Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99469
Title: 基於深度學習之雙視角脊椎X光片壓迫性骨折診斷
Detection of Vertebral Compression Fractures in Dual-View Spinal X-ray Images Based on Deep Learning
Authors: 陳冠伊
Kuan-Yi Chen
Advisor: 周承復
Cheng-Fu Chou
Keyword: 脊椎壓迫性骨折,脊椎X光片,深度學習,可解釋AI,
Vertebral Compression Fracture(VCF),Lumbar Spine X-ray,Deep Learning,Explainable AI,
Publication Year : 2025
Degree: 碩士
Abstract: 脊椎壓迫性骨折(Vertebral Compression Fractures, VCFs)是骨質疏鬆常見的併發症,且在臨床診斷中經常被低估,可能導致延誤治療並加重病患預後。雖然以椎體為單位的分類模型在自動化 VCF 偵測上展現潛力,但若直接應用於以病人為單位的診斷,常會導致較高的假陽性率。為了解決此問題,本研究提出一個兩階段的深度學習框架,專門用於偵測腰椎 X 光影像中的 VCF。第一階段進行影像層級的分類,用以過濾正常個案,有效降低假陽性數量,並減少不必要的椎體分析。第二階段針對分割後的單節椎體,結合影像特徵與根據放射科醫師經驗而設計的特徵進行椎體層級的 VCF 診斷,同時使用 Grad-CAM 達到模型預測的可解釋性。我們使用來自台大醫院(NTUH)的大型腰椎 X 光資料集進行評估,該資料集包含數千張的 X 光脊椎影像。我們提出的兩階段系統在病人層級達到 87.0% 準確率、 87.3% 特異度以及85.7% 靈敏度;在椎體層級則達到 97.1% 準確率、97.9% 特異度與 77.3% 靈敏度。實驗結果顯示,兩階段設計不僅提升診斷準確性,亦能提供臨床可解釋的預測結果,有助於放射科醫師進行早期 VCF 偵測。
Vertebral compression fractures (VCFs) are a common consequence of osteoporosis and are often underdiagnosed in clinical settings, potentially leading to delayed treatment and worsened patient outcomes. While vertebra-level classification models have shown effectiveness in automated VCF detection, they often suffer from high false positive rates when applied directly to patient-level diagnosis. To address this issue, we propose a two-stage deep learning–based framework for detecting VCFs in lumbar spine X-ray images. The first stage performs image-level classification to filter out normal cases, effectively reducing the number of false positives and minimizing unnecessary vertebra-level evaluations. The second stage focuses on vertebra-level diagnosis by analyzing segmented vertebral bodies using both image and features based on radiologist insights. Grad-CAM is employed to enhance the interpretability of model predictions. We evaluated our method using a dataset from National Taiwan University Hospital (NTUH), which contains thousands of lumbar spine X-rays. The proposed two-stage system achieved 87.0% accuracy, 87.3% specificity, and 85.7% sensitivity at the patient level and 97.1% accuracy, 97.9% specificity, and 77.3% sensitivity at the vertebra level. These results demonstrate that our two-stage design not only improves diagnostic precision but also offers clinically interpretable predictions, making it a valuable tool for aiding radiologists in early VCF detection.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99469
DOI: 10.6342/NTU202502241
Fulltext Rights: 同意授權(限校園內公開)
metadata.dc.date.embargo-lift: 2030-08-04
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
  Restricted Access
17.4 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved