Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99543
標題: 具備優異抗黃變性、高溫穩定性及耐腐蝕性提升之 高性能矽烷-環氧混成乳膠塗層
High-Performance Silane-Epoxy Hybrid Latex Coatings with Enhanced Anti-Yellowing, High-Temperature Stability and Corrosion Resistance
作者: 宋佳怡
Chia-Yi Sung
指導教授: 戴子安
Chi-An Dai
共同指導教授: 邱文英
Wen-Yun Chiu
關鍵字: 乳化聚合,高耐溫包覆材料,矽烷,環氧樹脂,抗高溫黃化,抗腐蝕,
Emulsion polymerization,high-temperature resistant coating,silane,epoxy resin,anti-yellowing,corrosion resistance,
出版年 : 2025
學位: 碩士
摘要: 本研究旨在開發具備優異抗黃變性、高溫穩定性及耐腐蝕性之高性能矽烷-環氧混成乳膠塗層,並探討其於高溫條件下產生黃變的原因,以及特定配方下對抗高溫黃變的機制,所研發之塗料預期可應用於高溫管線的熱阻隔材料。
本研究以乳化聚合法製備,旨在合成低成膜溫度的乳膠顆粒,降低製程所需的加工溫度,且期望此樹脂具備優異的熱穩定性、抗黃變性、柔韌性與抗腐蝕性。材料方面以甲基丙烯酸甲酯 (MMA) 搭配上丙烯酸正丁酯 (BA) 作為主壓克力材料,另加入同時具有雙鍵與羧酸基的丙烯酸 (AA)。為進一步增加材料耐溫性,防止高溫下的黃變現象,將引入3-(甲基丙烯酰氧)丙基三甲氧基矽烷 (KH-570),這類單體具有雙鍵可接在高分子鏈上,且能透過脫水縮合反應形成矽氧烷結構,在聚合體中形成更為穩定的網絡結構,提升整體的耐熱性、耐候性、耐化學腐蝕性及增加彈性。此外,為了確保塗層在高溫環境中的機械強度,將添加雙酚A型環氧樹脂 (BE 114)。此研究首先透過調整配方中矽烷與緩衝劑添加量,成功開發一種具有優異綜合性能的矽烷-環氧混成樹脂,在S1.5E30+b0.04此特定配方下具有良好的抗黃化表現、高熱穩定性(以TGA 檢測,剩餘95%熱裂解溫度約為300°C)、低成膜溫度(Tg < 0°C)、優異柔韌性(斷裂延伸率 ≥ 250%)與抗腐蝕能力,展現其在高溫環境中的應用潛力。進一步透過元素分析等實驗探討高溫黃變的原因,發現與材料在高溫下與氧氣或過氧化物反應,催化材料中的官能基發生氧化裂解反應,留下碳殘有關。最後分析此研究所開發的樹脂,為何在特定配方下能擁有優異的抗黃化特性,發現環氧樹脂亦扮演極為關鍵的角色。本研究提供一套簡便且高效的矽烷-環氧混成樹脂合成途徑,此項技術可在面臨複雜高溫製程管路時,擁有高效率高效能的優勢,並符合環保發展趨勢。
This study aims to develop a high-performance silane–epoxy hybrid latex coating with excellent resistance to yellowing, high thermal stability, and corrosion resistance. It further investigates the mechanism of yellowing under high-temperature conditions and the anti-yellowing behavior of a specific formulation. The developed coating is intended for use as a thermal insulation layer on high-temperature industrial pipelines.
The hybrid latex was synthesized via emulsion polymerization, targeting the production of low film-forming temperature latex particles to reduce the thermal energy required during processing. The resin was designed to exhibit superior thermal stability, anti-yellowing capability, flexibility, and corrosion resistance. The base polymer matrix comprised methyl methacrylate (MMA) and butyl acrylate (BA), with acrylic acid (AA) introduced to provide carboxyl groups for enhanced reactivity. To improve heat resistance and prevent yellowing at elevated temperatures, 3-(trimethoxysilyl)propyl methacrylate (KH-570) was incorporated. This silane monomer, containing both vinyl and silane functional groups, can copolymerize into the backbone and undergo hydrolysis–condensation reactions to form a stable siloxane (Si-O-Si) network, enhancing thermal stability, weatherability, chemical resistance, and elasticity. Additionally, bisphenol A-type epoxy resin (BE 114) was added to enhance mechanical strength under thermal stress. By adjusting the contents of silane and buffering agents, S1.5E30+b0.04 was successfully developed, exhibiting outstanding comprehensive performance: excellent anti-yellowing behavior, high thermal stability (with 95% thermal degradation temperature at approximately 300°C via TGA analysis), low film-forming temperature (Tg < 0°C), high flexibility (elongation at break ≥ 250%), and strong corrosion resistance. Elemental analysis and related experiments revealed that yellowing is primarily attributed to oxidation-induced chain scission of functional groups upon reaction with oxygen or peroxides under prolonged high-temperature exposure, leaving carbonaceous residues. Further analysis demonstrated that epoxy resin plays a critical role in the anti-yellowing mechanism by contributing to micro-crosslinked or branched structures and forming a protective coating around the latex particles. This study provides a facile and efficient route for synthesizing silane–epoxy hybrid resins. The proposed technology shows great potential in applications involving complex, high-temperature pipeline systems and aligns well with environmental sustainability trends.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99543
DOI: 10.6342/NTU202501844
全文授權: 同意授權(限校園內公開)
電子全文公開日期: 2030-07-23
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
5 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved