Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99489| Title: | 利用虛擬節點實現GPU上密集圖高效GNN聚合 Efficient GNN Aggregation on Dense Graphs via Virtual Nodes on GPU |
| Authors: | 林柏杰 Po-Chieh Lin |
| Advisor: | 郭斯彥 Sy-Yen Kuo |
| Keyword: | 圖神經網路,冗餘消除,分箱, GNN,Hierarchical Aggregation,bin-packing, |
| Publication Year : | 2025 |
| Degree: | 碩士 |
| Abstract: | 圖神經網路(GNN)已廣泛應用於圖結構資料的學習任務,但由於其鄰居聚合階段具備不規則記憶體存取與低運算密度的特性,使得在 GPU 上高效執行仍具挑戰性。雖然現有方法如 binpack(如 PCKGNN)與冗餘消除(如 HAG)在加速GNN 上已取得成果,但前者在 bin 內仍存在重複記憶體存取,後者則需高昂的預處理成本。本研究提出 BinHAG,一種在 bin 層級進行階層式聚合的策略,透過引入虛擬節點(vnode)來消除 bin 中的冗餘計算。實驗結果顯示,BinHAG 在密集圖上相較於先前方法最高可達 31% 的效能提升。 Graph Neural Networks (GNNs) have become essential for learning on graphstructured data, yet their efficiency remains a challenge due to irregular memory access and low arithmetic intensity. While techniques such as binpacking (e.g., PCKGNN) and redundancy elimination (e.g., HAG) improve GPU performance, each faces limitation: bin-based methods suffer from intra-bin redundancy, and global redundancy reduction incurs high preprocessing costs. In this work, we propose BinHAG, a bin-level hierarchical aggregation strategy that introduces virtual nodes (vnodes) to eliminate redundant memory accesses within dense bins. Experiments show that BinHAG achieves up to 31% speedup over prior approaches on dense graphs. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99489 |
| DOI: | 10.6342/NTU202502516 |
| Fulltext Rights: | 同意授權(限校園內公開) |
| metadata.dc.date.embargo-lift: | 2030-07-25 |
| Appears in Collections: | 電機工程學系 |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf Restricted Access | 1.96 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
