enomoto N, Fujisawa T, Nakamura Y, Inui N, Suda T. Standardised 3D-CT lung volumes for patients with idiopathic pulmonary fibrosis. Respir Res. 2022 ;23(1): 142. doi: 10.1186/s12931-022-02062-1.
18. Désogère P, Tapias LF, Hariri LP, Rotile NJ, Rietz TA, Probst CK, Blasi F, Day H, Mino-Kenudson M, Weinreb P, Violette SM, Fuchs BC, Tager AM, Lanuti M, Caravan P. Type I collagen-targeted PET probe for pulmonary fibrosis detection and staging in preclinical models. Sci Transl Med. 2017; 9(384): eaaf4696. doi: 10.1126/scitranslmed.aaf4696.
19. Gross TJ, Hunninghake GW. Idiopathic pulmonary fibrosis. N Engl J Med. 2001; 345(7): 517-525. doi: 10.1056/NEJMra003200.
20. Hinz B, Phan SH, Thannickal VJ, Prunotto M, Desmoulière A, Varga J, De Wever O, Mareel M, Gabbiani G. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol. 2012; 180(4): 1340-1355. doi: 10.1016/j.ajpath.2012.02.004.
21. Darby, I.A., Desmoulière, A. (2020). Scar Formation: Cellular Mechanisms. In: Téot, L., Mustoe, T.A., Middelkoop, E., Gauglitz, G.G. (eds) Textbook on Scar Management. Springer, Cham. doi: 10.1007/978-3-030-44766-3_3.
22. Tanner L, Single AB, Bhongir RKV, Heusel M, Mohanty T, Karlsson CAQ, Pan L, Clausson CM, Bergwik J, Wang K, Andersson CK, Oommen RM, Erjefält JS, Malmström J, Wallner O, Boldogh I, Helleday T, Kalderén C, Egesten A. Small-molecule-mediated OGG1 inhibition attenuates pulmonary inflammation and lung fibrosis in a murine lung fibrosis model. Nat Commun. 2023; 14(1): 643. doi: 10.1038/s41467-023-36314-5.
23. Li Q, Cheng Y, Zhang Z, Bi Z, Ma X, Wei Y, Wei X. Inhibition of ROCK ameliorates pulmonary fibrosis by suppressing M2 macrophage polarisation through phosphorylation of STAT3. Clin Transl Med. 2022; 12(10): e1036. doi: 10.1002/ctm2.1036.
24. Lancaster LH, de Andrade JA, Zibrak JD, Padilla ML, Albera C, Nathan SD, Wijsenbeek MS, Stauffer JL, Kirchgaessler KU, Costabel U. Pirfenidone safety and adverse event management in idiopathic pulmonary fibrosis. Eur Respir Rev. 2017; 26(146): 170057. doi: 10.1183/16000617.0057-2017.
25. Bonella F, Spagnolo P, Ryerson C. Current and Future Treatment Landscape for Idiopathic Pulmonary Fibrosis. Drugs. 2023; 83(17): 1581-1593. doi: 10.1007/s40265-023-01950-0.
26. Khan YS, Lynch DT. Histology, Lung. 2023 May 1. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 30521210.
27. Debnath P, Huirem RS, Dutta P, Palchaudhuri S. Epithelial-mesenchymal transition and its transcription factors. Biosci Rep. 2022; 42(1): BSR20211754. doi: 10.1042/BSR20211754.
28. Liu L, Sun Q, Davis F, Mao J, Zhao H, Ma D. Epithelial-mesenchymal transition in organ fibrosis development: current understanding and treatment strategies. Burns Trauma. 2022; 10: tkac011. doi: 10.1093/burnst/tkac011.
29. Edeling M, Ragi G, Huang S, Pavenstädt H, Susztak K. Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog. Nat Rev Nephrol. 2016; 12(7): 426-439. doi: 10.1038/nrneph.2016.54.
30. https://www.ncbi.nlm.nih.gov/books/NBK6294/
31. Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-β: the master regulator of fibrosis. Nat Rev Nephrol. 2016; 12(6): 325-338. doi: 10.1038/nrneph.2016.48.
32. Frangogiannis N. Transforming growth factor-β in tissue fibrosis. J Exp Med. 2020; 217(3): e20190103. doi: 10.1084/jem.20190103.
33. Wells RG, Discher DE. Matrix elasticity, cytoskeletal tension, and TGF-beta: the insoluble and soluble meet. Sci Signal. 2008; 1(10): pe13. doi: 10.1126/stke.110pe13.
34. Alvarez MA, Freitas JP, Mazher Hussain S, Glazer ES. TGF-β Inhibitors in Metastatic Pancreatic Ductal Adenocarcinoma. J Gastrointest Cancer. 2019; 50(2): 207-213. doi: 10.1007/s12029-018-00195-5.
35. Isaka Y. Targeting TGF-β Signaling in Kidney Fibrosis. Int J Mol Sci. 2018; 19(9): 2532. doi: 10.3390/ijms19092532.
36. Ye Z, Kilic G, Dabelsteen S, Marinova IN, Thøfner JFB, Song M, Rudjord-Levann AM, Bagdonaite I, Vakhrushev SY, Brakebusch CH, Olsen JV, Wandall HH. Characterization of TGF-β signaling in a human organotypic skin model reveals that loss of TGF-βRII induces invasive tissue growth. Sci Signal. 2022; 15(761): eabo2206. doi: 10.1126/scisignal.abo2206.
37. Herbertz S, Sawyer JS, Stauber AJ, Gueorguieva I, Driscoll KE, Estrem ST, Cleverly AL, Desaiah D, Guba SC, Benhadji KA, Slapak CA, Lahn MM. Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway. Drug Des Devel Ther. 2015; 9: 4479-4499. doi: 10.2147/DDDT.S86621.
38. Malumbres M. Cyclin-dependent kinases. Genome Biol. 2014; 15(6): 122. doi: 10.1186/gb4184.
39. Pellarin I, Dall'Acqua A, Favero A, Segatto I, Rossi V, Crestan N, Karimbayli J, Belletti B, Baldassarre G. Cyclin-dependent protein kinases and cell cycle regulation in biology and disease. Signal Transduct Target Ther. 2025; 10(1): 11. doi: 10.1038/s41392-024-02080-z.
40. Rahman R, Selth LA. Cyclin-dependent kinases as mediators of aberrant transcription in prostate cancer. Transl Oncol. 2025; 55: 102378. doi: 10.1016/j.tranon.2025.102378.
41. Klatt F, Leitner A, Kim IV, Ho-Xuan H, Schneider EV, Langhammer F, Weinmann R, Müller MR, Huber R, Meister G, Kuhn CD. A precisely positioned MED12 activation helix stimulates CDK8 kinase activity. Proc Natl Acad Sci U S A. 2020; 117(6): 2894-2905. doi: 10.1073/pnas.1917635117.
42. Li YC, Chao TC, Kim HJ, Cholko T, Chen SF, Li G, Snyder L, Nakanishi K, Chang CE, Murakami K, Garcia BA, Boyer TG, Tsai KL. Structure and noncanonical Cdk8 activation mechanism within an Argonaute-containing Mediator kinase module. Sci Adv. 2021; 7(3): eabd4484. doi: 10.1126/sciadv.abd4484.
43. Donner AJ, Ebmeier CC, Taatjes DJ, Espinosa JM. CDK8 is a positive regulator of transcriptional elongation within the serum response network. Nat Struct Mol Biol. 2010; 17(2): 194-201. doi: 10.1038/nsmb.1752.
44. Chen M, Liang J, Ji H, Yang Z, Altilia S, Hu B, Schronce A, McDermott MSJ, Schools GP, Lim CU, Oliver D, Shtutman MS, Lu T, Stark GR, Porter DC, Broude EV, Roninson IB. CDK8/19 Mediator kinases potentiate induction of transcription by NFκB. Proc Natl Acad Sci U S A. 2017; 114(38): 10208-10213. doi: 10.1073/pnas.1710467114.
45. Xu W, Wang Z, Zhang W, Qian K, Li H, Kong D, Li Y, Tang Y. Mutated K-ras activates CDK8 to stimulate the epithelial-to-mesenchymal transition in pancreatic cancer in part via the Wnt/β-catenin signaling pathway. Cancer Lett. 2015; 356(2 Pt B): 613-627. doi: 10.1016/j.canlet.2014.10.008.
46. Ding X, Sharko AC, McDermott MSJ, Schools GP, Chumanevich A, Ji H, Li J, Zhang L, Mack ZT, Sikirzhytski V, Shtutman M, Ivers L, O'Donovan N, Crown J, Győrffy B, Chen M, Roninson IB, Broude EV. Inhibition of CDK8/19 Mediator kinase potentiates HER2-targeting drugs and bypasses resistance to these agents in vitro and in vivo. Proc Natl Acad Sci U S A. 2022; 119(32): e2201073119. doi: 10.1073/pnas.2201073119.
47. Alarcón C, Zaromytidou AI, Xi Q, Gao S, Yu J, Fujisawa S, Barlas A, Miller AN, Manova-Todorova K, Macias MJ, Sapkota G, Pan D, Massagué J. Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways. Cell. 2009; 139(4): 757-769. doi: 10.1016/j.cell.2009.09.035.
48. Aragón E, Goerner N, Zaromytidou AI, Xi Q, Escobedo A, Massagué J, Macias MJ. A Smad action turnover switch operated by WW domain readers of a phosphoserine code. Genes Dev. 2011; 25(12): 1275-1288. doi: 10.1101/gad.2060811.
49. Matsuura I, Chiang KN, Lai CY, He D, Wang G, Ramkumar R, Uchida T, Ryo A, Lu K, Liu F. Pin1 promotes transforming growth factor-beta-induced migration and invasion. J Biol Chem. 2010; 285(3): 1754-1764. doi: 10.1074/jbc.M109.063826.
50. Hindle SA, Rarey M, Buning C, Lengaue T. Flexible docking under pharmacophore type constraints. J Comput Aided Mol Des. 2002; 16(2): 129-149. doi: 10.1023/a:1016399411208.
51. Biovia, D. S. Discovery Studio, Version 21.1.0. 2021; San Diego: Dassault Systèmes.
52. Wu J, Song D, Li Z, Guo B, Xiao Y, Liu W, Liang L, Feng C, Gao T, Chen Y, Li Y, Wang Z, Wen J, Yang S, Liu P, Wang L, Wang Y, Peng L, Stacey GN, Hu Z, Feng G, Li W, Huo Y, Jin R, Shyh-Chang N, Zhou Q, Wang L, Hu B, Dai H, Hao J. Immunity-and-matrix-regulatory cells derived from human embryonic stem cells safely and effectively treat mouse lung injury and fibrosis. Cell Res. 2020; 30(9):794-809. doi: 10.1038/s41422-020-0354-1.
53. Lin TE, Yang CR, Chou CH, Hsu JY, Chao MW, Sung TY, Hsieh JH, Huang WJ, Hsu KC. Discovery of a novel cyclin-dependent kinase 8 inhibitor with an oxindole core for anti-inflammatory treatment. Biomed Pharmacother. 2022; 146: 112459. doi: 10.1016/j.biopha.2021.112459.
54. Marconi GD, Fonticoli L, Rajan TS, Pierdomenico SD, Trubiani O, Pizzicannella J, Diomede F. Epithelial-Mesenchymal Transition (EMT): The Type-2 EMT in Wound Healing, Tissue Regeneration and Organ Fibrosis. Cells. 2021; 10(7): 1587. doi: 10.3390/cells10071587.
55. Talbott HE, Mascharak S, Griffin M, Wan DC, Longaker MT. Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell. 2022; 29(8): 1161-1180. doi: 10.1016/j.stem.2022.07.006.
56. Xie S, Sukkar MB, Issa R, Oltmanns U, Nicholson AG, Chung KF. Regulation of TGF-beta 1-induced connective tissue growth factor expression in airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2005; 288(1): L68-L76. doi: 10.1152/ajplung.00156.2004.
57. Wang X, Jia P, Ren T, Zou Z, Xu S, Zhang Y, Shi Y, Bao S, Li Y, Fang Y, Ding X. MicroRNA-382 Promotes M2-Like Macrophage via the SIRP-α/STAT3 Signaling Pathway in Aristolochic Acid-Induced Renal Fibrosis. Front Immunol. 2022; 13: 864984. doi: 10.3389/fimmu.2022.864984.
58. Johnston PA, Sen M, Hua Y, Camarco DP, Shun TY, Lazo JS, Grandis JR. High Content Imaging Assays for IL-6-Induced STAT3 Pathway Activation in Head and Neck Cancer Cell Lines. Methods Mol Biol. 2018; 1683: 229-244. doi: 10.1007/978-1-4939-7357-6_23.
59. Wang J, Li X, Zhong M, Wang Y, Zou L, Wang M, Gong X, Wang X, Zhou C, Ma X, Liu M. miR-301a Suppression within Fibroblasts Limits the Progression of Fibrosis through the TSC1/mTOR Pathway. Mol Ther Nucleic Acids. 2020; 21: 217-228. doi: 10.1016/j.omtn.2020.05.027.
60. Walters DM, Kleeberger SR. Mouse models of bleomycin-induced pulmonary fibrosis. Curr Protoc Pharmacol. 2008 Mar;Chapter 5: Unit 5.46. doi: 10.1002/0471141755.ph0546s40.
61. Lee TH, Yeh CF, Lee YT, Shih YC, Chen YT, Hung CT, You MY, Wu PC, Shentu TP, Huang RT, Lin YS, Wu YF, Lin SJ, Lu FL, Tsao PN, Lin TH, Lo SC, Tseng YS, Wu WL, Chen CN, Wu CC, Lin SL, Sperling AI, Guzy RD, Fang Y, Yang KC. Fibroblast-enriched endoplasmic reticulum protein TXNDC5 promotes pulmonary fibrosis by augmenting TGFβ signaling through TGFBR1 stabilization. Nat Commun. 2020; 11(1): 4254. doi: 10.1038/s41467-020-18047-x.
62. Morse C, Tabib T, Sembrat J, Buschur KL, Bittar HT, Valenzi E, Jiang Y, Kass DJ, Gibson K, Chen W, Mora A, Benos PV, Rojas M, Lafyatis R. Proliferating SPP1/MERTK-expressing macrophages in idiopathic pulmonary fibrosis. Eur Respir J. 2019; 54(2): 1802441. doi: 10.1183/13993003.02441-2018.
63. Gonzalez CG, Akula S, Burleson M. The role of mediator subunit 12 in tumorigenesis and cancer therapeutics. Oncol Lett. 2022; 23(3): 74. doi: 10.3892/ol.2022.13194.
64. Constantin TA, Greenland KK, Varela-Carver A, Bevan CL. Transcription associated cyclin-dependent kinases as therapeutic targets for prostate cancer. Oncogene. 2022; 41(24): 3303-3315. doi: 10.1038/s41388-022-02347-1.
65. Zhang JF, Zhang JS, Zhao ZH, Yang PB, Ji SF, Li N, Shi QD, Tan J, Xu X, Xu CB, Zhao LY. MicroRNA-770 affects proliferation and cell cycle transition by directly targeting CDK8 in glioma. Cancer Cell Int. 2018; 18: 195. doi: 10.1186/s12935-018-0694-9.
66. Yuan J, Li P, Pan H, Xu Q, Xu T, Li Y, Wei D, Mo Y, Zhang Q, Chen J, Ni C. miR-770-5p inhibits the activation of pulmonary fibroblasts and silica-induced pulmonary fibrosis through targeting TGFBR1. Ecotoxicol Environ Saf. 2021; 220: 112372. doi: 10.1016/j.ecoenv.2021.112372.
67. Mittal P, Shin YH, Yatsenko SA, Castro CA, Surti U, Rajkovic A. Med12 gain-of-function mutation causes leiomyomas and genomic instability. J Clin Invest. 2015; 125(8): 3280-3284. doi: 10.1172/JCI81534.
68. Al-Hendy A, Laknaur A, Diamond MP, Ismail N, Boyer TG, Halder SK. Silencing Med12 Gene Reduces Proliferation of Human Leiomyoma Cells Mediated via Wnt/β-Catenin Signaling Pathway. Endocrinology. 2017; 158(3): 592-603. doi: 10.1210/en.2016-1097.
69. Idiopathic Pulmonary Fibrosis Clinical Research Network; Raghu G, Anstrom KJ, King TE Jr, Lasky JA, Martinez FJ. Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis. N Engl J Med. 2012; 366(21): 1968-1977. doi: 10.1056/NEJMoa1113354.
70. Roach KM, Sutcliffe A, Matthews L, Elliott G, Newby C, Amrani Y, Bradding P. A model of human lung fibrogenesis for the assessment of anti-fibrotic strategies in idiopathic pulmonary fibrosis. Sci Rep. 2018; 8(1): 342. doi: 10.1038/s41598-017-18555-9.
71. Wang Z, Zhou Y, Bao L, Li D, Lv J, Wang D, Li S, Liu J, Qin C, Tong WM, Huang B. Airway administration of bisphosphate and dexamethasone inhibits SARS-CoV-2 variant infection by targeting alveolar macrophages. Signal Transduct Target Ther. 2022; 7(1): 116. doi: 10.1038/s41392-022-00977-1.
72. Soufli I, Hablal A, Bessaad S, Amri M, Labsi M, Boussa RS, Ameur F, Belguendouz H, Younes SA, Idris NS, Touil-Boukoffa C. Nitric Oxide, Neutrophil/Lymphocyte, and Platelet/Lymphocyte Ratios as Promising Inflammatory Biomarkers in Complicated Crohn's Disease: Outcomes of Corticosteroids and Anti-TNF-α Therapies. Inflammation. 2023; 46(3): 1091-1105. doi: 10.1007/s10753-023-01796-4.
73. Prieto S, Dubra G, Camasses A, Aznar AB, Begon-Pescia C, Simboeck E, Pirot N, Gerbe F, Angevin L, Jay P, Krasinska L, Fisher D. CDK8 and CDK19 act redundantly to control the CFTR pathway in the intestinal epithelium. EMBO Rep. 2023; 24(2): e54261. doi: 10.15252/embr.202154261.
74. Ryvu Therapeutics. Data on RVU120 Presented at the 2025 European Hematology Association Congress. https://ryvu.com/reports/espi-17-2025-data-on-rvu120-presented-at-the-2025-european-hematology-association-congress
75. Targeted Oncology. Phase 2 REMARK Trial of RVU120 Doses First Patient With Lower-Risk MDS. https://www.targetedonc.com/view/phase-2-remark-trial-of-rvu120-doses-first-patient-with-lower-risk-mds
76. ClinicalTrials.gov. Study of BCD-115 in Advanced ER+/HER2− Breast Cancer. NCT03065010. https://clinicaltrials.gov/study/NCT03065010
77. Ren F, Aliper A, Chen J, Zhao H, Rao S, Kuppe C, Ozerov IV, Zhang M, Witte K, Kruse C, Aladinskiy V, Ivanenkov Y, Polykovskiy D, Fu Y, Babin E, Qiao J, Liang X, Mou Z, Wang H, Pun FW, Torres-Ayuso P, Veviorskiy A, Song D, Liu S, Zhang B, Naumov V, Ding X, Kukharenko A, Izumchenko E, Zhavoronkov A. A small-molecule TNIK inhibitor targets fibrosis in preclinical and clinical models. Nat Biotechnol. 2025; 43(1): 63-75. doi: 10.1038/s41587-024-02143-0.
