請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99629完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂廷璋 | zh_TW |
| dc.contributor.advisor | Ting-Jang Lu | en |
| dc.contributor.author | 張栩婧 | zh_TW |
| dc.contributor.author | Xu-Jing Zhang | en |
| dc.date.accessioned | 2025-09-17T16:12:04Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-11 | - |
| dc.identifier.citation | Abd Karim, H. A.; Ismail, N. H.; Osman, C. P., Steroidal alkaloids from the apocynaceae family: their isolation and biological activity. Natural Product Communications 2022, 17, 1934578X221141265.
Akiyama, R.; Umemoto, N.; Mizutani, M., Recent advances in steroidal glycoalkaloid biosynthesis in the genus Solanum. Plant Biotechnology 2023, 40, 185-191. Akiyama, R.; Terami, D.; Noda, A.; Watanabe, B.; Umemoto, N.; Muranaka, T.; Saito, K.; Sugimoto, Y.; Mizutani, M., Two reductases complete steroidal glycoalkaloids biosynthesis in potato. New Phytologist 2025. Andersson, K.-E., New pharmacologic targets for the treatment of the overactive bladder: an update. Urology 2004, 63, 32-41. Asamizu, E.; Ezura, H., Inclusion of Tomato in the Genus Solanum as "<i>Solanum lycopersicum</i>" is Evident from Phylogenetic Studies. J. Jpn. Soc. Hortic. Sci. 2009, 78, 3-5. Atta-ur-Rahman; Choudhary, M. I.; Khan, M. R.; Anjum, S.; Farooq, A.; Iqbal, M. Z., New steroidal alkaloids from Sarcococca saligna. Journal of natural products 2000, 63, 1364-1368. Barrett, D. M.; Garcia, E.; Wayne, J. E., Textural modification of processing tomatoes. Crit. Rev. Food Sci. Nutr. 1998, 38, 173-258. Beecher, G. R., Nutrient content of tomatoes and tomato products. Proceedings of the Society for Experimental Biology and Medicine 1998, 218, 98-100. Bergeron, D.; Bushway, R. J.; Storch, R. H.; Alford, A. R.; Bushway, A. A., The extraction and partial purification of a rhamnosidase from Colorado potato beetle larvae (Leptinotarsa decemlineata (Say)). American potato journal 1988, 65, 67-74. Burlingame, B.; Mouillé, B.; Charrondiere, R., Nutrients, bioactive non-nutrients and anti-nutrients in potatoes. J. Food Compos. Anal. 2009, 22, 494-502. Cayen, M., Effect of dietary tomatine on cholesterol metabolism in the rat. Journal of Lipid Research 1971, 12, 482-490. Chang, L. C.; Tsai, T. R.; Wang, J. J.; Lin, C. N.; Kuo, K. W., The rhamnose moiety of solamargine plays a crucial role in triggering cell death by apoptosis. Biochem. Biophys. Res. Commun. 1998, 242, 21-25. Charles, M. T.; Arul, J.; Charlebois, D.; Yaganza, E.-S.; Rolland, D.; Roussel, D.; Merisier, M. J., Postharvest UV-C treatment of tomato fruits: Changes in simple sugars and organic acids contents during storage. LWT-Food Science and Technology 2016, 65, 557-564. Chen, Y.; Li, S.; Sun, F.; Han, H.; Zhang, X.; Fan, Y.; Tai, G.; Zhou, Y., In vivo antimalarial activities of glycoalkaloids isolated from Solanaceae plants. Pharmaceutical Biology 2010, 48, 1018-1024. Chiu, F.-L.; Lin, J.-K., Tomatidine inhibits iNOS and COX-2 through suppression of NF-κB and JNK pathways in LPS-stimulated mouse macrophages. FEBS letters 2008, 582, 2407-2412. D'Arcy, W. G., Solanaceae, biology and systematics. Columbia University Press: 1986. Daly, J. W.; Spande, T. F.; Garraffo, H. M., Alkaloids from amphibian skin: a tabulation of over eight-hundred compounds. Journal of natural products 2005, 68, 1556-1575. Delbrouck, J. A.; Desgagné, M.; Comeau, C.; Bouarab, K.; Malouin, F.; Boudreault, P.-L., The therapeutic value of Solanum steroidal (Glyco) alkaloids: a 10-year comprehensive review. Molecules 2023, 28, 4957. Dey, A.; Mukherjee, A.; Chaudhury, M., Alkaloids from apocynaceae: origin, pharmacotherapeutic properties, and structure-activity studies. Studies in natural products chemistry 2017, 52, 373-488. Ding, X.; Zhu, F.-S.; Li, M.; Gao, S.-G., Induction of apoptosis in human hepatoma SMMC-7721 cells by solamargine from Solanum nigrum L. Journal of Ethnopharmacology 2012, 139, 599-604. Distl, M.; Wink, M., Identification and quantification of steroidal alkaloids from wild tuber-bearing Solanum species by HPLC and LC-ESI-MS. Potato Research 2009, 52, 79-104. Dyle, M. C.; Ebert, S. M.; Cook, D. P.; Kunkel, S. D.; Fox, D. K.; Bongers, K. S.; Bullard, S. A.; Dierdorff, J. M.; Adams, C. M., Systems-based discovery of tomatidine as a natural small molecule inhibitor of skeletal muscle atrophy. Journal of Biological Chemistry 2014, 289, 14913-14924. Erika, C.; Griebel, S.; Naumann, M.; Pawelzik, E., Biodiversity in tomatoes: Is it reflected in nutrient density and nutritional yields under organic outdoor production? Front. Plant Sci. 2020, 11, 589692. Fewell, A. M.; Roddick, J. G., Interactive antifungal activity of the glycoalkaloids α-solanine and α-chaconine. Phytochemistry 1993, 33, 323-328. Fewell, A. M.; Roddick, J. G., Potato glycoalkaloid impairment of fungal development. Mycological Research 1997, 101, 597-603. Friedman, M.; McDonald, G. M.; Filadelfi-Keszi, M., Potato glycoalkaloids: chemistry, analysis, safety, and plant physiology. Critical reviews in plant sciences 1997, 16, 55-132. Friedman, M., Anticarcinogenic, cardioprotective, and other health benefits of tomato compounds lycopene, α-tomatine, and tomatidine in pure form and in fresh and processed tomatoes. J. Agric. Food Chem. 2013, 61, 9534-9550. Garcia, E.; Barrett, D. M., Evaluation of processing tomatoes from two consecutive growing seasons: quality attributes, peelability and yield. Journal of food processing and preservation 2006, 30, 20-36. Gottlieb, O.; Kaplan, M.; Borin, M. d. M.; Pomilio, A., Biodiversidad: Un Enfoque integrado entre la Química y la Biologia. Spanish version by Pomilio AB. Buenos Aires, Idecefyn 2001. Gros, E. G.; Burton, G.; Pomilio, A. B.; Seldes, A. M., Introducción al estudio de los productos naturales. 1985. Gu, X.-Y.; Shen, X.-F.; Wang, L.; Wu, Z.-W.; Li, F.; Chen, B.; Zhang, G.-L.; Wang, M.-K., Bioactive steroidal alkaloids from the fruits of Solanum nigrum. Phytochemistry 2018, 147, 125-131. Hameed, A.; Ijaz, S.; Mohammad, I. S.; Muhammad, K. S.; Akhtar, N.; Khan, H. M. S., Aglycone solanidine and solasodine derivatives: A natural approach towards cancer. Biomedicine & Pharmacotherapy 2017, 94, 446-457. Heftmann, E.; Schwimmer, S., A radioligand assay of tomatine. Phytochemistry 1973, 12, 2661-2663. Hossain, M. B.; Tiwari, B. K.; Gangopadhyay, N.; O’Donnell, C. P.; Brunton, N. P.; Rai, D. K., Ultrasonic extraction of steroidal alkaloids from potato peel waste. Ultrasonics sonochemistry 2014, 21, 1470-1476. Hossain, M. B.; Rai, D. K.; Brunton, N. P., Optimisation and validation of ultra-high performance liquid chromatographic-tandem mass spectrometry method for qualitative and quantitative analysis of potato steroidal alkaloids. Journal of Chromatography b 2015, 997, 110-115. Iijima, Y.; Nakamura, Y.; Ogata, Y.; Tanaka, K. i.; Sakurai, N.; Suda, K.; Suzuki, T.; Suzuki, H.; Okazaki, K.; Kitayama, M., Metabolite annotations based on the integration of mass spectral information. The Plant Journal 2008, 54, 949-962. Iijima, Y.; Watanabe, B.; Sasaki, R.; Takenaka, M.; Ono, H.; Sakurai, N.; Umemoto, N.; Suzuki, H.; Shibata, D.; Aoki, K., Steroidal glycoalkaloid profiling and structures of glycoalkaloids in wild tomato fruit. Phytochemistry 2013, 95, 145-157. Itkin, M.; Rogachev, I.; Alkan, N.; Rosenberg, T.; Malitsky, S.; Masini, L.; Meir, S.; Iijima, Y.; Aoki, K.; de Vos, R., GLYCOALKALOID METABOLISM1 is required for steroidal alkaloid glycosylation and prevention of phytotoxicity in tomato. The Plant Cell 2011, 23, 4507-4525. Kapoor, S.; Dharmesh, S. M., Pectic Oligosaccharide from tomato exhibiting anticancer potential on a gastric cancer cell line: Structure-function relationship. Carbohydrate Polymers 2017, 160, 52-61. Kasimir, M.; Wolbeck, A.; Behrens, M.; Humpf, H.-U., Intestinal metabolism of selected steroidal glycoalkaloids in the pig cecum model. ACS omega 2023, 8, 18266-18274. Kaushik, D.; Jogpal, V.; Kaushik, P.; Lal, S.; Saneja, A.; Sharma, C.; Aneja, K., Evaluation of activities of Solanum nigrum fruit extract. Archives of Applied Science Research 2009, 1, 43-50. Keerthana, S.; Philip, A.; Abdul, R.; Kumar, R.; Syed, S. A.; Syed, A.; Bharathi, D., Ethnopharmacology of solanum nigrum: A review. World Journal of Current Medical and Pharmaceutical Research 2022, 48-52. Kenny, O. M.; McCarthy, C. M.; Brunton, N. P.; Hossain, M. B.; Rai, D. K.; Collins, S. G.; Jones, P. W.; Maguire, A. R.; O'Brien, N. M., Anti-inflammatory properties of potato glycoalkaloids in stimulated Jurkat and Raw 264.7 mouse macrophages. Life sciences 2013, 92, 775-782. Khachik, F.; Carvalho, L.; Bernstein, P. S.; Muir, G. J.; Zhao, D.-Y.; Katz, N. B., Chemistry, distribution, and metabolism of tomato carotenoids and their impact on human health. Experimental biology and medicine 2002, 227, 845-851. Kunkel, S. D.; Elmore, C. J.; Bongers, K. S.; Ebert, S. M.; Fox, D. K.; Dyle, M. C.; Bullard, S. A.; Adams, C. M., Ursolic acid increases skeletal muscle and brown fat and decreases diet-induced obesity, glucose intolerance and fatty liver disease. PloS one 2012, 7, e39332. Kuronen, P.; Väänänen, T.; Pehu, E., Reversed-phase liquid chromatographic separation and simultaneous profiling of steroidal glycoalkaloids and their aglycones. Journal of Chromatography A 1999, 863, 25-35. Lam, C. W.; Wakeman, A.; James, A.; Ata, A.; Gengan, R. M.; Ross, S. A., Bioactive steroidal alkaloids from Buxus macowanii Oliv. Steroids 2015, 95, 73-79. Lawson, D. R.; Erb, W. A.; Miller, A. R., Analysis of Solanum alkaloids using internal standardization and capillary gas chromatography. J. Agric. Food Chem. 1992, 40, 2186-2191. Lelario, F.; Labella, C.; Napolitano, G.; Scrano, L.; Bufo, S. A., Fragmentation study of major spirosolane‐type glycoalkaloids by collision‐induced dissociation linear ion trap and infrared multiphoton dissociation Fourier transform ion cyclotron resonance mass spectrometry. Rapid communications in mass spectrometry 2016, 30, 2395-2406. Li, H.-J.; Jiang, Y.; Li, P., Chemistry, bioactivity and geographical diversity of steroidal alkaloids from the Liliaceae family. Natural product reports 2006, 23, 735-752. Li, J.; Li, Q.; Feng, T.; Li, K., Aqueous extract of Solanum nigrum inhibit growth of cervical carcinoma (U14) via modulating immune response of tumor bearing mice and inducing apoptosis of tumor cells. Fitoterapia 2008, 79, 548-556. Li, Y.; Luo, J., From steroidal glycoalkaloids to steroidal saponins: Biosynthesis and ecological role in the Solanum genus. Molecular Plant 2025, 18, 22-24. Lin, H.-J.; Mahendran, R.; Huang, H.-Y.; Chiu, P.-L.; Chang, Y.-M.; Day, C. H.; Chen, R.-J.; Padma, V. V.; Liang-Yo, Y.; Kuo, W.-W., Aqueous extract of Solanum nigrum attenuates Angiotensin-II induced cardiac hypertrophy and improves cardiac function by repressing protein kinase C-ζ to restore HSF2 deSUMOlyation and Mel-18-IGF-IIR signaling suppression. Journal of Ethnopharmacology 2022, 284, 114728. Ling, B.; Xiao, S.; Yang, J.; Wei, Y.; Sakharkar, M. K.; Yang, J., Probing the antitumor mechanism of Solanum nigrum L. aqueous extract against human breast cancer MCF7 cells. Bioengineering 2019, 6, 112. Liu, L.-Y.; Yang, Y.-K.; Wang, J.-N.; Ren, J.-G., Steroidal alkaloids from Solanum nigrum and their cytotoxic activities. Phytochemistry 2022, 202, 113317. Manabe, H.; Fujiwara, Y.; Ikeda, T.; Ono, M.; Murakami, K.; Zhou, J.-R.; Yokomizo, K.; Nohara, T., Saponins esculeosides B-1 and B-2 in Italian canned tomatoes. Chemical and Pharmaceutical Bulletin 2013, 61, 764-767. Meng-Zhen, Z.; Li-Juan, G.; Shi-Fang, X.; Wen-Kang, H.; Xiao-Yu, L.; Yi-Ping, Y., Advances in studies on steroidal alkaloids and their pharmacological activities in genus Veratrum. Zhongguo Zhong yao za zhi= Zhongguo Zhongyao Zazhi= China Journal of Chinese Materia Medica 2020, 45, 5129-5142. Milner, S. E.; Brunton, N. P.; Jones, P. W.; O’Brien, N. M.; Collins, S. G.; Maguire, A. R., Bioactivities of glycoalkaloids and their aglycones from Solanum species. J. Agric. Food Chem. 2011, 59, 3454-3484. Musharraf, S. G.; Goher, M.; Ali, A.; Adhikari, A.; Choudhary, M. I., Rapid characterization and identification of steroidal alkaloids in Sarcococca coriacea using liquid chromatography coupled with electrospray ionization quadropole time-of-flight mass spectrometry. Steroids 2012, 77, 138-148. Mweetwa, A. M.; Hunter, D.; Poe, R.; Harich, K. C.; Ginzberg, I.; Veilleux, R. E.; Tokuhisa, J. G., Steroidal glycoalkaloids in Solanum chacoense. Phytochemistry 2012, 75, 32-40. Nie, X.; Zhang, G.; Lv, S.; Guo, H., Steroidal glycoalkaloids in potato foods as affected by cooking methods. International Journal of Food Properties 2018, 21, 1875-1887. Nikolic, N. C.; Stankovic, M. Z., Solanidine hydrolytic extraction and separation from the potato (Solanum tuberosum L.) vines by using solid− liquid− liquid systems. J. Agric. Food Chem. 2003, 51, 1845-1849. Noguchi, E.; Fujiwara, Y.; Matsushita, S.; Ikeda, T.; Ono, M.; Nohara, T., Metabolism of tomato steroidal glycosides in humans. Chemical and pharmaceutical bulletin 2006, 54, 1312-1314. Oda, Y.; Saito, K.; Ohara-Takada, A.; Mori, M., Hydrolysis of the potato glycoalkaloid α-chaconine by filamentous fungi. Journal of bioscience and bioengineering 2002, 94, 321-325. Palozza, P.; Parrone, N.; Catalano, A.; Simone, R., Tomato lycopene and inflammatory cascade: basic interactions and clinical implications. Current medicinal chemistry 2010, 17, 2547-2563. Patel, N. K. Phytotherapeutic investigation of major herbal steroids to explore their potential as an alternative to synthetic steroids. Saurashtra University, 2011. Pomilio, A. B.; Falzoni, E. M.; Vitale, A. A., Toxic chemical compounds of the Solanaceae. Natural Product Communications 2008, 3, 1934578X0800300420. Putteeraj, M.; Lim, W. L.; Teoh, S. L.; Yahaya, M. F., Flavonoids and its neuroprotective effects on brain ischemia and neurodegenerative diseases. Current drug targets 2018, 19, 1710-1720. Qiu, J.; Vuist, J.-E.; Boom, R. M.; Schutyser, M. A., Formation and degradation kinetics of organic acids during heating and drying of concentrated tomato juice. LWT 2018, 87, 112-121. Rahman, A.-u.; Choudhary, M. I., Chemistry and biology of steroidal alkaloids. In The alkaloids: Chemistry and biology, Elsevier: 1998; Vol. 50, pp 61-108. Rahman, A.-U.; Choudhary, M. I., Chemistry and biology of steroidal alkaloids from marine organisms. In The Alkaloids: Chemistry and Biology, Elsevier: 1999; Vol. 52, pp 233-260. Raju, K.; Anbuganapathi, G.; Gokulakrishnan, V.; Rajkapoor, B.; Jayakar, B.; Manian, S., Effect of dried fruits of solanum nigrum L INN against CCl4-induced hepatic damage in rats. Biological and Pharmaceutical Bulletin 2003, 26, 1618-1619. Reimers, K. J.; Keast, D. R., Tomato consumption in the United States and its relationship to the US Department of Agriculture food pattern: results from What We Eat in America 2005–2010. Nutrition Today 2016, 51, 198-205. Rick, C. M.; Uhlig, J. W.; Jones, A. D., High alpha-tomatine content in ripe fruit of Andean Lycopersicon esculentum var. cerasiforme: developmental and genetic aspects. Proceedings of the National Academy of Sciences 1994, 91, 12877-12881. Rodriguez-Jimenez, J. R.; Amaya-Guerra, C. A.; Baez-Gonzalez, J. G.; Aguilera-Gonzalez, C.; Urias-Orona, V.; Nino-Medina, G., Physicochemical, functional, and nutraceutical properties of eggplant flours obtained by different drying methods. Molecules 2018, 23, 3210. Sawai, S.; Ohyama, K.; Yasumoto, S.; Seki, H.; Sakuma, T.; Yamamoto, T.; Takebayashi, Y.; Kojima, M.; Sakakibara, H.; Aoki, T., Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. The Plant Cell 2014, 26, 3763-3774. Schmidt, A.; Kimmel, D. B.; Bai, C.; Scafonas, A.; Rutledge, S.; Vogel, R. L.; McElwee-Witmer, S.; Chen, F.; Nantermet, P. V.; Kasparcova, V., Discovery of the selective androgen receptor modulator MK-0773 using a rational development strategy based on differential transcriptional requirements for androgenic anabolism versus reproductive physiology. Journal of Biological Chemistry 2010, 285, 17054-17064. Shammai, A.; Petreikov, M.; Yeselson, Y.; Faigenboim, A.; Moy‐Komemi, M.; Cohen, S.; Cohen, D.; Besaulov, E.; Efrati, A.; Houminer, N., Natural genetic variation for expression of a SWEET transporter among wild species of Solanum lycopersicum (tomato) determines the hexose composition of ripening tomato fruit. The Plant Journal 2018, 96, 343-357. Shan, B.; Cai, Y. Z.; Sun, M.; Corke, H., Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J. Agric. Food Chem. 2005, 53, 7749-7759. Sharma, M.; Kaushik, P., Biochemical composition of eggplant fruits: A review. Applied sciences 2021, 11, 7078. Sholola, M. J.; Goggans, M. L.; Dzakovich, M. P.; Francis, D. M.; Jacobi, S. K.; Cooperstone, J. L., Discovery of steroidal alkaloid metabolites and their accumulation in pigs after short-term tomato consumption. Food Chemistry 2025, 463, 141346. Sinden, S.; Goth, R.; O'brien, M., Effect of potato alkaloids on the growth of Alternaria solani and their possible role as resistance factors in potatoes. 1973. Son, Y.-O.; Kim, J.; Lim, J.-C.; Chung, Y.; Chung, G.-H.; Lee, J.-C., Ripe fruits of Solanum nigrum L. inhibits cell growth and induces apoptosis in MCF-7 cells. Food and chemical toxicology 2003, 41, 1421-1428. Sonawane, P. D.; Pollier, J.; Panda, S.; Szymanski, J.; Massalha, H.; Yona, M.; Unger, T.; Malitsky, S.; Arendt, P.; Pauwels, L., Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolism. Nature plants 2016, 3, 1-13. Sporn, M. B.; Liby, K. T., Is lycopene an effective agent for preventing prostate cancer? Cancer prevention research 2013, 6, 384-386. Suhaj, M., Spice antioxidants isolation and their antiradical activity: a review. J. Food Compos. Anal. 2006, 19, 531-537. Taufiq-Ur-Rahman, M.; Shilpi, J. A.; Ahmed, M.; Hossain, C. F., Preliminary pharmacological studies on Piper chaba stem bark. Journal of ethnopharmacology 2005, 99, 203-209. Thakur, B.; Singh, R.; Nelson, P., Quality attributes of processed tomato products: A review. Food Reviews International 1996, 12, 375-401. Toppino, L.; Barchi, L.; Lo Scalzo, R.; Palazzolo, E.; Francese, G.; Fibiani, M.; D'Alessandro, A.; Papa, V.; Laudicina, V. A.; Sabatino, L., Mapping quantitative trait loci affecting biochemical and morphological fruit properties in eggplant (Solanum melongena L.). Front. Plant Sci. 2016, 7, 256. Tschesche, R.; Wulff, G., KONSTITUTION UND EIGENSCHAFTEN DER SAPONINE1. Planta Medica 1964, 12, 272-292. Turner, M. W.; Rossi, M.; Campfield, V.; French, J.; Hunt, E.; Wade, E.; McDougal, O. M., Steroidal alkaloid variation in Veratrum californicum as determined by modern methods of analytical analysis. Fitoterapia 2019, 137, 104281. Wang, W.; Du, G.; Yang, G.; Zhang, K.; Chen, B.; Xiao, G., A multifunctional enzyme portfolio for α-chaconine and α-solanine degradation in the Phthorimaea operculella gut bacterium Glutamicibacter halophytocola S2 encoded in a trisaccharide utilization locus. Frontiers in Microbiology 2022, 13, 1023698. Willker, W.; Leibfritz, D., Complete assignment and conformational studies of tomatine and tomatidine. Magnetic resonance in chemistry 1992, 30, 645-650. Woods, K.; Hamilton, C. J.; Field, R. A., Enzymatic liberation of lycotetraose from the Solanum glycoalkaloid α-tomatine. Carbohydrate research 2004, 339, 2325-2328. Xiang, M.-L.; Hu, B.-Y.; Qi, Z.-H.; Wang, X.-N.; Xie, T.-Z.; Wang, Z.-J.; Ma, D.-Y.; Zeng, Q.; Luo, X.-D., Chemistry and bioactivities of natural steroidal alkaloids. Natural Products and Bioprospecting 2022, 12, 23. Ye, J.; Wang, X.; Hu, T.; Zhang, F.; Wang, B.; Li, C.; Yang, T.; Li, H.; Lu, Y.; Giovannoni, J. J., An InDel in the promoter of Al-ACTIVATED MALATE TRANSPORTER9 selected during tomato domestication determines fruit malate contents and aluminum tolerance. The Plant Cell 2017, 29, 2249-2268. Yoshimura, N.; Chancellor, M. B., Current and future pharmacological treatment for overactive bladder. The Journal of urology 2002, 168, 1897-1913. Zhao, W.; Yan, T.; Huang, X.; Zhang, Y., Analysis of steroidal glycoalkaloids and their metabolites in Solanum nigrum fruits based on liquid chromatography‐tandem mass spectrometry and molecular networking. Journal of Separation Science 2023, 46, 2200804. Zhou, J.-L.; Li, P.; Li, H.-J.; Jiang, Y.; Ren, M.-T.; Liu, Y., Development and validation of a liquid chromatography/electrospray ionization time-of-flight mass spectrometry method for relative and absolute quantification of steroidal alkaloids in Fritillaria species. Journal of chromatography A 2008, 1177, 126-137. Zhu, G.; Wang, S.; Huang, Z.; Zhang, S.; Liao, Q.; Zhang, C.; Lin, T.; Qin, M.; Peng, M.; Yang, C., Rewiring of the fruit metabolome in tomato breeding. Cell 2018, 172, 249-261. e12. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99629 | - |
| dc.description.abstract | 固醇類生物鹼為存在於茄科植物中的次級代謝物,具備防禦病原入侵的功能。此類化合物雖具有一定毒性與苦味,但在低劑量或可接受攝取範圍內,可能對人體健康產生正面效益。本研究利用超高效能液相層析串聯高解析質譜法,建立固醇類生物鹼的分析平台,結合精確分子量、同位素分佈與二級碎裂圖譜,成功鑑別出42種固醇類生物鹼,包括32種Spirosolane型與10種Solanidane型結構,涵蓋12對異構物。研究結果顯示,固醇類生物鹼在番茄(Solanum lycopersicum)、龍葵(Solanum nigrum)、與馬鈴薯(Solanum tuberosum)間,以及不同品種與植株部位間,皆呈現顯著差異。番茄所含之固醇類生物鹼與其他樣品皆不同,而龍葵、茄子與馬鈴薯則共同含有α-solasonine與α-solamargine兩種主要成分。番茄以Esculeoside A為主要成分,集中於果實,蒂頭則以α-tomatine與β1-tomatine為主。龍葵中,以未成熟果實含量最高,且在不同部位及成熟階段皆以α-solasonine與α-solamargine為主,占比超過70%。馬鈴薯則以α-solanine與α-chaconine為主要成分,二者占總量的90%以上,集中於表皮,且發芽樣本含量顯著高於未發芽者。在加工處理方面,殺菁雖不改變總量,但可能導致結構轉換,其中龍葵果實中羧基化生物鹼的比例由30%大幅提升至97%。而熱風乾燥的熱處理也會導致番茄中Esculeoside A含量大幅下降並進一步轉化為其他構型。本研究所建構之分析平台能有效鑑別並量化茄科植物中固醇類生物鹼的成分與變化,為探討其生理功能、健康效益及潛在風險提供分析依據,亦可作為未來品質評估與產品開發的重要工具。 | zh_TW |
| dc.description.abstract | Steroidal alkaloids are secondary metabolites found in Solanaceous plants and play a defensive role against pathogen invasion. Although these compounds possess inherent toxicity and bitterness, they may offer potential health benefits to humans when consumed at low doses or within acceptable intake levels. In this study, a steroidal alkaloid profiling platform was established using ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS/MS). By confirming precise molecular weight, isotopic distribution, and MS/MS fragmentation patterns, the platform successfully identified 42 steroidal alkaloids, including 32 spirosolane-type and 10 solanidane-type structures, encompassing 12 pairs of isomers. The results revealed significant variations in the composition and distribution of steroidal alkaloids among tomato (Solanum lycopersicum), black nightshade (Solanum nigrum), and potato (Solanum tuberosum), as well as across different cultivars and plant tissues. The steroidal alkaloid profile of tomato was distinct from the others, while black nightshade, eggplant, and potato all shared the presence of α-solasonine and α-solamargine. In tomato, Esculeoside A was the predominant compound in the fruit, whereas α-tomatine and β1-tomatine were more abundant in the calyxes. In black nightshade, immature fruits showed the highest levels of alkaloids, with α-solasonine and α-solamargine accounting for over 70% of the total content across different tissues and developmental stages. In potato, α-solanine and α-chaconine were the main components, making up more than 90% of the total alkaloid content, primarily concentrated in the skin, and their levels were significantly higher in sprouted tubers than in unsprouted ones. With respect to post-harvest processing, blanching did not alter the total alkaloid content but induced structural transformations, such as an increase in the proportion of carboxylated alkaloids in black nightshade fruit from 30% to 97%. Heat drying also led to a substantial decrease in the Esculeoside A content in tomato and promoted its conversion into other structural forms. This analytical platform provides a sensitive and reliable tool for identifying and quantifying the composition and variation of steroidal alkaloids in Solanaceous plants. It offers a valuable basis for exploring their physiological roles, potential health effects, and associated risks, and serves as a critical resource for quality evaluation, standardization, and the development of related products. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:12:04Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:12:04Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘 要 i
Abstract ii 目 次 iii 圖 次 vi 表 次 ix 壹、前言 1 貳、文獻回顧 2 第一章、茄科植物 2 1.1 茄科植物 2 1.2 番茄 2 1.2.1 番茄的種類 3 1.2.2 番茄的生理活性 3 1.3 龍葵 4 1.3.1 龍葵的生理活性 4 1.4 馬鈴薯 5 1.5 茄子 5 第二章、Cholestane (C27) 型固醇類生物鹼 6 2.1 固醇類生物鹼 6 2.2 Cholestane (C27) 型固醇類生物鹼 9 2.3 Cholestane (C27) 型固醇類生物鹼的合成與代謝 13 第三章、Cholestane (C27) 型固醇類生物鹼的生理活性 16 3.1 細胞毒性 16 3.2 抗炎活性 16 3.3 抗菌活性 16 3.4 抗膽固醇活性 17 3.5抑制骨骼肌萎縮 17 3.6 結構與生理活性的關係 17 第四章、Cholestane (C27) 型固醇類生物鹼的分析方法 19 4.1 酸水解 19 4.2 酵素水解 19 4.3 紅外光譜法 19 4.4 紫外光譜法 20 4.5 核磁共振光譜分析 20 4.6 液相層析串聯質譜 21 叄、研究目的及架構 23 肆、材料與方法 24 第一章、實驗材料 24 1.1 番茄、龍葵與馬鈴薯樣品列表 24 1.2 空白基質 25 第二章、實驗藥品 26 2.1 標準品 26 2.2 化學藥品 26 第三章、實驗儀器及數據處理 26 3.1 前處理儀器設備 26 3.2 超高效液相層析串聯質譜儀 27 3.3 數據處理軟體 27 第四章、實驗方法 28 4.1. 殺菁 28 4.2 熱風乾燥 28 4.3 樣品前處理 28 4.4 品管樣品製備及酸水解法 28 4.5 層析移動相配製 29 4.6 層析儀相關參數設定 29 4.7 質譜儀相關參數設定 30 4.8 固醇類生物鹼絕對定量與相對定量分析 31 伍、結果與討論 32 第一章、茄科植物樣品前處理 32 第二章、固醇類生物鹼以超高效液相層析串聯高解析質譜法分析 32 2.1 固醇類生物鹼以超高效液相層析分離 32 2.2 固醇類生物鹼以高解析質譜儀偵測 39 2.3 固醇類生物鹼的基質效應評估 51 2.4 固醇類生物鹼的基質匹配檢量線 51 2.5 固醇類生物鹼分析平臺的定量極限 52 2.6 固醇類生物鹼分析平台的回收率 52 第三章、固醇類生物鹼的分佈情形 54 3.1 茄科植物中固醇類生物鹼的分佈情形 54 3.2 經加工處理後番茄及龍葵中固醇類生物鹼的分佈情形 86 陸、結論 97 柒、參考文獻 98 捌、附錄 106 第一章、固醇類生物鹼之定性圖譜 106 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 茄科植物 | zh_TW |
| dc.subject | 超高效能液相層析串聯高解析質譜法 | zh_TW |
| dc.subject | 固醇類生物鹼 | zh_TW |
| dc.subject | UHPLC-HRMS/MS | en |
| dc.subject | Solanaceous plants | en |
| dc.subject | Steroidal alkaloids | en |
| dc.title | 利用超高效能液相層析串聯高解析質譜法建立茄科植物中固醇類生物鹼的分析平台 | zh_TW |
| dc.title | Establishment of analytical platform for steroidal alkaloids in Solanaceae plants by UHPLC-HRMS/MS | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 周繼中;蘇南維;方銘志;李茂榮 | zh_TW |
| dc.contributor.oralexamcommittee | Kevin Chi-Chung Chou;Nan-Wei SU;Ming-Chih Fang;Maw-Rong Lee | en |
| dc.subject.keyword | 茄科植物,固醇類生物鹼,超高效能液相層析串聯高解析質譜法, | zh_TW |
| dc.subject.keyword | Solanaceous plants,Steroidal alkaloids,UHPLC-HRMS/MS, | en |
| dc.relation.page | 176 | - |
| dc.identifier.doi | 10.6342/NTU202503934 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-13 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 食品科技研究所 | - |
| dc.date.embargo-lift | 2030-08-05 | - |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-08-05 | 5.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
