請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99630完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂廷璋 | zh_TW |
| dc.contributor.advisor | Ting-Jang Lu | en |
| dc.contributor.author | 許凱菱 | zh_TW |
| dc.contributor.author | Kai-Ling Hsu | en |
| dc.date.accessioned | 2025-09-17T16:12:15Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-11 | - |
| dc.identifier.citation | Aman, R.; Biehl, J.; Carle, R.; Conrad, J.; Beifuss, U.; Schieber, A., Application of HPLC coupled with DAD, APcI-MS and NMR to the analysis of lutein and zeaxanthin stereoisomers in thermally processed vegetables. Food Chemistry 2005, 92, 753-763.
Amorim-Carrilho, K.; Cepeda, A.; Fente, C.; Regal, P., Review of methods for analysis of carotenoids. TrAC Trends in Analytical Chemistry 2014, 56, 49-73. Arathi, B. P.; Sowmya, P. R.-R.; Vijay, K.; Baskaran, V.; Lakshminarayana, R., Metabolomics of carotenoids: The challenges and prospects–A review. Trends in Food Science & Technology 2015, 45, 105-117. Bertrand, M., Carotenoid biosynthesis in diatoms. Photosynthesis research 2010, 106, 89-102. Bian, Q.; Gao, S.; Zhou, J.; Qin, J.; Taylor, A.; Johnson, E. J.; Tang, G.; Sparrow, J. R.; Gierhart, D.; Shang, F., Lutein and zeaxanthin supplementation reduces photooxidative damage and modulates the expression of inflammation-related genes in retinal pigment epithelial cells. Free Radical Biology and Medicine 2012, 53, 1298-1307. Bijttebier, S. K.; D'Hondt, E.; Hermans, N.; Apers, S.; Voorspoels, S., Unravelling ionization and fragmentation pathways of carotenoids using orbitrap technology: a first step towards identification of unknowns. Journal of Mass Spectrometry 2013, 48, 740-754. Borowitzka, M. A., High-value products from microalgae—their development and commercialisation. Journal of applied phycology 2013, 25, 743-756. Boudries, H.; Kefalas, P.; Hornero-Méndez, D., Carotenoid composition of Algerian date varieties (Phoenix dactylifera) at different edible maturation stages. Food chemistry 2007, 101, 1372-1377. Boussiba, S.; Vonshak, A., Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant and cell Physiology 1991, 32, 1077-1082. Bouvier, F.; D’Harlingue, A.; Backhaus, R. A.; Kumagai, M. H.; Camara, B., Identification of neoxanthin synthase as a carotenoid cyclase paralog. European Journal of Biochemistry 2000, 267, 6346-6352. Brill, F., Literature review: The role of carotenoids as functional foods in disease prevention and treatment. Nutrition 2009, 3, 1-17. Britton, G.; Young, A., Methods for the isolation and analysis of carotenoids. In Carotenoids in photosynthesis, Springer: 1993; pp 409-457. Britton, G., UV/visible spectrometry. Carotenoids 1995a, 1, 13-62. Britton, G., Structure and properties of carotenoids in relation to function. The FASEB Journal 1995b, 9, 1551-1558. Britton, G., Overview of carotenoid biosynthesis. Carotenoids 1998, 3, 13-147. Britton, G.; Liaaen-Jensen, S.; Pfander, H., Carotenoids: handbook. Birkhäuser: 2012. Britton, G., Getting to know carotenoids. In Methods in enzymology, Elsevier: 2022; Vol. 670, pp 1-56. Burri, B. J.; Chang, J. S.; Neidlinger, T. R., β-Cryptoxanthin-and α-carotene-rich foods have greater apparent bioavailability than β-carotene-rich foods in Western diets. British journal of nutrition 2011, 105, 212-219. Cao, W.-t.; Zeng, F.-f.; Li, B.-l.; Lin, J.-s.; Liang, Y.-y.; Chen, Y.-m., Higher dietary carotenoid intake associated with lower risk of hip fracture in middle-aged and elderly Chinese: A matched case-control study. Bone 2018, 111, 116-122. Chacón‐Lee, T.; González‐Mariño, G. E., Microalgae for “healthy” foods—possibilities and challenges. Comprehensive reviews in food science and food safety 2010, 9, 655-675. Çolakoğlu, S.; Türker, G.; Ak, İ.; Çolakoğlu, F., Antioxidant Activity of Mytilus galloprovincialis and Ruditapes philippinarum. Turkish Journal of Agriculture-Food Science and Technology 2019, 7, 150-153. Coughlan, N.; Adamson, B.; Catani, K.; Wille, U.; Bieske, E., Ion mobility unlocks the photofragmentation mechanism of retinal protonated Schiff base. The journal of physical chemistry letters 2014, 5, 3195-3199. Cox, J. T.; Marginean, I.; Smith, R. D.; Tang, K., On the ionization and ion transmission efficiencies of different ESI-MS interfaces. Journal of The American Society for Mass Spectrometry 2014, 26, 55-62. Crupi, P.; Milella, R. A.; Antonacci, D., Simultaneous HPLC‐DAD‐MS (ESI+) determination of structural and geometrical isomers of carotenoids in mature grapes. Journal of mass spectrometry 2010, 45, 971-980. Cunningham Jr, F. X.; Gantt, E., One ring or two? Determination of ring number in carotenoids by lycopene ɛ-cyclases. Proceedings of the national academy of sciences 2001, 98, 2905-2910. Daood, H. G.; Ráth, S.; Palotás, G.; Halász, G.; Hamow, K.; Helyes, L., Efficient HPLC separation on a Core-C30 column with MS2 characterization of isomers, derivatives and unusual carotenoids from tomato products. Journal of Chromatographic Science 2022, 60, 336-347. de Oliveira-Júnior, R. G.; Grougnet, R.; Bodet, P.-E.; Bonnet, A.; Nicolau, E.; Jebali, A.; Rumin, J.; Picot, L., Updated pigment composition of Tisochrysis lutea and purification of fucoxanthin using centrifugal partition chromatography coupled to flash chromatography for the chemosensitization of melanoma cells. Algal Research 2020, 51, 102035. Dembitsky, V. M.; Maoka, T., Allenic and cumulenic lipids. Progress in lipid research 2007, 46, 328-375. Demmig-Adams, B.; Adams III, W. W., Antioxidants in photosynthesis and human nutrition. Science 2002, 298, 2149-2153. Di Tomo, P.; Canali, R.; Ciavardelli, D.; Di Silvestre, S.; De Marco, A.; Giardinelli, A.; Pipino, C.; Di Pietro, N.; Virgili, F.; Pandolfi, A., β‐Carotene and lycopene affect endothelial response to TNF‐α reducing nitro‐oxidative stress and interaction with monocytes. Molecular nutrition & food research 2012, 56, 217-227. Dorschel, C. A., Characterization of the TAG of peanut oil by electrospray LC‐MS‐MS. Journal of the American Oil Chemists' Society 2002, 79, 749-753. Elmorsy, E. M.; Al-Ghafari, A. B.; Al Doghaither, H. A.; Salama, M. M.; Elzahed, H. M.; AlRuwaili, R., Fucoxanthin and its metabolite fucoxanthinol alleviate paraquat-induced oxidative damage and neurotoxicity in differentiated human neuroblastoma cells. Journal of Taibah University for Science 2025, 19, 2512661. Fahy, E.; Subramaniam, S.; Brown, H. A.; Glass, C. K.; Merrill, A. H.; Murphy, R. C.; Raetz, C. R.; Russell, D. W.; Seyama, Y.; Shaw, W., A comprehensive classification system for lipids1. Journal of lipid research 2005, 46, 839-861. Fernandes, A. S.; do Nascimento, T. C.; Jacob-Lopes, E.; De Rosso, V. V.; Zepka, L. Q., Carotenoids: A brief overview on its structure, biosynthesis, synthesis, and applications. Progress in carotenoid research 2018, 1, 1-17. Ferraz, C. A. A.; Grougnet, R.; Nicolau, E.; Picot, L.; de Oliveira Junior, R. G., Carotenoids from marine microalgae as antimelanoma agents. Marine drugs 2022, 20, 618. Fu, W.; Magnúsdóttir, M.; Brynjólfson, S.; Palsson, B. Ø.; Paglia, G., UPLC-UV-MS E analysis for quantification and identification of major carotenoid and chlorophyll species in algae. Analytical and bioanalytical chemistry 2012, 404, 3145-3154. Giuffrida, D.; Zoccali, M.; Mondello, L., Recent developments in the carotenoid and carotenoid derivatives chromatography-mass spectrometry analysis in food matrices. TrAC Trends in Analytical Chemistry 2020, 132, 116047. Gong, Y.; Hu, H.; Gao, Y.; Xu, X.; Gao, H., Microalgae as platforms for production of recombinant proteins and valuable compounds: progress and prospects. Journal of industrial microbiology and biotechnology 2011, 38, 1879-1890. Grether‐Beck, S.; Marini, A.; Jaenicke, T.; Stahl, W.; Krutmann, J., Molecular evidence that oral supplementation with lycopene or lutein protects human skin against ultraviolet radiation: results from a double‐blinded, placebo‐controlled, crossover study. British Journal of Dermatology 2017, 176, 1231-1240. Guaratini, T.; Lopes, N. P.; Pinto, E.; Colepicolo, P.; Gates, P. J., Mechanism for the elimination of aromatic molecules from polyenes in tandem mass spectrometry. Chemical communications 2006, 4110-4112. Gupta, A. K.; Seth, K.; Maheshwari, K.; Baroliya, P. K.; Meena, M.; Kumar, A.; Vinayak, V., Biosynthesis and extraction of high-value carotenoid from algae. Frontiers in Bioscience-Landmark 2021, 26, 171-190. Hrvolová, B.; Martínez-Huélamo, M.; Colmán-Martínez, M.; Hurtado-Barroso, S.; Lamuela-Raventós, R. M.; Kalina, J., Development of an advanced HPLC–MS/MS method for the determination of carotenoids and fat-soluble vitamins in human plasma. International journal of molecular sciences 2016, 17, 1719. Huang, J.-C.; Wang, Y.; Sandmann, G.; Chen, F., Isolation and characterization of a carotenoid oxygenase gene from Chlorella zofingiensis (Chlorophyta). Applied microbiology and biotechnology 2006, 71, 473-479. Ikoma, Y.; Matsumoto, H.; Kato, M., Diversity in the carotenoid profiles and the expression of genes related to carotenoid accumulation among citrus genotypes. Breeding science 2016, 66, 139-147. Jaswir, I.; Noviendri, D.; Hasrini, R. F.; Octavianti, F., Carotenoids: Sources, medicinal properties and their application in food and nutraceutical industry. J. Med. Plants Res 2011, 5, 7119-7131. Juin, C.; Oliveira, R. G. d.; Fleury, A.; Oudinet, C.; Pytowski, L.; Bérard, J.-B.; Nicolau, E.; Thiéry, V.; Lanneluc, I.; Beaugeard, L., Zeaxanthin from Porphyridium purpureum induces apoptosis in human melanoma cells expressing the oncogenic BRAF V600E mutation and sensitizes them to the BRAF inhibitor vemurafenib. Revista Brasileira de Farmacognosia 2018, 28, 457-467. Kamffer, Z.; Bindon, K. A.; Oberholster, A., Optimization of a method for the extraction and quantification of carotenoids and chlorophylls during ripening in grape berries (Vitis vinifera cv. Merlot). Journal of Agricultural and Food Chemistry 2010, 58, 6578-6586. Khoo, H.-E.; Prasad, K. N.; Kong, K.-W.; Jiang, Y.; Ismail, A., Carotenoids and their isomers: color pigments in fruits and vegetables. Molecules 2011, 16, 1710-1738. Kim, K.-N.; Ahn, G.; Heo, S.-J.; Kang, S.-M.; Kang, M.-C.; Yang, H.-M.; Kim, D.; Roh, S. W.; Kim, S.-K.; Jeon, B.-T., Inhibition of tumor growth in vitro and in vivo by fucoxanthin against melanoma B16F10 cells. Environmental Toxicology and Pharmacology 2013, 35, 39-46. Krinsky, N. I., A relationship between partition coefficients of carotenoids and their functional groups. Analytical Biochemistry 1963, 6, 293-302. Kuzuyama, T.; Seto, H., Diversity of the biosynthesis of the isoprene units. Natural product reports 2003, 20, 171-183. Leito, I.; Herodes, K.; Huopolainen, M.; Virro, K.; Künnapas, A.; Kruve, A.; Tanner, R., Towards the electrospray ionization mass spectrometry ionization efficiency scale of organic compounds. Rapid Communications in Mass Spectrometry: An International Journal Devoted to the Rapid Dissemination of Up‐to‐the‐Minute Research in Mass Spectrometry 2008, 22, 379-384. Levin, G.; Mokady, S., Antioxidant activity of 9-cis compared to all-trans β-carotene in vitro. Free Radical Biology and Medicine 1994, 17, 77-82. Liaaen-Jensen, S.; Lutnœes, B. F., E/Z isomers and isomerization. In Carotenoids: Volume 4: Natural Functions, Springer: 2008; pp 15-36. Lichtenthaler, H. K., Biosynthesis, localization and concentration of carotenoids in plants and algae. Photosynthesis: Plastid Biology, Energy Conversion and Carbon Assimilation 2012, 95-112. Lin, C.-M.; Lin, Y.-L.; Tsai, N.-M.; Wu, H.-Y.; Ho, S.-Y.; Chen, C.-H.; Liu, Y.-K.; Chiu, Y.-H.; Ho, L.-P.; Lee, R.-P., Inhibitory effects of chloroform extracts derived from Corbicula fluminea on the release of pro-inflammatory cytokines. Journal of agricultural and food chemistry 2012, 60, 4076-4082. Liu, X.; Osawa, T., Cis astaxanthin and especially 9-cis astaxanthin exhibits a higher antioxidant activity in vitro compared to the all-trans isomer. Biochemical and biophysical research communications 2007, 357, 187-193. Lozano-Alejo, N.; Carrillo, G. V.; Pixley, K.; Palacios-Rojas, N., Physical properties and carotenoid content of maize kernels and its nixtamalized snacks. Innovative Food Science & Emerging Technologies 2007, 8, 385-389. Lu, Q.-Y.; Hung, J.-C.; Heber, D.; Go, V. L. W.; Reuter, V. E.; Cordon-Cardo, C.; Scher, H. I.; Marshall, J. R.; Zhang, Z.-F., Inverse associations between plasma lycopene and other carotenoids and prostate cancer. Cancer Epidemiology Biomarkers & Prevention 2001, 10, 749-756. Maoka, T.; Hashimoto, K.; Akimoto, N.; Fujiwara, Y., Structures of Five New Carotenoids from the Oyster Crassostrea g igas. Journal of natural products 2001, 64, 578-581. Maoka, T.; Fujiwara, Y.; Hashimoto, K.; Akimoto, N., Carotenoids in three species of corbicula clams, Corbicula japonica, Corbicula sandai, and Corbicula sp.(Chinese freshwater corbicula clam). Journal of agricultural and food chemistry 2005, 53, 8357-8364. Maoka, T., Recent progress in structural studies of carotenoids in animals and plants. Archives of biochemistry and biophysics 2009, 483, 191-195. Maoka, T.; Akimoto, N.; Murakoshi, M.; Sugiyama, K.; Nishino, H., Carotenoids in clams, Ruditapes philippinarum and Meretrix petechialis. Journal of agricultural and food chemistry 2010, 58, 5784-5788. Maoka, T., Carotenoids in marine animals. Marine drugs 2011, 9, 278-293. Maoka, T.; Etoh, T.; Borodina, A. V.; Soldatov, A. A., A series of 19′-hexanoyloxyfucoxanthin derivatives from the sea mussel, Mytilus galloprovincialis, grown in the Black Sea, Ukraine. Journal of agricultural and food chemistry 2011, 59, 13059-13064. Maoka, T., Carotenoid metabolism in aquatic animals. Carotenoids: Biosynthetic and biofunctional approaches 2021, 29-49. Maoka, T., Carotenoids: distribution, function in nature, and analysis using LC-photodiode array detector (DAD)-MS and MS/MS system. Mass Spectrometry 2023, 12, A0133-A0133. Mapelli-Brahm, P.; Meléndez-Martínez, A. J., The colourless carotenoids phytoene and phytofluene: sources, consumption, bioavailability and health effects. Current Opinion in Food Science 2021, 41, 201-209. Martin, L. J., Fucoxanthin and its metabolite fucoxanthinol in cancer prevention and treatment. Marine drugs 2015, 13, 4784-4798. Matsuno, T., Aquatic animal carotenoids. Fisheries science 2001, 67, 771-783. Matus, Z.; Ohmacht, R., Selectivity of some aromatic compounds and carotenoids on C 18 packings made with different endcapping procedures. Chromatographia 1990, 30, 318-322. Melendez-Martinez, A. J.; Stinco, C. M.; Liu, C.; Wang, X.-D., A simple HPLC method for the comprehensive analysis of cis/trans (Z/E) geometrical isomers of carotenoids for nutritional studies. Food Chemistry 2013, 138, 1341-1350. Meléndez-Martínez, A. J.; Britton, G.; Vicario, I. M.; Heredia, F. J., Relationship between the colour and the chemical structure of carotenoid pigments. Food Chemistry 2007, 101, 1145-1150. Meléndez-Martínez, A. J., Analysis of geometrical isomers of dietary carotenoids. In Methods in enzymology, Elsevier: 2022; Vol. 670, pp 369-398. Mercadante, A. Z.; Rodriguez-Amaya, D. B.; Britton, G., HPLC and mass spectrometric analysis of carotenoids from mango. Journal of Agricultural and Food Chemistry 1997, 45, 120-123. Mochimaru, M.; Masukawa, H.; Takaichi, S., The cyanobacterium Anabaena sp. PCC 7120 has two distinct β-carotene ketolases: CrtO for echinenone and CrtW for ketomyxol synthesis. FEBS letters 2005, 579, 6111-6114. Murillo, E., Far UV peaks contribute for identification of carotenoids E/Z isomers. Journal of Food Composition and Analysis 2018, 67, 159-162. Nakao, R.; Nelson, O. L.; Park, J. S.; Mathison, B. D.; Thompson, P. A.; Chew, B. P., Effect of astaxanthin supplementation on inflammation and cardiac function in BALB/c mice. Anticancer Research 2010, 30, 2721-2725. Neto, F. C.; Guaratini, T.; Costa‐Lotufo, L.; Colepicolo, P.; Gates, P. J.; Lopes, N. P., Re‐investigation of the fragmentation of protonated carotenoids by electrospray ionization and nanospray tandem mass spectrometry. Rapid Communications in Mass Spectrometry 2016, 30, 1540-1548. O'Neil, C. A.; Schwartz, S. J., Chromatographic analysis of cis/trans carotenoid isomers. Journal of Chromatography A 1992, 624, 235-252. Oliveira-Junior, R. G.; Thiéry, V.; Sergent, O.; Chevanne, M.; Picot, L., Could fucoxanthin interaction with lipid rafts mediate its cytotoxicity in cancer cells? Journal of Oceanography and Marine Research 2016, 4, 1000144. Olmos, J.; Gómez, R.; Rubio, V., Apoptosis comparison effects between synthetic and natural β-Carotene from Dunaliella salina on MDA-MB-231 breast cancer cells. J Microb Biochem Technol 2015, 7, 51-56. Park, H.; Kreunen, S. S.; Cuttriss, A. J.; DellaPenna, D.; Pogson, B. J., Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. The Plant Cell 2002, 14, 321-332. Persson, C.; Sasazuki, S.; Inoue, M.; Kurahashi, N.; Iwasaki, M.; Miura, T.; Ye, W.; Tsugane, S.; Group, J. S., Plasma levels of carotenoids, retinol and tocopherol and the risk of gastric cancer in Japan: a nested case–control study. Carcinogenesis 2008, 29, 1042-1048. Petry, F. C.; Mercadante, A. Z., Composition by LC-MS/MS of new carotenoid esters in mango and citrus. Journal of Agricultural and Food Chemistry 2016, 64, 8207-8224. Priyadarshani, I.; Rath, B., Commercial and industrial applications of micro algae–A review. Journal of Algal Biomass Utilization 2012, 3, 89-100. Provesi, J. G.; Dias, C. O.; Amante, E. R., Changes in carotenoids during processing and storage of pumpkin puree. Food Chemistry 2011, 128, 195-202. Puiggròs, F.; Solà, R.; Bladé, C.; Salvadó, M.-J.; Arola, L., Nutritional biomarkers and foodomic methodologies for qualitative and quantitative analysis of bioactive ingredients in dietary intervention studies. Journal of Chromatography A 2011, 1218, 7399-7414. Pulz, O.; Gross, W., Valuable products from biotechnology of microalgae. Applied microbiology and biotechnology 2004, 65, 635-648. Rao, A. V.; Rao, L. G., Carotenoids and human health. Pharmacological research 2007, 55, 207-216. Rivera, S.; Canela-Garayoa, R., Analytical tools for the analysis of carotenoids in diverse materials. Journal of Chromatography A 2012, 1224, 1-10. Rivera, S. M.; Christou, P.; Canela‐Garayoa, R., Identification of carotenoids using mass spectrometry. Mass Spectrometry Reviews 2014, 33, 353-372. Rodriguez-Amaya, D. B., A guide to carotenoid analysis in foods. Citeseer: 2001; Vol. 71. Rodriguez-Concepcion, M.; Avalos, J.; Bonet, M. L.; Boronat, A.; Gomez-Gomez, L.; Hornero-Mendez, D.; Limon, M. C.; Meléndez-Martínez, A. J.; Olmedilla-Alonso, B.; Palou, A., A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Progress in lipid research 2018, 70, 62-93. Sander, L. C.; Wise, S. A., Synthesis and characterization of polymeric C18 stationary phases for liquid chromatography. Analytical Chemistry 1984, 56, 504-510. Sander, L. C.; Wise, S. A., Shape selectivity in reversed-phase liquid chromatography for the separation of planar and non-planar solutes. Journal of Chromatography A 1993, 656, 335-351. Sander, L. C.; Sharpless, K. E.; Craft, N. E.; Wise, S. A., Development of engineered stationary phases for the separation of carotenoid isomers. Analytical Chemistry 1994, 66, 1667-1674. Santocono, M.; Zurria, M.; Berrettini, M.; Fedeli, D.; Falcioni, G., Lutein, zeaxanthin and astaxanthin protect against DNA damage in SK-N-SH human neuroblastoma cells induced by reactive nitrogen species. Journal of Photochemistry and Photobiology B: Biology 2007, 88, 1-10. Sathasivam, R.; Ki, J.