請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99596完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂廷璋 | zh_TW |
| dc.contributor.advisor | Ting-Jang Lu | en |
| dc.contributor.author | 劉庭芳 | zh_TW |
| dc.contributor.author | Ting-Fang Liu | en |
| dc.date.accessioned | 2025-09-17T16:05:08Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-12 | - |
| dc.identifier.citation | 莊予瑄 (2020)。以酵素轉換結合高效能液相層析串聯質譜法建立甘露聚醣之特徵結構分析平台。國立臺灣大學。
Alpert, A. J. (1990). Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. Journal of Chromatography, 499, 177-196. https://doi.org/10.1016/S0021-9673(00)96972-3 Amicucci, M. J., Nandita, E., Galermo, A. G., Castillo, J. J., Chen, S. Y., Park, D., Smilowitz, J. T., German, J. B., Mills, D. A., & Lebrilla, C. B. (2020). A nonenzymatic method for cleaving polysaccharides to yield oligosaccharides for structural analysis. Nature Communications, 11(1), 3963. https://doi.org/10.1038/s41467-020-17778-1 Anderson, C. T., & Kieber, J. J. (2020). Dynamic construction, perception, and remodeling of plant cell walls. Annual Review of Plant Biology, 71, 39-69. https://doi.org/10.1146/annurev-arplant-081519-035846 Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D. R., Fernandes, G. R., Tap, J., Bruls, T., Batto, J. M., Bertalan, M., Borruel, N., Casellas, F., Fernandez, L., Gautier, L., Hansen, T., Hattori, M., Hayashi, T., Kleerebezem, M., Kurokawa, K., Leclerc, M., Levenez, F., Manichanh, C., Nielsen, H. B., Nielsen, T., Pons, N., Poulain, J., Qin, J. J., Sicheritz-Ponten, T., Tims, S., Torrents, D., Ugarte, E., Zoetendal, E. G., Wang, J., Guarner, F., Pedersen, O., de Vos, W. M., Brunak, S., Doré, J., Weissenbach, J., Ehrlich, S. D., & Bork, P. (2011). Enterotypes of the human gut microbiome. Nature, 473(7346), 174-180. https://doi.org/10.1038/nature09944 Aspinall, G. O. (1959). Structural chemistry of the hemicelluloses. Advances in Carbohydrate Chemistry, 14, 429-468. https://doi.org/10.1016/S0096-5332(08)60228-3 Atkins, P., & de Paula, J. (2006). The rates of reactions. In Atkins’ Physical Chemistry (8th ed., pp. 794-798). W. H. Freeman and Company. ISBN: 0-7167-8759-8. Awad, T. S., Moharram, H. A., Shaltout, O. E., Asker, D., & Youssef, M. M. (2012). Applications of ultrasound in analysis, processing and quality control of food: A review. Food Research International, 48(2), 410-427. https://doi.org/10.1016/j.foodres.2012.05.004 Bai, Y. J., Niu, Y. M., Qin, S. A., & Ma, G. W. (2023). A new biomaterial derived from Aloe vera- Acemannan from basic studies to clinical application. Pharmaceutics, 15(7), 1913. https://doi.org/10.3390/pharmaceutics15071913 Barak, S., & Mudgil, D. (2014). Locust bean gum: processing, properties and food application- A review. International Journal of Biological Macromolecules, 66, 74-80. https://doi.org/10.1016/j.ijbiomac.2014.02.017 Barb, W. G., Baxendale, J. H., George, P., & Hargrave, K. R. (1949). Reactions of ferrous and ferric ions with hydrogen peroxide. Nature, 163, 692-694. https://doi.org/10.1038/163692a0 Barb, W. G., Baxendale, J. H., George, P., & Hargrave, K. R. (1951a). Reactions of ferrous and ferric ions with hydrogen peroxide. Part I.- The ferrous ion reaction. Transactions of the Faraday Society, 47, 462-500. https://doi.org/10.1039/TF9514700462 Barb, W. G., Baxendale, J. H., George, P., & Hargrave, K. R. (1951b). Reactions of ferrous and ferric ions with hydrogen peroxide. Part II.- The ferrous ion reaction. Transactions of the Faraday Society, 47, 591-616. https://doi.org/10.1039/TF9514700591 Bemiller, J. N. (1967). Acid-catalyzed hydrolysis of glycosides. Advances in Carbohydrate Chemistry, 22, 25-108. https://doi.org/10.1016/S0096-5332(08)60151-4 Bjursell, M. K., Martens, E. C., & Gordon, J. I. (2006). Functional genomic and metabolic studies of the adaptations of a prominent adult human gut symbiont, Bacteroides thetaiotaomicron, to the suckling period. Journal of Biological Chemistry, 281(47), 36269-36279. https://doi.org/10.1074/jbc.M606509200 Bosscher, D. (2009). Chapter 6: Fructan prebiotics derived from inulin. In D. Charalampopoulos, & R. A. Rastall (Eds.), Prebiotics and Probiotics Science and Technology (pp. 163-206). Springer Science + Business Media. ISBN-13: 978-0387790572. Brennan, C. S., & Tudorica, C. M. (2008). Carbohydrate-based fat replacers in the modification of the rheological, textural and sensory quality of yoghurt: comparative study of the utilization of barley beta-glucan, guar gum and inulin. International Journal of Food Science and Technology, 43(5), 824-833. https://doi.org/10.1111/j.1365-2621.2007.01522.x Brummer, Y., Cui, W., & Wang, Q. (2003). Extraction, purification and physicochemical characterization of fenugreek gum. Food Hydrocolloids, 17(3), 229-236. https://doi.org/10.1016/S0268-005X(02)00054-1 Buszewski, B., & Noga, S. (2012). Hydrophilic interaction liquid chromatography (HILIC)- a powerful separation technique. Analytical and Bioanalytical Chemistry, 402(1), 231-247. https://doi.org/10.1007/s00216-011-5308-5. Capon, B. (1969). Mechanism in carbohydrate chemistry. Chemical Reviews, 69(4), 407-498. https://doi.org/10.1021/cr60260a001 Chamy, R., Illanes, A., Aroca, G., & Nuñez, L. (1994). Acid hydrolysis of sugar beet pulp as pretreatment for fermentation. Bioresource Technology, 50(2), 149-152. https://doi.org/10.1016/0960-8524(94)90067-1 Chen, J., Li, J., & Li, B. (2011). Identification of molecular driving forces involved in the gelation of konjac glucomannan: Effect of degree of deacetylation on hydrophobic association. Carbohydrate Polymers, 86(2), 865-871. https://doi.org/10.1016/j.carbpol.2011.05.025 Chen, Y., Zhang, H., Wang, Y. X., Nie, S. P., Li, C., & Xie, M. Y. (2014). Acetylation and carboxymethylation of the polysaccharide from Ganoderma atrum and their antioxidant and immunomodulating activities. Food Chemistry, 156, 279-288. https://doi.org/10.1016/j.foodchem.2014.01.111 Ciucanu, I., & Kerek, F. (1984). A simple and rapid method for the permethylation of carbohydrates. Carbohydrate Research, 131(2), 209-217. https://doi.org/10.1016/0008-6215(84)85242-8 Cui, S. W. (2005). Chapter 3: Structural analysis of polysaccharides. In S. W. Cui (Ed.), Food carbohydrates: chemistry, physical properties, and applications (pp. 105-160). Taylor & Francis Group. ISBN-13: 978-0849315749. Davies, G. J., Wilson, K. S., & Henrissat, B. (1997). Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochemical Journal, 321, 557-559. https://doi.org/10.1042/bj3210557 Dell, A. (1990). Preparation and desorption mass spectrometry of permethyl and peracetyl derivatives of oligosaccharides. Methods in Enzymology, 193, 647-660. https://doi.org/10.1016/0076-6879(90)93443-O Dey, P. M. (1978). Biochemistry of plant galactomannans. Advances in Carbohydrate Chemistry and Biochemistry, 35, 341-376. https://doi.org/10.1016/s0065-2318(08)60221-8 Dias, F. M. V., Vincent, F., Pell, G., Prates, J. A. M., Centeno, M. S. J., Tailford, L. E., Ferreira, L. M. A., Fontes, C. M. G. A., Davies, G. J., & Gilbert, H. J. (2004). Insights into the molecular determinants of substrate specificity in glycoside hydrolase family 5 revealed by the crystal structure and kinetics of Cellvibrio mixtus mannosidase 5A. Journal of Biological Chemistry, 279(24), 25517-25526. https://doi.org/10.1074/jbc.M401647200 Dilek, M., Polat, H., Kezer, F., & Korcan, E. (2011). Application of locust bean gum edible coating to extend shelf life of sausages and garlic-flavored sausage. Journal of Food Processing and Preservation, 35(4), 410-416. https://doi.org/10.1111/j.1745-4549.2010.00482.x Dill, K. A. (1987). The mechanism of solute retention in reversed-phase liquid chromatography. The Journal of Physical Chemistry, 91(7), 1980-1988. https://doi.org/10.1021/j100291a060 Domon, B., & Costello, C. E. (1988). A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconjugate Journal, 5(4), 397-409. https://doi.org/10.1007/BF01049915 Doyle, J. P., Lyons, G., & Morris, E. R. (2009). New proposals on ‘‘hyperentanglement’’ of galactomannans: Solution viscosity of fenugreek gum under neutral and alkaline conditions. Food Hydrocolloids, 23(6), 1501-1510. https://doi.org/10.1016/j.foodhyd.2008.09.007 Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colormetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356. https://doi.org/10.1021/ac60111a017 Duru, J. M., Pârvulescu, O. C., Dobre, T., & Raducanu, C. E. (2021). Stochastic modelling of cellulose hydrolysis with Gauss and Weibull distributed transition probabilities. Scientific Reports, 11(1), 9466. https://doi.org/10.1038/s41598-021-88873-6 El Kaoutari, A., Armougom, F., Gordon, J. l., Raoult, D., & Henrissat, B. (2013). The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nature Reviews Microbiology, 11(7), 497-504. https://doi.org/10.1038/nrmicro3050 Eliuk, S., & Makarov, A. (2015). Evolution of orbitrap mass spectrometry instrumentation. Annual Review of Analytical Chemistry, 8, 61-80. https://doi.org/10.1146/annurev-anchem-071114-040325 Elshimi, N. M., Damir, A. A., & Ragab, M. (1984). Changes in some nutrients of fenugreek seeds during germination. Food Chemistry, 14(1), 11-19. https://doi.org/10.1016/0308-8146(84)90013-X Fachri, B. A., Abdilla, R. M., van de Bovenkamp, H. H., Rasrendra, C. B., & Heeres, H. J. Experimental and kinetic modeling studies on the sulfuric acid catalyzed conversion of D-fructose to 5-hydroxymethylfurfural and levulinic acid in water. ACS Sustainable Chemistry & Engineering, 3(12), 3024-3034. https://doi.org/10.1021/acssuschemeng.5b00023 Fenton, H. J. H. (1894). Oxidation of tartaric acid in presence of iron. Journal of the Chemical Society, Transactions, 65, 899-910. Fengel, D., & Wegener, G. (1989). Mechanism of acidic hydrolysis. In Wood: Chemistry, ultrastructure, reactions. (2nd ed., pp. 268-269). Walter de Gruyter. ISBN: 0-89925-593-0. Fischbacher, A., von Sonntag, C., & Schmidt, T. C. (2017). Hydroxyl radical yields in the Fenton process under various pH, ligand concentrations and hydrogen peroxide/Fe (II) ratios. Chemosphere, 182, 738-744. https://doi.org/10.1016/j.chemosphere.2017.05.039 Ganter, J. L. M. S., Heyraud, A., Petkowicz, C. L. O., Rinaudo, M., & Reicher, F. (1995). Galactomannans from Brazilian seeds: Characterization of the oligosaccharides produced by mild acid hydrolysis. International Journal of Biological Macromolecules, 17(1), 13-19. https://doi.org/10.1016/0141-8130(95)93512-V Gao, S. J., & Nishinari, K. (2004). Effect of deacetylation rate on gelation kinetics of konjac glucomannan. Colloids and Surfaces B-Biointerfaces, 38(3-4), 241-249. https://doi.org/10.1016/j.colsurfb.2004.02.026 Garozzo, D., Giuffrida, M., Impallomeni, G., Ballistreri, A., & Montaudo, G. (1990). Determination of linkage position and identification of the reducing end in linear oligosaccharides by negative ion fast atom bombardment mass spectrometry. Analytical Chemistry, 62(3), 279-286. https://doi.org/10.1021/ac00202a011 Gibson, G. R., & Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. Journal of Nutrition, 125(6), 1401-1412. https://doi.org/10.1093/jn/125.6.1401 Gibson, G. R., Probert, H. M., Van Loo, J., Rastall, R. A., & Roberfroid, M. B. (2004). Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutrition Research Reviews, 17(2), 259-275. https://doi.org/10.1079/NRR200479 Gidley, M. J., & Grant Reid, J. S. (2006). Chapter 6: Galactomannans and other cell wall storage polysaccharides in seeds. In A. M. Stephen, G. O. Phillips, & P. A. Williams (Eds.), Food Polysaccharides and Their Applications (Second Edition) (pp. 181-216). Taylor & Francis Group. ISBN-13: 978-0429116162. Gowda, D. C., Neelisiddaiah, B., & Anjaneyalu, Y. V. (1979). Structural studies of polysaccharides from aloe vera. Carbohydrate Research, 72, 201-205. https://doi.org/10.1016/S0008-6215(00)83936-1 Goycoolea, F. M., Morris, E. R., & Gidley, M. J. (1995). Viscosity of galactomannans at alkaline and neutral pH: evidence of ‘‘hyperentanglement’’ in solution. Carbohydrate Polymers, 27(1), 69-71. https://doi.org/10.1016/0144-8617(95)00030-B Grondin, J. M., Tamura, K., Déjean, G., Abbott, D. W., & Brumer, H. (2017). Polysaccharide utilization loci: Fueling microbial communities. Journal of Bacteriology, 199(15), e00860. https://doi.org/10.1128/jb.00860-16 Gujral, H. S., Sharma, A., & Singh, N. (2002). Effect of hydrocolloids, storage temperature, and duration on the consistency of tomato ketchup. International Journal of Food Properties, 5(1), 179-191. https://doi-org/10.1081/JFP-120015600 Guo, M. Q., Hu, X., Wang, C., & Ai, L. (2017). Chapter 2: Polysaccharides: Structure and solubility. In Z. Xu (Ed.), Solubility of Polysaccharides (pp. 7-21). IntechOpen. ISBN-13: 978-9535136507. https://doi.org/10.5772/intechopen.71570 Guthrie, R. D., & McCarthy, J. F. (1967). Acetolysis. Advances in Carbohydrate Chemistry and Biochemistry, 22, 11-23. https://doi.org/10.1016/s0096-5332(08)60150-2 Hardman, M., & Makarov, A. A. (2003). Interfacing the orbitrap mass analyzer to an electrospray ion source. Analytical Chemistry, 75(7), 1699-1705. https://doi.org/10.1021/ac0258047 Hsu, S. H., Hadley, H. H., & Hymowitz, T. (1973). Changes in carbohydrate contents of germinating soybean seeds. Crop Science, 13(4), 407-410. https://doi.org/10.2135/cropsci1973.0011183X001300040004x Ikonomou, M. G., Blades, A. T., & Kebarle, P. (1991). Electrospray ion spray: A comparison of mechanisms and performance. Analytical Chemistry, 63(18), 1989-1998. https://doi.org/10.1021/ac00018a017 Jian, W. J., Siu, K. C., & Wu, J. Y. (2015). Effects of pH and temperature on colloidal properties and molecular characteristics of konjac glucomannan. Carbohydrate Polymers, 134, 285-292. https://doi.org/10.1016/j.carbpol.2015.07.050 Joint FAO/WHO Expert Committee on Food Additives (JECFA). (2008). Compendium of food additive specifications (JECFA Monographs, 5, pp. 1-141). Food and Agriculture Organization of the United Nations. ISBN-13: 978-9251060650. https://openknowledge.fao.org/handle/20.500.14283/i0345e Kaklamanos, G., Aprea, E., & Theodoridis, G. (2012). Chapter 9- Mass spectrometry. In Y. Picó (Ed.), Chemical Analysis of Food: Techniques and Applications (pp. 249-283). Academic Press. ISBN-13: 978-0123848628. https://doi.org/10.1016/B978-0-12-384862-8.00009-1 Kanchanalai, P., Temani, G., Kawajiri, Y., & Realff, M. J. (2016). Reaction kinetics of concentrated acid hydrolysis for cellulose and hemicellulose and effect of crystallinity. Bioresources, 11(1), 1672-1689. https://doi.org/10.15376/biores.11.1.1672-1689 Kato, K., & Matsuda, K. (1969). Studies on the chemical structure of konjac mannan. Part I. Isolation and characterization of oligosaccharides from the partial acid hydrolyzate of the mannan. Agricultural and Biological Chemistry, 33(10), 1446-1453. https:// doi.org/10.1080/00021369.1969.10859484 Kato, K., Watanabe, T., & Matsuda, K. (1970). Studies on the chemical structure of konjac mannan. Part II. Isolation and characterization of oligosaccharides from the enzymatic hydrolysate of the mannan. Agricultural and Biological Chemistry, 34, 532-539. https://doi.org/10.1080/00021369.1970.10859645 Klis, F. M., Mol, P., Hellingwerf, K., & Brul, S. (2002). Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiology Reviews, 26(3), 239-256. https://doi.org/10.1111/j.1574-6976.2002.tb00613.x Knox, J. H., & Pryde, A. (1975). Performance and selected applications of a new range of chemically bonded packing materials in high-performance liquid chromatography. Journal of Chromatography, 112, 171-188. https://doi.org/10.1016/S0021-9673(00)99951-5 Kusema, B. T., Tönnov, T., Mäki-Arvela, P., Salmi, T., Willför, S., Holmbom, B., & Murzin, D. Y. (2013). Acid hydrolysis of O-acetyl-galactoglucomannan. Catalysis Science & Technology, 3(1), 116-122. https://doi.org/10.1039/c2cy20314f Kusema, B. T., Xu, C. L., Mäki-Arvela, P., Willför, S., Holmbom, B., Salmi, T., & Murzin, D. Y. (2010). Kinetics of acid hydrolysis of arabinogalactans. International Journal of Chemical Reactor Engineering, 8, A44. https://doi.org/10.2202/1542-6580.2118 Kylen, A. M., & McCready, R. M. (1975). Nutrients in seeds and sprouts of alfalfa, lentils, mung beans and soybeans. Journal of Food Science, 40(5), 1008-1009. https://doi.org/10.1111/j.1365-2621.1975.tb02254.x Lai, Y. Z. (2000). Chapter 10: Chemical degradation. In D. N. S., Hon & N. Shiraishi (Eds.), Wood and Cellulosic Chemistry (2nd ed., pp. 443-512). Marcel Dekker, Inc. ISBN: 0-8247-0024-4. Li, J., Ye, T., Wu, X., Chen, J., Wang, S., Lin, L., & Li, B. (2014). Preparation and characterization of heterogeneous deacetylated konjac glucomannan. Food Hydrocolloids, 40, 9-15. https://doi.org/10.1016/j.foodhyd.2014.02.001 Li, L., Xu, W. J., Luo, Y. Z., Lao, C. Q., Tong, X. L., Du, J. X., Huang, B. H., Li, D., Chen, J. M., Ye, H. L., Cong, F., Guo, X. F., & Li, J. J. (2022). Aloe polymeric acemannan inhibits the cytokine storm in mouse pneumonia models by modulating macrophage metabolism. Carbohydrate Polymers, 297, 120032. https://doi.org/10.1016/j.carbpol.2022.120032 Li, M. H., Li, W. Z., Lu, Y. J., Jameel, H., Chang, H. M., & Ma, L. L. (2017). High conversion of glucose to 5-hydroxymethylfurfural using hydrochloric acid as a catalyst and sodium chloride as a promoter in a water/γ-valerolactone system. RSC Advances, 7(24), 14330-14336. https://doi.org/10.1039/c7ra00701a Li, S. J., Xiong, Q. P., Lai, X. P., Li, X., Wan, M., Zhang, J. N., Yan, Y. J., Cao, M., Lu, L., Guan, J. M., Zhang, D. Y., & Lin, Y. (2016). Molecular modification of polysaccharides and resulting bioactivities. Comprehensive Reviews in Food Science and Food Safety, 15(2), 237-250. https://doi.org/10.1111/1541-4337.12161 Liepman, A. H., Nairn, C. J., Willats, W. G. T., Sorensen, I., Roberts, A. W., & Keegstra, K. (2007). Functional genomic analysis supports conservation of function among cellulose synthase-like a gene family members and suggests diverse roles of mannans in plants. Plant Physiology, 143(4), 1881-1893. https://doi.org/10.1104/pp.106.093989 Lindberg, B. (1949). Action of strong acids on acetylated glucosides. III. Strong acids and aliphatic glucoside tetraacetates in acetic anhydride-acetic acid solutions. Acta Chemica Scandinavica, 3(8), 1153-1169. https://10.3891/acta.chem.scand.03-1153 Liu, Z. J., Ren, X., Cheng, Y. Q., Zhao, G. H., & Zhou, Y. (2021). Gelation mechanism of alkali induced heat-set konjac glucomannan gel. Trends in Food Science & Technology, 116, 244-254. https://doi.org/10.1016/j.tifs.2021.07.025 López, M., Santo, V., & Parajó, J. C. (2020). Autocatalytic fractionation of wood hemicelluloses: modeling of multistage operation. Catalysts, 10(3), 337. https://doi.org/10.3390/catal10030337 Lundqvist, J., Teleman, A., Junel, L., Zacchi, G., Dahlman, O., Tjerneld, F., & Stålbrand, H. (2002). Isolation and characterization of galactoglucomannan from spruce (Picea abies). Carbohydrate Polymers, 48(1), 29-39. https://doi.org/10.1016/S0144-8617(01)00210-7 Luo, X. G., He, P., & Lin, X. Y. (2013). The mechanism of sodium hydroxide solution promoting the gelation of Konjac glucomannan (KGM). Food Hydrocolloids, 30(1), 92-99. https://doi.org/10.1016/j.foodhyd.2012.05.012 Lupo, C., Boulos, S., & Nyström, L. (2020). Influence of partial acid hydrolysis on size, dispersity, monosaccharide composition, and conformation of linearly-branched water-soluble polysaccharides. Molecules, 25(13), 2982. https://doi.org/10.3390/molecules25132982 Maeda, M., Shimahara, H., & Sugiyama, N. (1980). Detailed examination of the branched structure of konjac glucomannan. Agricultural and Biological Chemistry, 44(2), 245-252. https://doi.org/10.1080/00021369.1980.10863939 Maier, H., Anderson, M., Karl, C., Magnuson, K., & Whistler, R. L. (1959). Chapter 8: Guar, locust bean, tara, and fenugreek gums. In R. L. Whistler & J. N. BeMiller (Eds.), Industrial Gums: Polysaccharides and Their Derivatives (Third Edition) (pp. 181-226). Academic Press. ISBN-13: 978-0127462530. Mäki-Arvela, P., Salmi, T., Holmbom, B., Willför, S., & Murzin, D. Y. (2011). Synthesis of sugars by hydrolysis of hemicelluloses- A review. Chemical Reviews, 111(9), 5638-5666. https://doi.org/10.1021/cr2000042 Malgas, S., van Dyk, J. S., & Pletschke, B. I. (2015). A review of the enzymatic hydrolysis of mannans and synergistic interactions between β-mannanase, β-mannosidase and α-galactosidase. World Journal of Microbiology & Biotechnology, 31(8), 1167-1175. https://doi.org/10.1007/s11274-015-1878-2 Marcano, J., Hernando, I., & Fiszman, S. (2015). In vitro measurements of intragastric rheological properties and their relationships with the potential satiating capacity of cheese pies with konjac glucomannan. Food Hydrocolloids, 51, 16-22. https://doi.org/10.1016/j.foodhyd.2015.04.028 Martínez-Villaluenga, C., Frías, J., & Vidal-Valverde, C. (2005). Raffinose family oligosaccharides and sucrose contents in 13 Spanish lupin cultivars. Food Chemistry, 91(4), 645-649. https://doi.org/10.1016/j.foodchem.2004.06.034 Matthiesen, R., & Mutenda, K. E. (2007). Introduction to proteomics. In: R. Matthiesen (Ed.), Mass Spectrometry Data Analysis in Proteomics. Methods in Molecular Biology (pp. 1-35). Humana Press. ISBN-13: 978-1588295637. https://doi.org/10.1385/1-59745-275-0:1 McCalley, D. V., & Neue, U. D. (2008). Estimation of the extent of the water-rich layer associated with the silica surface in hydrophilic interaction chromatography. Journal of Chromatography A, 1192(2), 225-229. https://doi.org/10.1016/j.chroma.2008.03.049 Meier, H. (1958). On the structure of cell walls and cell wall mannans from ivory nuts and from dates. Biochimica et Biophysica Acta, 28, 229-240. https://doi.org/10.1016/0006-3002(58)90468-2 Meier, H., & Reid, J. S. G. (1982). Reserve polysaccharides other than starch in higher plants. In F. A. Loewus & W. Tanner (Eds.), Plant Carbohydrates I. Encyclopedia of Plant Physiology (pp. 418-471). Springer. ISBN-13: 978-3642682759 (epub). https://doi.org/10.1007/978-3-642-68275-9_11 Menezes, J., & Athmaselvi, K. A. (2018). Chapter 5: Report on edible films and coatings. In A. M. Grumezescu & A. M. Holban (Eds.), Food Packaging and Preservation (pp. 177-212). Academic Press. ISBN-13: 978-0128115169 Moreira, L. R. S., & Filho, E. X. F. (2008). An overview of mannan structure and mannan-degrading enzyme systems. Applied Microbiology and Biotechnology, 79(2), 165-178. https://doi.org/10.1007/s00253-008-1423-4 Mudgil, D., Barak, S., & Khatkar, B. S. (2014). Guar gum: processing, properties and food applications- A review. Journal of Food Science and Technology-Mysore, 51(3), 409-418. https://doi.org/10.1007/s13197-011-0522-x Nandita, E., Bacalzo, N. P., Ranque, C. L., Amicucci, M. J., Galermo, A., & Lebrilla, C. B. (2021). Polysaccharide identification through oligosaccharide fingerprinting. Carbohydrate Polymers, 257, 117570. https://doi.org/10.1016/j.carbpol.2020.117570 Nguyen, H. M., Mathiesen, G., Stelzer, E. M., Pham, M. L., Kuczkowska, K., Mackenzie, A., Agger, J. W., Eijsink, V. G. H., Yamabhai, M., Peterbauer, C. K., Haltrich, D., & Nguyen, T. H. (2016). Display of a β-mannanase and a chitosanase on the cell surface of Lactobacillus plantarum towards the development of whole-cell biocatalyst. Microbial Cell Factories, 15, 169. https://doi.org/10.1186/s12934-016-0570-z Nishinari, K., Williams, P. A., & Phillips, G. O. (1992). Review of the physico-chemical characteristics and properties of konjac mannan. Food Hydrocolloids, 6(2), 199-222. https://doi.org/10.1016/S0268-005X(09)80360-3 Ogawa, K., Matsuda, K., Tamari, K., & Kiyooka, S. (1978). A glucomannan from Candida utilis: Characterization of oligosaccharides from partial acid hydrolyzate of the glucomannan. Agricultural and Biological Chemistry, 42(6), 1101-1109. https://doi.org/10.1080/00021369.1978.10863120 Pereira, L. (2008). Porous graphitic carbon as a stationary phase in HPLC: Theory and applications. Journal of Liquid Chromatography & Related Technologies, 31(11-12), 1687-1731. https://doi.org/10.1080/10826070802126429 Pettolino, F. A., Walsh, C., Fincher, G. B., & Bacic, A. (2012). Determining the polysaccharide composition of plant cell walls. Nature Protocols, 7(9), 1590-1607. https://doi.org/10.1038/nprot.2012.081 Pignatello, J. J., Oliveros, E., & MacKay, A. (2006). Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Critical Reviews in Environmental Science and Technology, 36(1), 1-84. https://doi.org/10.1080/10643380500326564 Pineros-Castro, Y., & Velasquez-Lozano, M. (2014). Biodegradation kinetics of oil palm empty fruit bunches by white rot fungi. International Biodeterioration & Biodegradation, 91, 24-28. https://doi.org/10.1016/j.ibiod.2014.03.009 Prome, J. C., Aurelle, H., Prome, D., & Savagnac, A. (1987). Gas-phase glycosidic cleavage of oxyanions from alkyl glycosides. Organic Mass Spectrometry, 22(1), 6-12. https://doi.org/10.1002/oms.1210220104 Ramesh, H. P., Yamaki, K., Ono, H., & Tsushida, T. (2001). Two-dimensional NMR spectroscopic studies of fenugreek (Trigonella foenum-graecum L.) galactomannan without chemical fragmentation. Carbohydrate Polymers, 45(1), 69-77. https://doi.org/10.1016/S0144-8617(00)00231-9 Riedo, F. & Kováts, E. S. (1982). Adsorption from liquid mixtures and liquid chromatography. Journal of Chromatography, 239(30), 1-28. https://doi.org/10.1016/S0021-9673(00)81964-0 Roberfroid, M. (1993). Dietary fiber, inulin, and oligofructose: A review comparing their physiological effects. Critical Reviews in Food Science and Nutrition, 33(2), 103-148. https://doi.org/10.1080/10408399309527616 Román-Leshkov, Y., Chheda, J. N., & Dumesic, J. A. (2006). Phase modifiers promote efficient production hydroxymethylfurfural from fructose. Science, 312(5782), 1933-1937. https://doi.org/10.1126/science.1126337 Rosenfeld, L., & Ballou, C. E. (1974). Acetolysis of disaccharides: Comparative kinetics and mechanism. Carbohydrate Research, 32(2), 287-298. https://doi.org/10.1016/S0008-6215(00)82106-0 Routier, F. H., Doering, T. L., Cummings, R. D., & Aebi, M. (2022). Chapter 23: Fungi. In A. Varki, R. D. Cummings, J. D. Esko, P. Stanley, G. W. Hart, M. Aebi, D. Mohnen, T. Kinoshita, N. H. Packer, J. H. Prestegard, R. L. Schnaar, & P. H. Seeberger (Eds.), Essentials of Glycobiology (Fourth Edition) (pp. 1190-1230). Cold Spring Harbor Laboratory Press. ISBN-13: 978-1621824220 (epub). Shallom, D. & Shoham, Y. (2003). Microbial hemicellulases. Current Opinion in Microbiology, 6(3), 219-228. https://doi.org/10.1016/S1369-5274(03)00056-0 Shao, Y. J., & Lin, A. H. M. (2018). Improvement in the quantification of reducing sugars by miniaturizing the Somogyi-Nelson assay using a microtiter plate. Food Chemistry, 240, 898-903. https://doi.org/10.1016/j.foodchem.2017.07.083 Shen, Y. T., Babu, K. S., Amamcharla, J., & Li, Y. H. (2022). Emulsifying properties of pea protein/guar gum conjugates and mayonnaise application. International Journal of Food Science and Technology, 57(7), 3955-3966. https://doi.org/10.1111/ijfs.15564 Shi, X. D., Yin, J. Y., Zhang, L. J., Huang, X. J., & Nie, S. P. (2019). Studies on O-acetyl-glucomannans from Amorphophallus species: Comparison of physicochemical properties and primary structures. Food Hydrocolloids, 89, 503-511. https://doi.org/10.1016/j.foodhyd.2018.11.013 Shi, X. D., Yin, J. Y., Zhang, L. J., Huang, X. J., & Nie, S. P. (2019). Studies on O- acetyl-glucomannans from Amorphophallus species: Comparison of physicochemical properties and primary structures. Food Hydrocolloids, 89, 503-511. https://doi.org/10.1016/j.foodhyd.2018.11.013 Shimahara, H., Suzuki, H., Sugiyama, N., & Nisizawa, K. (1975). Partial purification of β-mannanases from the konjac tubers and their substrate specificity in relation to the structure of konjac glucomannan. Agricultural and Biological Chemistry, 39(2), 301-312. https://doi.org/10.1271/bbb1961.39.301 Singh, S., Singh, G., & Arya, S. K. (2018). Mannans: An overview of properties and application in food products. International Journal of Biological Macromolecules, 119, 79-95. https://doi.org/10.1016/j.ijbiomac.2018.07.130 Singh, T. P., & Natraj, B. H. (2021). Next-generation probiotics: a promising approach towards designing personalized medicine. Critical Reviews in Microbiology, 47(4), 479-498. https://doi.org/10.1080/1040841X.2021.1902940 Sjöström, E. (1993). Wood polysaccharides. In E. Sjöström (Ed.), Wood Chemistry: Fundamentals and Applications (Second Edition) (pp.51-70). Academic Press. ISBN-13: 978-0126474817. Smith, A. E., Zhang, Z. B., Thomas, C. R., Moxham, K. E., & Middelberg, A. P. J. (2000). The mechanical properties of Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 97(18), 9871-9874. https://doi.org/10.1073/pnas.97.18.9871 Somogyi, M. (1945). A new reagent for the determination of sugars. Journal of Biological Chemistry, 160(1), 61-68. https://doi.org/10.1016/S0021-9258(18)43097-9 Srivastava, P. K., & Kapoor, M. (2017). Production, properties, and applications of endo-β-mannanases. Biotechnology Advances, 35(1), 1-19. https://doi.org/10.1016/j.biotechadv.2016.11.001 Sun, Y. G., Zhang, S. S., Nie, Q. X., He, H. J., Tan, H. Z., Geng, F., Ji, H. H., Hu, J. L., & Nie, S. P. (2022). Gut firmicutes: Relationship with dietary fiber and role in host homeostasis. Critical Reviews in Food Science and Nutrition, 63(33), 12073-12088. https://doi.org/10.1080/10408398.2022.2098249 Sun, Y. L., Xu, X. W., Zhang, Q. H., Zhang, D., Xie, X. Y., Zhou, H. L., Wu, Z. Z., Liu, R. Y., & Pang, J. (2023). Review of konjac glucomannan structure, properties, gelation mechanism, and application in medical biology. Polymers, 15(8), 1852. https://doi.org/10.3390/polym15081852 Tailford, L. E., Ducros, V. M. A., Flint, J. E., Roberts, S. M., Morland, C., Zechel, D. L., Smith, N., Bjornvad, M. E., Borchert, T. V., Wilson, K. S., Davies, G. J., & Gilbert, H. J. (2009). Understanding how diverse β-mannanases recognize heterogeneous substrates. Biochemistry, 48(29), 7009-7018. https://doi.org/10.1021/bi900515d Takigami, S. (2009). Chapter 32: Konjac mannan. In G. O. Phillips & P. A. Williams (Eds.), Handbook of Hydrocolloids (2nd ed., pp. 889-901). Woodhead Publishing Limited. ISBN: 978-1-84569-587-3. Tanaka, H., Homma, M., Sakagami, K., & Hamada, R. (1992). Acid hydrolysis kinetics of soil carbohydrates. Science of the Total Environment, 118, 145-153. https://doi.org/10.1016/0048-9697(92)90083-5 Thompson, L. H., & Doraiswamy, L. K. (1999). Sonochemistry: Science and engineering. Industrial & Engineering Chemistry Research, 38(4), 1215-1249. https://doi.org/10.1021/ie9804172 Timell, T. E. (1964). Acid hydrolysis of glycosides. I. General conditions and the effect of the nature of the aglycone. Canadian Journal of Chemistry, 42(6), 1456-1472. https://doi.org/10.1139/v64-221 Tingley, J. P., Low, K. E., Xing, X. H., & Abbott, D. W. (2021). Combined whole cell wall analysis and streamlined in silico carbohydrate-active enzyme discovery to improve biocatalytic conversion of agricultural crop residues. Biotechnology for Biofuels, 14(1), 16. https://doi.org/10.1186/s13068-020-01869-8 Tzortzis, G., & Vulevic, J. (2009). Chapter 7: Galacto-oligosaccharide prebiotics. In D. Charalampopoulos, & R. A. Rastall (Eds.), Prebiotics and Probiotics Science and Technology (pp. 207-244). Springer Science + Business Media. ISBN-13: 978-0387790572. Vanmaercke, M., Poesen, J., Radoane, M., Govers, G., Ocakoglu, F., & Arabkhedri, M. (2012). How long should we measure? An exploration of factors controlling the inter-annual variation of catchment sediment yield. Journal of Soils and Sediments, 12(4), 603-619. https://doi.org/10.1007/s11368-012-0475-3 van Zyl, W. H., Rose, S. H., Trollope, K., & Görgens, J. F. (2010). Fungal β-mannanases: Mannan hydrolysis, heterologous production and biotechnological applications. Process Biochemistry, 45(8), 1203-1213. https://doi.org/10.1016/j.procbio.2010.05.011 Vergadi, E., Ieronymaki, E., Lyroni, K., Vaporidi, K., & Tsatsanis, C. (2017). Akt signaling pathway in macrophage activation and M1/M2 polarization. Journal of Immunology, 198(3), 1006-1014. https://doi.org/10.4049/jimmunol.1601515 Wang, H. L., Duda, J. L., & Radke, C. J. (1978). Solution adsorption from liquid chromatography. Journal of Colloid and Interface Science, 66(1), 153-165. https://doi.org/10.1016/0021-9797(78)90196-0 Wang, J., Ke, S., Strappe, P., Ning, M., & Zhou, Z. K. (2023). Structurally orientated rheological and gut microbiota fermentation property of mannans polysaccharides and oligosaccharides. Foods, 12(21), 4002. https://doi.org/10.3390/foods12214002 Weibull, W. (1951). A statistical distribution function of wide applicability. Journal of Applied Mechanics, 18(3), 293-297. https://doi.org/10.1115/1.4010337 West, C., Elfakir, C., & Lafosse, M. (2010). Porous graphitic carbon: A versatile stationary phase for liquid chromatography. Journal of Chromatography A, 1217(19), 3201-3216. https://doi.org/10.1016/j.chroma.2009.09.052 Westphal, Y., Schols, H. A., Voragen, A. G. J., & Gruppen, H. (2010). Introducing porous graphitized carbon liquid chromatography with evaporative light scattering and mass spectrometry detection into cell wall oligosaccharide analysis. Journal of Chromatography A, 1217(5), 689-695. Whitney, E., & Rolfes, S. R. (2007). Chapter 4- The carbohydrate: sugars, starches, and fibers. In P. Adams, & N. Rose (Eds.), Understanding Nutrition (Eleventh Edition) (pp. 100-137). Cengage Learning. ISBN-13: 978-0495116691. Wielinga, W. C. (2009). Chapter 10: Galactomannans. In G. O. Phillips, & P. A. Williams (Eds.), Handbook of Hydrocolloids (Second Edition) (pp. 228-251). Woodhead Publishing. ISBN-13: 978-1845694142. Williams, M. A. K., Foster, T. J., Martin, D. R., Norton, I. T., Yoshimura, M., & Nishinari, K. (2000). A molecular description of the gelation mechanism of konjac mannan. Biomacromolecules, 1(3), 440-450. https://doi.org/10.1021/bm005525y Wolfrom, M. L., Thompson, A., & Timberlake, C. E. (1963). Comparative hydrolysis rates of reducing disaccharides of D-glucopyranose. Cereal Chemistry, 40(1), 82-86. Xin, C., Chen, J., Liang, H. S., Wan, J. W., Li, J., & Li, B. (2017). Confirmation and measurement of hydrophobic interaction in sol-gel system of konjac glucomannan with different degree of deacetylation. Carbohydrate Polymers, 174, 337-342. https://doi.org/10.1016/j.carbpol.2017.06.088 Xu, C. L., Pranovich, A., Hemming, J., Holmbom, B., Albrecht, S., Schols, H. A., & Willför, S. (2009). Hydrolytic stability of water-soluble spruce O-acetyl galactoglucomannans. Holzforschung, 63(1), 61-68. https://doi.org/10.1515/HF.2009.021 Ying, P. T., Dorsey, J. G., & Dill, K. A. (1989). Retention mechanisms of reversed- phase liquid chromatography: Determination of solute-solvent interaction free energies. Analytical Chemistry, 61(22), 2540-2546.https://doi.org/10.1021/ac00197a017 Yoshimura, M., & Nishinari, K. (1999). Dynamic viscoelastic study on the gelation of konjac glucomannan with different molecular weights. Food Hydrocolloids, 13(3), 227-233. https://doi.org/10.1016/S0268-005X(99)00003-X Zhang, H., Yoshimura, M., Nishinari, K., Williams, M. A. K., Foster, T. J., & Norton, I. T. (2001). Gelation behaviour of konjac glucomannan with different molecular weights. Biopolymers, 59(1), 38-50. https://doi.org/10.1002/1097-0282(200107)59:1%3C38::AID-BIP1004%3E3.0.CO;2-A Zhang, T., de Vries, R., Xu, X. Q., Xue, Y., & Xue, C. H. (2021). Microstructural changes during alkali- and heat induced gelation of konjac glucomannan. Food Hydrocolloids, 114, 106552. https://doi.org/10.1016/j.foodhyd.2020.106552 Zumdahl, S., Zumdahl, S., & DeCoste, D. J. (2017). Chemistry (Tenth Edition). Cengage Learning. ISBN-13: 978-1305957404. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99596 | - |
| dc.description.abstract | 甘露聚醣為植物及酵母中含量豐富且結構複雜的多醣,並在食品領域中有著廣泛的應用價值。為提升益生元活性與加工特性,常將聚醣降解為寡醣,然而因其結構複雜性且具側鏈的立體阻礙性質,達到高效且選擇性的解聚反應仍具挑戰性。本研究於50、65、80℃ 三種溫度下,採用0.1 M硫酸對四種植物來源甘露聚醣,包含:葫蘆巴膠、關華豆膠、刺槐豆膠、蒟蒻膠進行水解反應,結果顯示蒟蒻膠具有最高的活化能 (60.30 kJ/mol)。進一步於統一條件(0.1 M硫酸、80℃) 下,針對反應時間0、1、2、4、12、24小時的水解產物,結合運用Somogyi-Nelson法、高效陰離子交換層析-脈衝安培檢測法 (HPAEC-PAD) 及高效粒徑篩析層析法 (HPSEC) 進行系統性的分析。假一級動力學擬合結果顯示,蒟蒻膠的寡醣還原醣生成速率最低,反映其初期還原端釋放較為緩慢;然而,以乘冪函數及韋伯分佈描述整體多醣分子量下降趨勢時,卻顯示蒟蒻膠整體多醣鏈斷裂速率並非最慢,同時HPAEC-PAD證實其能生成高度多樣化的甘露寡醣片段。此一結果推論源於多醣的多階段降解特性,反應初期因半乳糖側鏈水解速率較高,能使還原端較快形成,而直至反應中後期推論因蒟蒻膠主鏈乙醯基脫落產生自催化效應或非結晶區初步水解而使膠體結構趨於鬆散,進而提升整體的酸水解反應速率。本研究由活化能切入,結合多尺度動力學指標,證實甘露聚醣的化學降解並非典型的一級動力學反應,而是呈現多階段水解機制。透過系統性解析甘露聚醣結構-降解機制-反應速率之整合視角,為功能性甘露寡醣製備與多醣水解工程提供具體且可量化的參考依據。 | zh_TW |
| dc.description.abstract | Mannans are abundant and diverse polysaccharides in plants and yeasts with numerous applications in food products. To improve their prebiotic effects and ease processing, mannans are often converted into manno-oligosaccharides (MOS) through depolymerization. However, achieving efficient and selective depolymerization of mannans is challenging due to their complex structure and steric hindrance from side chains. In this study, four plant-derived mannans - fenugreek, guar, locust bean, and konjac gum - were hydrolyzed with 0.1 M sulfuric acid at three different temperatures (50, 65, and 80℃). Among them, konjac gum exhibited the highest activation energy (60.30 kJ/mol). Further hydrolysis were conducted under standardized conditions (0.1 M H2SO4, 80℃) at 0, 1, 2, 4, 12, and 24 hours. The hydrolysates were determined by the Somogyi-Nelson method, high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD), and high-performance size-exclusion chromatography (HPSEC). Pseudo-first-order kinetic fitting revealed that konjac gum had the lowest rate of reducing sugar formation from oligosaccharides, indicating a slower release of reducing ends in the early stage of reactions. Nevertheless, fitting the overall molecular weight reduction trend to the power function and Weibull distribution revealed that konjac gum did not exhibit the slowest polymer chain scission rate. HPAEC-PAD analysis further confirmed its ability to generate a diverse MOS profile. These results suggested the multi-phase degradation mechanism: in the early stage of the reaction, the higher hydrolysis rate of the galactose side chains led to a rapid release of reducing ends; in the mid-to-late stages, it was hypothesized that the deacetylation of konjac glucomannan induced the auto-catalytic effect or the initial hydrolysis in the amorphous regions caused structural loosening, thereby accelerating main chain depolymerization and enhancing the overall reaction rate. By examining activation energy and multi-scale kinetic models, this study confirmed that the chemical degradation of mannans did not follow classical first-order kinetics; instead, it proceeded via the multi-phase hydrolysis mechanism. This integrated analysis of mannan structure, degradation mechanism, and reaction kinetics provided concrete and quantifiable insights for the production of functional manno-oligosaccharides and the design of polysaccharide hydrolysis processes. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:05:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:05:08Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭………………………………………………………………………………........i
摘要…………………………………………………………………………...............ii Abstract……………………………………………………………………………....iii 目次………………………………………………………………………….…….….v 圖次………………………………………………………………………….……......x 表次………………………………………………………………………….……....xx 壹、前言…………………………………………………………………….…………1 貳、文獻回顧………………………………………………………………………… 2 第一章 甘露聚醣 (Mannans) ……………………………………………………… 2 1.1 直線型甘露聚醣 (linear mannan) ………………………………………….2 1.2 葡萄甘露聚醣 (glucomannan) ……………………………………………..3 1.3 半乳甘露聚醣 (galactomannan) ………………………………………….. 5 1.4 半乳葡萄甘露聚醣 (galactoglucomannan) ……………………………..…7 第二章 多醣結構解析……………………………………………………………… 8 2.1 醣苷鍵結分析……………………………………………………………… 8 2.1.1 甲基化………………………………………………………………. 8 2.1.2 氣相層析質譜儀分析………………………………………………. 9 第三章 寡醣結構解析……………………………………………………………...10 3.1 化學降解法………………………………………………………………...10 3.1.1 酸水解………………………………………………………………10 3.1.1.1硫酸水解…………………………………………………………...10 3.1.1.2乙酸水解…………………………………………………………...12 3.1.2 芬頓反應……………………………………………………………14 3.2 酵素水解法………………………………………………………………...16 3.2.1 內切甘露醣苷酶 (Endo-β-mannanase) ……………………………17 3.2.2 外切甘露醣苷酶 (Exo-β-mannosidase) ………………………...…18 3.2.3 葡萄醣苷酶 (β-glucosidase) ………………………………………18 3.2.4 半乳醣苷酶 (α-galactosidase) ……………………………………..19 3.2.5 乙醯甘露聚醣酯酶 (Acetyl mannan esterase) ……………………19 3.3 多醣酸水解過程之多階段降解機制……………………………………...19 3.3.1 化學動力學…………………………………………………………19 3.3.2 多醣水解過程中之多階段降解機制探討…………………………20 3.4 適用於寡醣分析的層析系統……………………………………………...22 3.4.1 親水作用液相層析…………………………………………………22 3.4.2 多孔性石墨化碳液相層析…………………………………………23 3.5 質譜應用於醣類結構解析……………………………………………...…24 3.6 寡醣質譜斷片離子分析系統…………………………………………...…28 3.6.1 寡醣碎片離子命名方式……………………………………………28 3.6.2 寡醣碎片離子產生機制……………………………………………29 3.6.3 寡醣碎片離子鍵結判斷規則………………………………………32 第四章 生物活性………………………………………………………………...…36 4.1益生元 (prebiotics) ………………………………………………………...36 4.2 免疫調節 (immunoregulation) ……………………………………………38 第五章 甘露聚醣的食品應用性………………………………………...…………39 5.1 膠凝劑……………………………………………………………………...39 5.2 黏稠劑…………………………………………………………………...…39 5.3 乳化劑…………………………………………………………………...…39 5.4 穩定劑…………………………………………………………………...…40 5.5 可食性薄膜………………………………………………………………...40 參、實驗目的與研究架構…………………………………………………………..41 肆、材料與方法……………………………………………………………………..42 第一章、實驗材料…………………………………………………………………..42 第二章、試藥與儀器設備…………………………………………………………..42 2.1 化學藥劑與試劑…………………………………………………………...42 2.2 標準品……………………………………………………………………...44 2.3 儀器設備…………………………………………………………………...44 第三章、分析方法…………………………………………………………………...46 3.1 總醣含量測定 (Phenol-sulfuric acid method) …………………………....46 3.2 還原醣含量測定 (Somogyi-Nelson microplate method) ………………...46 3.3 高效能陰離子交換層析串聯脈衝安培流 (HPAEC-PAD)-單醣組成分析系統……………………………………………………………………………..47 3.4 0.1 M H2SO4及HCl之阿瑞尼斯活化能分析……………………….............48 3.5 0.1 M H2SO4溫和酸水解反應生產不同聚合度的甘露寡醣……………...48 3.5.1 樣品前處理…………………………………………………….............48 3.5.2 0.1 M H2SO4溫和酸水解反應…………………………………............48 3.5.3 分析液 (酸水解液) 之製備與分析……………………………..........49 3.5.4 高效能粒徑篩析層析法-分子量分布分析系統……………….........49 3.5.5 高效能陰離子交換層析法-聚合度分析系統………………….........50 伍、結果與討論…………………………………………………………..............…52 第一章、植物膠的單醣組成特徵分析……………………………………..............52 1.1 葫蘆巴膠的單醣組成分析………………………………………...................52 1.2 關華豆膠的單醣組成分析……………………………………........................53 1.3 刺槐豆膠的單醣組成分析……………………………………...................55 1.4 蒟蒻膠的單醣組成分析………………………………………...................56 第二章、不同溫度及酸種類對甘露聚醣水解動力學與活化能之探討…………...58 2.1 0.1 M硫酸水解初期反應速率與活化能分析……………………………..58 2.2 0.1 M鹽酸水解初期反應速率與活化能分析……………………………..61 2.3 酸種類對甘露聚醣膠體水解速率與活化能之影響……………………...63 第三章、0.1 M溫和硫酸水解甘露聚醣之寡醣產物生成與轉化率探討……….…64 3.1 寡醣還原醣濃度變化與水解動力學擬合模型分析……………………...64 3.2 0.1 M硫酸水解下甘露聚醣之轉化率探討……………………………..…67 第四章、0.1 M溫和硫酸水解甘露聚醣之寡醣產物層析圖譜分析…………….…67 4.1 甘露聚醣經酸水解後寡醣產物之層析圖譜比較……………………...…67 第五章、0.1 M溫和硫酸水解甘露聚醣之分子量分布與反應機制分析………….71 5.1 酸水解後甘露聚醣之分子量分布與分散性分析………………………...71 5.2 分子量分布變化探討………………………………………………….…..76 第六章、多階段水解機制:甘露聚醣結構-降解機制-反應速率………………79 陸、結論…………………………………………………………………………...…80 柒、參考文獻……………………………………………………………………...…81 捌、附錄…………………………………………………………………...………..102 第一章、以高效陰離子交換層析-脈衝安培檢測法之單醣組成品質管制…….102 第二章、以Somogyi-Nelson法測定還原醣濃度之麥芽糊精品質管制圖……….107 第三章、以動力學模型Ct = (C∞)*(1-e-kt) 擬合甘露聚醣0.1 M硫酸水解後寡醣還原醣生成之詳細過程……………………………………………………………...107 3.1 葫蘆巴膠…………………………………………………………………108 3.2 關華豆膠…………………………………………………………………109 3.3 刺槐豆膠…………………………………………………………………110 3.4 蒟蒻膠……………………………………………………………………111 第四章、以高效陰離子交換層析-脈衝安培檢測法測定0.1 M溫和硫酸水解後寡醣聚合度分布之品質管制………………………………………………………...112 第五章、0.1 M溫和硫酸水解甘露聚醣分子量分布波峰擬合…………………...125 5.1 0.1 M硫酸水解甘露聚醣之分子量分佈波峰擬合……………………...125 5.1.1 葫蘆巴膠…………………………………………………………...125 5.1.2 關華豆膠…………………………………………………………...131 5.1.3 刺槐豆膠…………………………………………………………...140 5.1.4 蒟蒻膠……………………………………………………………...148 5.2 以高效粒徑篩析層析法分析酸水解後甘露聚醣之系統品質管制圖…154 5.3 甘露聚醣酸水解動力學之乘冪函數擬合過程…………………………157 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 甘露聚醣 | zh_TW |
| dc.subject | 甘露寡醣 | zh_TW |
| dc.subject | 活化能 | zh_TW |
| dc.subject | 多階段動力學 | zh_TW |
| dc.subject | 乘冪函數 | zh_TW |
| dc.subject | 韋伯分布 | zh_TW |
| dc.subject | activation energy | en |
| dc.subject | mannan | en |
| dc.subject | Weibull distribution | en |
| dc.subject | power function | en |
| dc.subject | multi-phase kinetics | en |
| dc.subject | manno-oligosaccharides | en |
| dc.title | 甘露聚醣結構差異對其化學降解之影響 | zh_TW |
| dc.title | Influence of mannan structural differences on chemical hydrolysis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 謝淑貞;陳明煦;林華宗;許瑞瑱 | zh_TW |
| dc.contributor.oralexamcommittee | Shu-Chen Hsieh;Ming-Hsu Chen;Hua-Tsung Lin;Rui-Tian Hsu | en |
| dc.subject.keyword | 甘露聚醣,甘露寡醣,活化能,多階段動力學,乘冪函數,韋伯分布, | zh_TW |
| dc.subject.keyword | mannan,manno-oligosaccharides,activation energy,multi-phase kinetics,power function,Weibull distribution, | en |
| dc.relation.page | 177 | - |
| dc.identifier.doi | 10.6342/NTU202501352 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-14 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 食品科技研究所 | - |
| dc.date.embargo-lift | 2030-08-06 | - |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-08-06 | 114.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