78. Hsu JY, Hsu KC, Chou CH, He TY, Lin TE, Sung TY, Yen SC, Hsieh JH, Yang CR, Huang WJ. Structural optimization and biological evaluation of indolin-2-one derivatives as novel CDK8 inhibitors for idiopathic pulmonary fibrosis. Biomed Pharmacother. 2025; 184: 117891. doi: 10.1016/j.biopha.2025.117891.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99705-
dc.description.abstract背景資料與實驗目的:肺纖維化(Pulmonary fibrosis)是一種低存活率的肺部疾病,目前的藥物治療效果不佳,因此急需開發新的治療策略。我們先前的研究顯示,E966–0530–45418 為一種強效的第八型週期蛋白依賴性激酶 (cyclin-dependent kinase 8, CDK8)抑制劑,能夠透過抑制上皮細胞至間質細胞轉化過程(epithelial–mesenchymal transition, EMT)來減少癌細胞遷移,而EMT是肺纖維化發生的主要病理機制。因此,我們進一步探討E966–0530–45418是否能夠減緩肺纖維化的進展及其潛在的作用機制。
實驗方法:我們首先透過分析臨床資料庫來驗證CDK8與肺纖維化之間的關聯性。然後,我們評估了E966–0530–45418對細胞存活及細胞週期的影響,並分析其在肺部細胞株及初級細胞(primary cells)中降低與纖維化相關蛋白表達的潛力。此外,對於 E966–0530–45418的作用機制研究包括對磷酸化蛋白、蛋白與蛋白及蛋白與DNA 相互作用以及轉錄調控的實驗分析。在體內實驗(in vivo)中,我們使用博來黴素(bleomycin)誘導的肺纖維化小鼠模型來評估E966–0530–45418的療效,並監測其肺功能及肺部電腦斷層影像變化。
實驗結果:我們在已發表臨床資料庫的分析中發現CDK8在特發性肺纖維化(idiopathic pulmonary fibrosis, IPF)患者的肺組織中的表現量上升,並且在博來黴素誘導的肺纖維化小鼠模型中也呈現相同趨勢。進一步研究顯示,E966–0530–45418可透過抑制 TGFβ1/Smad 訊息傳遞路徑中的轉錄因子Smad3活性,亦可抑制第二型RNA聚合酶 (RNA polymerase II) 的作用,來降低肺泡上皮細胞(epithelial cells)和肺成纖維細胞(fibroblasts)中與纖維化相關的蛋白表現量,從而減少肌成纖維細胞(myofibroblasts)分化及膠原蛋白沉積。此外,E966–0530–45418 亦能阻斷轉錄因子STAT3的訊號傳遞,抑制 M2 巨噬細胞極化,進一步減緩肺纖維化的進展。此外,在博來黴素誘導的肺纖維化小鼠模型中,E966–0530–45418 的投予也顯著改善了肺功能衰退及肺實質破壞。
結論:這些研究結果表明,E966–0530–45418作為一種創新的CDK8抑制劑,在治療肺纖維化方面中具有相當的潛力。
zh_TW
dc.description.abstractBackground: Pulmonary fibrosis (PF) is a lung disease with low survival rate and is challenging to remedy with current pharmacological treatments, so new therapeutics are urgently needed. Our previous study unveiled that E966–0530–45418, a potent CDK8 inhibitor, attenuated cancer cell migration by attenuating epithelial–mesenchymal transition (EMT), a main pathological mechanism for the formation of PF. Therefore, we further investigate whether E966–0530–45418 can alleviate the progression of PF and is implicated in underlying mechanisms.
Methods: We initially validated the relationship between CDK8 and PF by analyzing clinical datasets. Subsequently, we examined the effects of E966–0530–45418 on cell viability and cell cycle, evaluating its potential to reduce the expression of fibrosis-related proteins in lung cell lines and primary cells. Furthermore, mechanistic investigations of E966–0530–45418 included the analysis of phosphorylated proteins, protein-protein and protein-DNA interactions, and transcriptional regulation. In vivo, we investigated the efficacy of E966–0530–45418 in bleomycin-induced PF mice, monitoring lung function and CT images.
Results: We discovered that CDK8 is higher expression in lung tissues from idiopathic pulmonary fibrosis (IPF) patients (based on an analysis of published datasets) and in a bleomycin-induced PF mouse model. Our findings demonstrate that E966–0530–45418 suppresses the progression of PF by inhibiting the transcriptional activity of Smad3, a key mediator in the TGFβ1/Smad pathway. This inhibition, along with interference in RNA polymerase II function, reduces the expression of fibrosis-related proteins in alveolar epithelial cells and lung fibroblasts, thereby limiting myofibroblast differentiation and collagen accumulation. Additionally, E966–0530–45418 disrupts STAT3 signaling, hindering M2 macrophage polarization, which further contributes to its antifibrotic effect. In vivo, treatment with E966–0530–45418 improved lung function and mitigated lung parenchymal destruction in a bleomycin-induced mouse model of PF.
Conclusions: These results suggest that E966–0530–45418 has strong potential as a first-in-class CDK8 inhibitor for the treatment of PF.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:26:00Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-17T16:26:00Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAbstract in Chinese i
Abstract iii
Abbreviations vi
Chapter 1. The aim of this study 1
Chapter 2. Introduction 3
Chapter 3. Materials and methods 64
Chapter 4. Results 86
Table and Figures of results 108
Chapter 5. Discussion 153
Chapter 6. Conclusion 161
Chapter 7. Future perspective 162
References 164
-
dc.language.isoen-
dc.subject第八型週期蛋白依賴性激酶zh_TW
dc.subject肺纖維化zh_TW
dc.subject機轉探討zh_TW
dc.subject藥理學zh_TW
dc.subject藥物研發zh_TW
dc.subjectdrug discoveryen
dc.subjectpharmacologyen
dc.subjectmechanism of actionen
dc.subjectcyclin-dependent kinaseen
dc.subjectpulmonary fibrosisen
dc.title第八型週期蛋白依賴性激酶之新穎性抑制劑 E966-0530-45418減緩肺纖維化的療效測試與其機轉探討zh_TW
dc.titleEfficacy evaluation and mechanistic investigation of the novel CDK8 inhibitor E966-0530-45418 in attenuating pulmonary fibrosisen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee顧記華;許麗卿;楊鎧鍵;潘秀玲;許凱程zh_TW
dc.contributor.oralexamcommitteeJih-Hwa Guh;Lih-Ching Hsu;Kai-Chien Yang;Shiow-Lin Pan;Kai-Cheng Hsuen
dc.subject.keyword肺纖維化,第八型週期蛋白依賴性激酶,藥物研發,藥理學,機轉探討,zh_TW
dc.subject.keywordpulmonary fibrosis,cyclin-dependent kinase,drug discovery,pharmacology,mechanism of action,en
dc.relation.page178-
dc.identifier.doi10.6342/NTU202502121-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-23-
dc.contributor.author-college醫學院-
dc.contributor.author-dept藥學研究所-
dc.date.embargo-lift2027-08-01-
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
9 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved