請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99543完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 戴子安 | zh_TW |
| dc.contributor.advisor | Chi-An Dai | en |
| dc.contributor.author | 宋佳怡 | zh_TW |
| dc.contributor.author | Chia-Yi Sung | en |
| dc.date.accessioned | 2025-09-10T16:36:48Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-15 | - |
| dc.identifier.citation | 1. Mol, J.C. Industrial applications of olefin metathesis. J. Mol. Catal. A: Chem. 213, 39-45 (2004).
2. Han, X.-W. et al. Circular olefin copolymers made de novo from ethylene and α-olefins. Nature Communications 15, 1462 (2024). 3. Ali, U., Karim, K.J.B.A. & Buang, N.A. A Review of the Properties and Applications of Poly (Methyl Methacrylate) (PMMA). Polymer Reviews 55, 678-705 (2015). 4. Pawar, E.G. (2016). 5. Deka, N., Bera, A., Roy, D. & De, P. Methyl Methacrylate-Based Copolymers: Recent Developments in the Areas of Transparent and Stretchable Active Matrices. ACS Omega 7, 36929-36944 (2022). 6. Xometry, T. in Materials (Xometry; 2022). 7. Srinivasan, K.S.V., Karunakaran, K. & Santappa, M. SOLUTION PROPERTIES OF POLY (BUTYL ACRYLATE) AND POLY (BUTYL ACRYLATE-CO-STYRENE). Current Science 40, 32-34 (1971). 8. Meng, B., Deng, J., Liu, Q., Wu, Z. & Yang, W. Transparent and ductile poly(lactic acid)/poly(butyl acrylate) (PBA) blends: Structure and properties. European Polymer Journal - EUR POLYM J 48 (2012). 9. Liu, X.-J., Xiao, M., Huang, W., Yang, X. & Zha, J.-W. Overview of High-Temperature Polymers, in High Temperature Polymer Dielectrics 1-19 (2024). 10. Mathias, L. & Bozen, R. Linear and Star-Branched Siloxy-Silane Polymers: One Pot A-B Polymerization and End-Capping. 3 (1992). 11. Lovell, P.A. & Schork, F.J. Fundamentals of emulsion polymerization. Biomacromolecules 21, 4396-4441 (2020). 12. Berber, H. Emulsion Polymerization: Effects of Polymerization Variables on the Properties of Vinyl Acetate Based Emulsion Polymers, in Polymer Science. (ed. F.S. Yılmaz) (IntechOpen, Rijeka; 2013). 13. El-hoshoudy, A. Emulsion Polymerization Mechanism, (2018). 14. El-Hoshoudy, A.N. Emulsion Polymerization Mechanism, in Polymerization. (ed. N. Cankaya) (IntechOpen, Rijeka; 2018). 15. Adams, F. et al. Modern aspects of emulsion science. (Royal Society of Chemistry, 2007). 16. Chern, C.S. Emulsion polymerization mechanisms and kinetics. Progress in Polymer Science 31, 443-486 (2006). 17. Thickett, S.C. & Gilbert, R.G. Emulsion polymerization: State of the art in kinetics and mechanisms. Polymer 48, 6965-6991 (2007). 18. Czajka, A. & Armes, S.P. Time-Resolved Small-Angle X-ray Scattering Studies during Aqueous Emulsion Polymerization. Journal of the American Chemical Society 143, 1474-1484 (2021). 19. Cummings, S., Zhang, Y., Smeets, N., Cunningham, M. & Dubé, M.A. On the Use of Starch in Emulsion Polymerizations. Processes 7, 140 (2019). 20. Dolatkhani, D. & Polymerexpert (2022). 21. Salager, J.-L. Surfactants types and uses. FIRP booklet 300 (2002). 22. Azarmi, R. & Ashjaran, A. Type and application of some common surfactants. (2015). 23. Kronberg, B., Holmberg, K. & Lindman, B. Types of surfactants, their synthesis, and applications. Surface Chemistry of Surfactants and Polymers, 1-47 (2014). 24. Griffin, W.C. Classification of Surface-Active Agents by 'HLB'. (1949). 25. Griffin, W.C. Calculation of HLB Values of Non-Ionic Surfactants. (1954). 26. JT, D. A quantitative kinetic theory of emulsion type, I. Physical chemistry of the emulsifying agent. (1957). 27. Huang, W. et al. Preparation of stable inverse emulsions of hydroxyethyl methacrylate and their stability evaluation by centrifugal coefficient. Colloids and Surfaces A: Physicochemical and Engineering Aspects 604, 125309 (2020). 28. Hong, I.K., Kim, S.I. & Lee, S.B. Effects of HLB value on oil-in-water emulsions: Droplet size, rheological behavior, zeta-potential, and creaming index. Journal of Industrial and Engineering Chemistry 67, 123-131 (2018). 29. Valtonen, K. in Materials Engineering, Vol. Licentiate of Technology (TAMPERE UNIVERSITY OF TECHNOLOGY, 2002). 30. Huda, N. & Mohd, A.-H. Film Formation in Rubber Gloves. (2014). 31. Chauhan, N.P.S. Pharmaceutical polymers, (2014). 32. Nollenberger, K. & Albers, J. Poly(meth)acrylate-based coatings. International Journal of Pharmaceutics 457, 461-469 (2013). 33. Cao, Q. et al. A Review of Corrosion under Insulation: A Critical Issue in the Oil and Gas Industry. Metals 12, 561 (2022). 34. De Vogelaere, F. Corrosion under insulation. Process Safety Progress 28, 30-35 (2009). 35. Wilds, N. 17 - Corrosion under insulation, in Trends in Oil and Gas Corrosion Research and Technologies. (ed. A.M. El-Sherik) 409-429 (Woodhead Publishing, Boston; 2017). 36. Montazeri, S., Ranjbar, Z., Osati, M. & Asadi, S. Preparation and Characterization of a Thermal Barrier Heat-Resistant Silicone Coating. Progress in Color, Colorants and Coatings 15, 65-73 (2022). 37. Hochmańska-Kaniewska, P., Mazela, B. & Krystofiak, T. Hydrophobicity and weathering resistance of wood treated with silane-modified protective systems. Drewno 57, 99-111 (2014). 38. Yoshihara, K. et al. Effectiveness and stability of silane coupling agent incorporated in ‘universal’ adhesives. Dental Materials 32, 1218-1225 (2016). 39. Zhou, A. et al. Understanding the Toughening Mechanism of Silane Coupling Agents in the Interfacial Bonding in Steel Fiber-Reinforced Cementitious Composites. ACS Applied Materials & Interfaces 12, 44163-44171 (2020). 40. Coan, T. et al. A novel organic-inorganic PMMA/polysilazane hybrid polymer for corrosion protection. Progress in Organic Coatings 89, 220-230 (2015). 41. Weinhold, F. & West, R. The Nature of the Silicon–Oxygen Bond. Organometallics 30, 5815-5824 (2011). 42. Saed, M.O. & Terentjev, E.M. Siloxane crosslinks with dynamic bond exchange enable shape programming in liquid-crystalline elastomers. Scientific Reports 10, 6609 (2020). 43. Xu, A., Roland, S. & Colin, X. Thermal ageing of a silane-crosslinked polyethylene stabilised with an excess of Irganox 1076Ⓡ. Polymer Degradation and Stability 189, 109597 (2021). 44. Deng, Y. et al. Effect of Silane on the Active Aging Resistance and Anticorrosive Behaviors of Natural Lacquer. ACS Omega 3, 4129-4140 (2018). 45. Hamciuc, C. et al. Thermal Properties and Flammability Characteristics of a Series of DGEBA-Based Thermosets Loaded with a Novel Bisphenol Containing DOPO and Phenylphosphonate Units. Materials (Basel) 15 (2022). 46. Shundo, A., Aoki, M., Yamamoto, S. & Tanaka, K. Cross-Linking Effect on Segmental Dynamics of Well-Defined Epoxy Resins. Macromolecules 54, 5950-5956 (2021). 47. Shundo, A., Yamamoto, S. & Tanaka, K. Network Formation and Physical Properties of Epoxy Resins for Future Practical Applications. JACS Au 2, 1522-1542 (2022). 48. O'Brien, D.J., Mather, P.T. & White, S.R. Viscoelastic Properties of an Epoxy Resin during Cure. Journal of Composite Materials 35, 883-904 (2001). 49. Li, G.Z. et al. Viscoelastic and Mechanical Properties of Epoxy/Multifunctional Polyhedral Oligomeric Silsesquioxane Nanocomposites and Epoxy/Ladderlike Polyphenylsilsesquioxane Blends. Macromolecules 34, 8686-8693 (2001). 50. Yamamoto, S., Kuwahara, R. & Tanaka, K. Effects of Chemistry of Silicon Surfaces on the Curing Process and Adhesive Strength for Epoxy Resin. ACS Applied Polymer Materials 4, 6038-6046 (2022). 51. Sumiya, Y., Tsuji, Y. & Yoshizawa, K. Peel Adhesion Strength between Epoxy Resin and Hydrated Silica Surfaces: A Density Functional Theory Study. ACS Omega 7, 17393-17400 (2022). 52. Farooq, U., Teuwen, J. & Dransfeld, C. Toughening of Epoxy Systems with Interpenetrating Polymer Network (IPN): A Review. Polymers 12, 1908 (2020). 53. Khan, M. & Chavan, R. Experimental Investigation on Properties of DGEBA Based Epoxy Resin. 6, 394-398 (2019). 54. Jin, F.-L. & Park, S.-J. Thermal properties of epoxy resin/filler hybrid composites. Polymer Degradation and Stability 97, 2148-2153 (2012). 55. Wang, X. et al. Facile fabrication and modification of epoxy acrylate latexes by epoxy resin and silane coupling agent. Journal of Adhesion Science and Technology 29, 94-108 (2015). 56. ASTM (2022). 57. Li, Y., Zhao, B., Xie, S. & Zhang, S. Synthesis and properties of poly(methyl methacrylate)/montmorillonite (PMMA/MMT) nanocomposites. Polymer International 52, 892-898 (2003). 58. Lyon, S.B., Bingham, R. & Mills, D.J. Advances in corrosion protection by organic coatings: What we know and what we would like to know. Progress in Organic Coatings 102, 2-7 (2017). 59. Chen, C.-H. in Chemical Engineering, Vol. Master 113 (National Taiwan University, Taipei; 2013). 60. Hiromoto, S. 4 - Corrosion of metallic biomaterials, in Metals for Biomedical Devices. (ed. M. Niinomi) 99-121 (Woodhead Publishing, 2010). 61. Pang, C.-L. in Chemical Engineering, Vol. Master (National Taiwan University, 2024). 62. Stöber, W., Fink, A. & Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science 26, 62-69 (1968). 63. Iler, R.K. The chemistry of silica, Solubility, Polymerization. Colloid and Surface Properties, and Biochemistry 866 (1979). 64. Jeon, H.S., Nakatani, A.I., Hobbie, E.K. & Han, C.C. Phase Inversion of Polybutadiene/Polyisoprene Blends under Quiescent and Shear Conditions. Langmuir 17, 3087-3095 (2001). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99543 | - |
| dc.description.abstract | 本研究旨在開發具備優異抗黃變性、高溫穩定性及耐腐蝕性之高性能矽烷-環氧混成乳膠塗層,並探討其於高溫條件下產生黃變的原因,以及特定配方下對抗高溫黃變的機制,所研發之塗料預期可應用於高溫管線的熱阻隔材料。
本研究以乳化聚合法製備,旨在合成低成膜溫度的乳膠顆粒,降低製程所需的加工溫度,且期望此樹脂具備優異的熱穩定性、抗黃變性、柔韌性與抗腐蝕性。材料方面以甲基丙烯酸甲酯 (MMA) 搭配上丙烯酸正丁酯 (BA) 作為主壓克力材料,另加入同時具有雙鍵與羧酸基的丙烯酸 (AA)。為進一步增加材料耐溫性,防止高溫下的黃變現象,將引入3-(甲基丙烯酰氧)丙基三甲氧基矽烷 (KH-570),這類單體具有雙鍵可接在高分子鏈上,且能透過脫水縮合反應形成矽氧烷結構,在聚合體中形成更為穩定的網絡結構,提升整體的耐熱性、耐候性、耐化學腐蝕性及增加彈性。此外,為了確保塗層在高溫環境中的機械強度,將添加雙酚A型環氧樹脂 (BE 114)。此研究首先透過調整配方中矽烷與緩衝劑添加量,成功開發一種具有優異綜合性能的矽烷-環氧混成樹脂,在S1.5E30+b0.04此特定配方下具有良好的抗黃化表現、高熱穩定性(以TGA 檢測,剩餘95%熱裂解溫度約為300°C)、低成膜溫度(Tg < 0°C)、優異柔韌性(斷裂延伸率 ≥ 250%)與抗腐蝕能力,展現其在高溫環境中的應用潛力。進一步透過元素分析等實驗探討高溫黃變的原因,發現與材料在高溫下與氧氣或過氧化物反應,催化材料中的官能基發生氧化裂解反應,留下碳殘有關。最後分析此研究所開發的樹脂,為何在特定配方下能擁有優異的抗黃化特性,發現環氧樹脂亦扮演極為關鍵的角色。本研究提供一套簡便且高效的矽烷-環氧混成樹脂合成途徑,此項技術可在面臨複雜高溫製程管路時,擁有高效率高效能的優勢,並符合環保發展趨勢。 | zh_TW |
| dc.description.abstract | This study aims to develop a high-performance silane–epoxy hybrid latex coating with excellent resistance to yellowing, high thermal stability, and corrosion resistance. It further investigates the mechanism of yellowing under high-temperature conditions and the anti-yellowing behavior of a specific formulation. The developed coating is intended for use as a thermal insulation layer on high-temperature industrial pipelines.
The hybrid latex was synthesized via emulsion polymerization, targeting the production of low film-forming temperature latex particles to reduce the thermal energy required during processing. The resin was designed to exhibit superior thermal stability, anti-yellowing capability, flexibility, and corrosion resistance. The base polymer matrix comprised methyl methacrylate (MMA) and butyl acrylate (BA), with acrylic acid (AA) introduced to provide carboxyl groups for enhanced reactivity. To improve heat resistance and prevent yellowing at elevated temperatures, 3-(trimethoxysilyl)propyl methacrylate (KH-570) was incorporated. This silane monomer, containing both vinyl and silane functional groups, can copolymerize into the backbone and undergo hydrolysis–condensation reactions to form a stable siloxane (Si-O-Si) network, enhancing thermal stability, weatherability, chemical resistance, and elasticity. Additionally, bisphenol A-type epoxy resin (BE 114) was added to enhance mechanical strength under thermal stress. By adjusting the contents of silane and buffering agents, S1.5E30+b0.04 was successfully developed, exhibiting outstanding comprehensive performance: excellent anti-yellowing behavior, high thermal stability (with 95% thermal degradation temperature at approximately 300°C via TGA analysis), low film-forming temperature (Tg < 0°C), high flexibility (elongation at break ≥ 250%), and strong corrosion resistance. Elemental analysis and related experiments revealed that yellowing is primarily attributed to oxidation-induced chain scission of functional groups upon reaction with oxygen or peroxides under prolonged high-temperature exposure, leaving carbonaceous residues. Further analysis demonstrated that epoxy resin plays a critical role in the anti-yellowing mechanism by contributing to micro-crosslinked or branched structures and forming a protective coating around the latex particles. This study provides a facile and efficient route for synthesizing silane–epoxy hybrid resins. The proposed technology shows great potential in applications involving complex, high-temperature pipeline systems and aligns well with environmental sustainability trends. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:36:48Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:36:48Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
口試委員審定書 i 致謝 ii 摘要 iii ABSTRACT iv 目次 vi 圖次 x 表次 xiii 第一章 緒論 1 1.1 研究動機 1 1.2 研究目標 1 第二章 文獻回顧 3 2.1 乳化聚合 3 2.1.1 基本介紹 3 2.1.2 乳化聚合機制 4 2.1.2.1 第一階段:粒子成核期 4 2.1.2.2 第二階段:粒子穩定成長期 5 2.1.2.3 第三階段:粒子成長末期 5 2.1.3 乳化聚合優點 6 2.2 界面活性劑 6 2.2.1 界面活性劑介紹 6 2.2.1.1 陰離子型界面活性劑 (Anionic surfactant) 7 2.2.1.2 陽離子型界面活性劑 (Cationic surfactant) 7 2.2.1.3 兩性型界面活性劑 (Amphoteric surfactant) 7 2.2.1.4 非離子型界面活性劑 (Nonionic surfactant) 8 2.2.2 界面活性劑的HLB值 8 2.3 乳液成膜機制 9 2.3.1 水蒸發 9 2.3.2 顆粒變形與聚合 9 2.3.3 聚合物鏈的互相擴散 10 2.4 塗裝式保溫材料簡介 11 2.4.1 無機保溫材料 11 2.4.2 噴塗式熱阻隔材料 11 2.4.2.1 矽有機樹酯 12 2.4.2.2 環氧樹脂 13 2.5 耐熱性測試 14 2.6 腐蝕行為 15 2.6.1 腐蝕原理 15 2.6.2 腐蝕防治方法 16 2.6.2.1 本體改良 16 2.6.2.2 表面處理 16 2.6.2.3 有機鍍膜 17 2.6.3 抗腐蝕測試 17 2.6.3.1 鹽霧試驗法 17 2.6.3.2 電化學極化分析 18 第三章 實驗設計與方法 22 3.1 實驗藥品與儀器 22 3.1.1 實驗藥品 22 3.1.2 實驗儀器 24 3.2 實驗方法 25 3.3 性質分析 30 3.3.1 烘乾轉化率 30 3.3.2 熱重分析 ( TGA ) 31 3.3.3 玻璃轉移溫度(Tg)分析 31 3.3.4 粒徑分析(DLS) 32 3.3.5 電位分析(Zeta potential) 33 3.3.6 抗黃化測試 34 3.3.7 動態力學分析 35 3.3.8 機械性質測試 36 3.3.9 Potentiodynamic Polarization Curve 37 3.3.10 SEM-EDS 37 3.3.11 結構鑑定(FTIR) 38 3.3.12 乳液型態分析(TEM) 38 第四章 結果與討論 40 4.1 抗黃化樹脂配方開發 40 4.1.1 乳液合成配方及耐熱性測試 40 4.1.2 調整矽烷添加量 43 4.1.3 調整緩衝劑添加量 49 4.2 最佳配方性質分析 53 4.2.1 TGA 54 4.2.2 DSC 55 4.2.3 DMA 57 4.2.4 MTS 59 4.2.5 DLS 62 4.2.6 Zeta Potential 64 4.2.7 TEM 65 4.2.8 FTIR 66 4.2.9 Polarization curve 68 4.3 黃化原因探討及抗黃化機制 72 4.3.1 元素分析 73 4.3.2 碳化 76 4.3.2.1 界面活性劑 76 4.3.2.2 壓克力 79 4.3.3 環氧樹脂角色 82 4.3.4 環氧樹脂種類 85 4.3.5 抗黃化機制 91 4.3.6 乳液保存對於抗黃化的影響 95 第五章 結論 97 REFERENCE 99 APPENDIX I 103 APPENDIX II 106 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 高耐溫包覆材料 | zh_TW |
| dc.subject | 抗腐蝕 | zh_TW |
| dc.subject | 乳化聚合 | zh_TW |
| dc.subject | 環氧樹脂 | zh_TW |
| dc.subject | 矽烷 | zh_TW |
| dc.subject | 抗高溫黃化 | zh_TW |
| dc.subject | Emulsion polymerization | en |
| dc.subject | epoxy resin | en |
| dc.subject | silane | en |
| dc.subject | corrosion resistance | en |
| dc.subject | anti-yellowing | en |
| dc.subject | high-temperature resistant coating | en |
| dc.title | 具備優異抗黃變性、高溫穩定性及耐腐蝕性提升之 高性能矽烷-環氧混成乳膠塗層 | zh_TW |
| dc.title | High-Performance Silane-Epoxy Hybrid Latex Coatings with Enhanced Anti-Yellowing, High-Temperature Stability and Corrosion Resistance | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 邱文英 | zh_TW |
| dc.contributor.coadvisor | Wen-Yun Chiu | en |
| dc.contributor.oralexamcommittee | 謝之真;趙基揚;楊長謀;曹正熙 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Chen Hsieh;Chi-Yang Chao;Chang-Mou Yang;Cheng-Si Tsao | en |
| dc.subject.keyword | 乳化聚合,高耐溫包覆材料,矽烷,環氧樹脂,抗高溫黃化,抗腐蝕, | zh_TW |
| dc.subject.keyword | Emulsion polymerization,high-temperature resistant coating,silane,epoxy resin,anti-yellowing,corrosion resistance, | en |
| dc.relation.page | 114 | - |
| dc.identifier.doi | 10.6342/NTU202501844 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-17 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2030-07-23 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 5 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