-S., A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries. Marine drugs 2018, 16, 26. Shah, M. M. R.; Liang, Y.; Cheng, J. J.; Daroch, M., Astaxanthin-producing green microalga Haematococcus pluvialis: from single cell to high value commercial products. Frontiers in plant science 2016, 7, 531. Shahidi, F.; Brown, J. A., Carotenoid pigments in seafoods and aquaculture. Critical Reveiws in Food Science 1998, 38, 1-67. Steiger, S.; Jackisch, Y.; Sandmann, G., Carotenoid biosynthesis in Gloeobacter violaceus PCC4721 involves a single crtI-type phytoene desaturase instead of typical cyanobacterial enzymes. Archives of Microbiology 2005, 184, 207-214. Su, F.; Liu, J., The carotenoid characteristics of the important wild shrimp Trachysalambria curvirostris (Stimpson, 1860) in China. Journal of Oceanology and Limnology 2019, 37, 706-712. Sugiura, M.; Nakamura, M.; Ogawa, K.; Ikoma, Y.; Yano, M., High serum carotenoids associated with lower risk for bone loss and osteoporosis in post-menopausal Japanese female subjects: prospective cohort study. PLoS One 2012, 7, e52643. Swift, I. E.; Milborrow, B.; Jeffrey, S., Formation of neoxanthin, diadinoxanthin and peridinin from [14C] zeaxanthin by a cell-free system from Amphidinium carterae. Phytochemistry 1980, 21, 2859-2864. Takaichi, S., Carotenoids in algae: distributions, biosyntheses and functions. Marine drugs 2011, 9, 1101-1118. Takaichi, S., Distribution, Biosynthesis, and Function of Carotenoids in Oxygenic Phototrophic Algae. Marine Drugs 2025, 23, 62. Tan, K.; Zhang, H.; Zheng, H., Carotenoid content and composition: A special focus on commercially important fish and shellfish. Critical Reviews in Food Science and Nutrition 2022, 1-18. Tan, K.; Zhang, H.; Zheng, H., Carotenoid content and composition: A special focus on commercially important fish and shellfish. Critical Reviews in Food Science and Nutrition 2024, 64, 544-561. Tanaka, T.; Shnimizu, M.; Moriwaki, H., Cancer chemoprevention by caroteno. Molecules 2012, 17, 3202-3242. Tavarini, S.; Degl’Innocenti, E.; Remorini, D.; Massai, R.; Guidi, L., Antioxidant capacity, ascorbic acid, total phenols and carotenoids changes during harvest and after storage of Hayward kiwifruit. Food chemistry 2008, 107, 282-288. Tode, C.; Yamano, Y.; Ito, M., Carotenoids and related polyenes. Part 7. 1 Total synthesis of crassostreaxanthin B applying the stereoselective rearrangement of tetrasubstituted epoxides. Journal of the Chemical Society, Perkin Transactions 1 2001, 3338-3345. Tracy, M.; Wang, L.; Liu, X.; Lopez, L. In Analysis for Triglycerides, Diglycerides, and Monoglycerides by High Performance Liquid Chromatography (HPLC) Using 2.2 µm Rapid Separation C18 Columns with Alternative Solvent Systems and Mass Spectrometry, 31st Biofuels Conference, San Francisco, USA, 2009; 2009. Turcsi, E.; Nagy, V.; Deli, J., Study on the elution order of carotenoids on endcapped C18 and C30 reverse silica stationary phases. A review of the database. Journal of Food Composition and Analysis 2016, 47, 101-112. Vallverdú-Queralt, A.; Regueiro, J.; Rinaldi de Alvarenga, J. F.; Torrado, X.; Lamuela-Raventos, R. M., Carotenoid profile of tomato sauces: Effect of cooking time and content of extra virgin olive oil. International Journal of Molecular Sciences 2015, 16, 9588-9599. van Breemen, R. B.; Huang, C. R.; Tan, Y.; Sander, L. C.; Schilling, A. B., Liquid chromatography/mass spectrometry of carotenoids using atmospheric pressure chemical ionization. Journal of Mass Spectrometry 1996, 31, 975-981. van Breemen, R. B.; Dong, L.; Pajkovic, N. D., Atmospheric pressure chemical ionization tandem mass spectrometry of carotenoids. International journal of mass spectrometry 2012, 312, 163-172. Vijayalakshmi, A.; Chakravarty, M. S.; Avuthu, M. R.; Rao, T. N., Isolation and quantification of carotenoids in lobster species off Visakhapatnam coast, Andhra Pradesh. 2018. Wang, L.; Li, B.; Pan, M.-X.; Mo, X.-F.; Chen, Y.-M.; Zhang, C.-X., Specific carotenoid intake is inversely associated with the risk of breast cancer among Chinese women. British journal of nutrition 2014, 111, 1686-1695. Watanabe, T.; Yamagaki, T.; Azuma, T.; Horikawa, M., Distinguishing between isomeric neoxanthin and violaxanthin esters in yellow flower petals using liquid chromatography/photodiode array atmospheric pressure chemical ionization mass spectrometry and tandem mass spectrometry. Rapid Communications in Mass Spectrometry 2021, 35, e9142. Whitton, B. A.; Potts, M., The ecology of cyanobacteria: their diversity in time and space. Springer Science & Business Media: 2007. Wise, S. A.; Sander, L. C., Factors affecting the reversed‐phase liquid chromatographic separation of polycyclic aromatic hydrocarbon isomers. Journal of High Resolution Chromatography 1985, 8, 248-255. Yabuzaki, J., Carotenoids Database: structures, chemical fingerprints and distribution among organisms. Database 2017, 2017, bax004. Yaqoob, Z.; Arshad, M. S.; Imran, M.; Munir, H.; Qaisrani, T. B.; Khalid, W.; Asghar, Z.; Suleria, H. A. R., Mechanistic role of astaxanthin derived from shrimp against certain metabolic disorders. Food Science & Nutrition 2022, 10, 12-20. Zhang, X.; Zhao, W.-e.; Hu, L.; Zhao, L.; Huang, J., Carotenoids inhibit proliferation and regulate expression of peroxisome proliferators-activated receptor gamma (PPARγ) in K562 cancer cells. Archives of Biochemistry and Biophysics 2011, 512, 96-106. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99630 | - |
| dc.description.abstract | 類胡蘿蔔素為廣泛存在於食物中的天然色素,具有多樣的立體異構與官能基修飾形式,並具備光保護、抗氧化等生理功能。蜆為濾食性動物,透過濾取水中微藻攝食,可將微藻所含之類胡蘿蔔素經由體內酵素產生代謝轉化,進而形成多種類胡蘿蔔素衍生物,除具備潛在的生理功能與應用價值外,亦可作為反映生物攝食來源與棲地環境之化學指標。儘管植物與藻類中的類胡蘿蔔素的生合成途徑已被廣泛研究,其在動物體內的代謝轉化機制仍未明確。本研究使用高效能液相層析電噴灑游離串聯質譜法 (HPLC-ESI-MS/MS) 建立類胡蘿蔔素之分析平台,用於進行類胡蘿蔔素及其代謝物之譜型分布,並進一步闡明濾食動物進食後類胡蘿蔔素的代謝轉換關係。首先經游離條件優化,發現以1 mM 乙酸銨作為修飾劑可提供最佳的離子化效率,並進一步調整噴霧電壓、氣體流速與溫度以提升整體訊號強度與穩定性。分析過程結合管柱滯留時間、紫外光吸收光譜與串聯質譜特徵碎片訊號,鑑定出33種類胡蘿蔔素。進一步針對藻類與淡水黃金蜆 (Corbicula fluminea) 樣品進行比較分析,藻類樣品呈現組成多樣的類胡蘿蔔素與具分類差異之譜型,特徵化合物如fucoxanthin與astaxanthin於不同藻門中被檢測到;黃金蜆樣品除藻源類胡蘿蔔素外,亦發現多種代謝衍生物,如diadinoxanthin、pectenol、pectenolone等,推測其轉化過程涉及氧化還原、環氧基開環與烯炔鍵轉換等反應機制。此外,本研究亦針對微藻類樣品與黃金蜆樣品進行比較,結果顯示蜆體內代謝衍生物與藻水中類胡蘿蔔素間具有結構轉換關聯性,並與現有文獻所提出之代謝途徑模型相符。本研究說明質譜技術在類胡蘿蔔素結構鑑定上的應用潛力,也展現類胡蘿蔔素於水產養殖與物種溯源研究中的應用潛力。 | zh_TW |
| dc.description.abstract | Carotenoids are important colorants with structural diversity in food, characterized by varying ring structures and oxygenated functional groups. As filter-feeding organisms, clams can uptake microalgae from their aquatic environment and metabolically convert ingested algal carotenoids via endogenous enzymes into structurally modified derivatives. These carotenoid metabolites not only exhibit potential physiological and applicative value but also serve as chemical indicators reflecting dietary sources and habitat conditions. While carotenoid biosynthetic pathways in plants and algae have been well studied, their metabolic transformations in animals remain less understood. In this study, a high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) platform was established for comprehensive carotenoid profiling and metabolite analysis. Ionization efficiency was optimized using different modifiers, with 1 mM ammonium acetate found to provide the highest ionization efficiency for most carotenoids. Additionally, optimal ionization performance was achieved by fine-tuning parameters such as spray voltage, gas flow rate, and temperature. The developed method identified 33 carotenoids through a combined analysis of retention time, UV spectra, and the characteristic MS/MS fragmentation patterns. Comparative analysis of algae and clams revealed structural correlations between carotenoid profiles and their biological sources. Algal samples contained highly oxidized carotenoids, including fucoxanthin and astaxanthin were found as characteristic compounds in specific algal phyla. In addition, clams samples shared some algae compounds and also contained multiple metabolic derivatives such as diadinoxanthin, pectenol and pectenolone. These findings suggest clam carotenoid metabolism involves oxidation, reduction, epoxide ring-opening, and allenic bond rearrangement. Further comparisons between algal samples and clams revealed that structural correlations observed align with proposed metabolic pathway models, supporting the hypothesis of multi-step carotenoid transformation. This study demonstrates that mass spectrometry-based structural elucidation can reveal detailed carotenoid metabolic networks, providing insights for species traceability, aquaculture applications, and the development of functional foods based on natural carotenoids. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:12:15Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:12:15Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II Abstract III 目次 IV 圖次 VII 表次 IX 附圖次 XI 附表次 XIII 壹、 前言 1 貳、 文獻回顧 2 1. 樣品簡介 2 1.1. 微藻 2 1.2. 蜆 3 2. 類胡蘿蔔素 3 2.1. 簡介 3 2.2. 類胡蘿蔔素之分布情形 4 2.3. 生理活性 5 2.4. 化學結構 6 2.5. 類胡蘿蔔素的生合成及代謝路徑 9 3. 類胡蘿蔔素的結構分析 14 3.1. 高效液相層析法 (high performance liquid chromatography, HPLC) 14 3.2. 紫外-可見光譜法 (Ultraviolet–visible spectroscopy, UV-Vis) 16 3.3. 質譜結構分析 (mass spectrometry, MS) 18 參、 研究目的與架構 24 肆、 材料與方法 26 1. 實驗材料 26 2. 實驗藥品 28 2.1. 標準品 28 2.2. 化學藥品 28 3. 實驗儀器及數據處理軟體 28 3.1. 前處理儀器設備 28 3.2. 超高效液相層析串聯質譜儀 29 3.3. 數據處理軟體 29 4. 實驗方法 30 4.1. 樣品前處理 30 4.2. 移動相修飾劑的選擇 31 4.3. 以液相層析串聯式質譜儀分析類胡蘿蔔素 31 4.4. 質譜電噴灑游離條件之優化 31 4.5. 以二次質譜對類胡蘿蔔素進行斷裂片段分析 32 5. 類胡蘿蔔素檢量線之製作 33 6. 類胡蘿蔔素絕對定量與相對定量分析 33 伍、 結果與討論 35 1. 類胡蘿蔔素分析方法開發與分析條件優化 35 1.1. 移動相修飾劑的選擇 35 1.2. 質譜電噴灑游離條件之優化 42 2. 類胡蘿蔔素以高效能液相層析串聯質譜法分析 47 2.1. 類胡蘿蔔素以高效能液相層析分離 47 2.2. 以紫外-可見光譜法辨別類胡蘿蔔素 56 2.3. 類胡蘿蔔素於高效能液相層析串聯質譜儀之檢測模式 61 3. 類胡蘿蔔素之相對定量方法 75 4. 藻類與蜆類樣品之中類胡蘿蔔素之分布情形 76 4.1. 藻類中類胡蘿蔔素之分布與含量 76 4.2. 蜆類中類胡蘿蔔素之分布與含量 91 4.3. 推測貝類攝食藻類後其類胡蘿蔔素之代謝路徑 97 陸、 結論 104 柒、 參考文獻 106 捌、 附錄 115 1. 類胡蘿蔔素之基本資訊 115 2. 類胡蘿蔔素之定性圖譜 118 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 類胡蘿蔔素 | zh_TW |
| dc.subject | 代謝體 | zh_TW |
| dc.subject | 液相層析電灑游離串聯質譜法 | zh_TW |
| dc.subject | 譜型分析 | zh_TW |
| dc.subject | 濾食動物 | zh_TW |
| dc.subject | carotenoids | en |
| dc.subject | filter-feeding animals | en |
| dc.subject | HPLC-ESI-MS/MS | en |
| dc.subject | profiling analysis | en |
| dc.subject | metabolomics | en |
| dc.title | 以液相層析電灑游離串聯質譜法進行類胡蘿蔔素代謝體分析 | zh_TW |
| dc.title | Metabolomic analysis of carotenoids using high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李茂榮;蘇南維;方銘志;周繼中 | zh_TW |
| dc.contributor.oralexamcommittee | Maw-Rong Lee;Nan-Wei Su;Ming-Chih Fang;Chi-Chung Chou | en |
| dc.subject.keyword | 類胡蘿蔔素,代謝體,液相層析電灑游離串聯質譜法,譜型分析,濾食動物, | zh_TW |
| dc.subject.keyword | carotenoids,metabolomics,HPLC-ESI-MS/MS,profiling analysis,filter-feeding animals, | en |
| dc.relation.page | 229 | - |
| dc.identifier.doi | 10.6342/NTU202503932 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-13 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 食品科技研究所 | - |
| dc.date.embargo-lift | 2030-08-01 | - |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-08-01 | 7.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
