Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99469| Title: | 基於深度學習之雙視角脊椎X光片壓迫性骨折診斷 Detection of Vertebral Compression Fractures in Dual-View Spinal X-ray Images Based on Deep Learning |
| Authors: | 陳冠伊 Kuan-Yi Chen |
| Advisor: | 周承復 Cheng-Fu Chou |
| Keyword: | 脊椎壓迫性骨折,脊椎X光片,深度學習,可解釋AI, Vertebral Compression Fracture(VCF),Lumbar Spine X-ray,Deep Learning,Explainable AI, |
| Publication Year : | 2025 |
| Degree: | 碩士 |
| Abstract: | 脊椎壓迫性骨折(Vertebral Compression Fractures, VCFs)是骨質疏鬆常見的併發症,且在臨床診斷中經常被低估,可能導致延誤治療並加重病患預後。雖然以椎體為單位的分類模型在自動化 VCF 偵測上展現潛力,但若直接應用於以病人為單位的診斷,常會導致較高的假陽性率。為了解決此問題,本研究提出一個兩階段的深度學習框架,專門用於偵測腰椎 X 光影像中的 VCF。第一階段進行影像層級的分類,用以過濾正常個案,有效降低假陽性數量,並減少不必要的椎體分析。第二階段針對分割後的單節椎體,結合影像特徵與根據放射科醫師經驗而設計的特徵進行椎體層級的 VCF 診斷,同時使用 Grad-CAM 達到模型預測的可解釋性。我們使用來自台大醫院(NTUH)的大型腰椎 X 光資料集進行評估,該資料集包含數千張的 X 光脊椎影像。我們提出的兩階段系統在病人層級達到 87.0% 準確率、 87.3% 特異度以及85.7% 靈敏度;在椎體層級則達到 97.1% 準確率、97.9% 特異度與 77.3% 靈敏度。實驗結果顯示,兩階段設計不僅提升診斷準確性,亦能提供臨床可解釋的預測結果,有助於放射科醫師進行早期 VCF 偵測。 Vertebral compression fractures (VCFs) are a common consequence of osteoporosis and are often underdiagnosed in clinical settings, potentially leading to delayed treatment and worsened patient outcomes. While vertebra-level classification models have shown effectiveness in automated VCF detection, they often suffer from high false positive rates when applied directly to patient-level diagnosis. To address this issue, we propose a two-stage deep learning–based framework for detecting VCFs in lumbar spine X-ray images. The first stage performs image-level classification to filter out normal cases, effectively reducing the number of false positives and minimizing unnecessary vertebra-level evaluations. The second stage focuses on vertebra-level diagnosis by analyzing segmented vertebral bodies using both image and features based on radiologist insights. Grad-CAM is employed to enhance the interpretability of model predictions. We evaluated our method using a dataset from National Taiwan University Hospital (NTUH), which contains thousands of lumbar spine X-rays. The proposed two-stage system achieved 87.0% accuracy, 87.3% specificity, and 85.7% sensitivity at the patient level and 97.1% accuracy, 97.9% specificity, and 77.3% sensitivity at the vertebra level. These results demonstrate that our two-stage design not only improves diagnostic precision but also offers clinically interpretable predictions, making it a valuable tool for aiding radiologists in early VCF detection. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99469 |
| DOI: | 10.6342/NTU202502241 |
| Fulltext Rights: | 同意授權(限校園內公開) |
| metadata.dc.date.embargo-lift: | 2030-08-04 |
| Appears in Collections: | 資訊工程學系 |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf Restricted Access | 17.4 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
