Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99372
Title: 以深紫外光微影術製備大面積TiO₂超穎介面暨裸眼3D全彩顯示應用
Fabrication of Large-Area Titanium Dioxide Metasurfaces via Deep Ultraviolet Lithography for Full-Color Naked-Eye 3D Display Applications
Authors: 謝汶晉
Wen-Chin Hsieh
Advisor: 吳忠幟
Chung-Chih Wu
Keyword: 超穎介面,裸眼3D顯示,深紫外光微影術,FDTD模擬,
Metasurface,Autostereoscopic 3D Display,Deep Ultraviolet Lithography,Finite-Difference Time-Domain Simulation,
Publication Year : 2025
Degree: 碩士
Abstract: 本論文聚焦於開發大面積超穎介面技術並用於裸眼3D顯示器,藉由精密的光學設計與製程實現高解析度、多視角、低串擾的3D顯示技術,並改善傳統透鏡在解析度與視角分配上的限制。過去的裸眼3D顯示器多使用斜向柱狀透鏡分光,但隨視角數增加,解析度會被稀釋,且存在視覺疲勞與聚散調節衝突(Vergence-Accommodation Conflict, VAC)問題。本研究引入超穎介面(Metasurface)作為光場操控元件,利用其奈米級結構對不同極化光進行偏折,實現視角密集配置與解析度翻倍,並結合二氧化鈦(Titanium Dioxide, TiO₂)高折射率材料,提升整體穿透效率與相位調控能力。
因應超穎介面之大面積製程需求,本研究採用深紫外光微影技術(DUV Lithography),搭配感應耦合電漿乾式蝕刻(ICP)與高溫退火製程,在8吋玻璃基板上成功製作1500 nm高的奈米柱陣列,實現結構均勻的大面積超穎介面。設計方面,本研究針對波長450 nm、532 nm與630 nm三原色進行奈米柱尺寸參數掃描,並以FDTD (Finite-Difference Time-Domain)模擬其偏折效率與相位涵蓋能力,確保結構能精確控制光束方向與分佈。在RGB三波長下均獲得良好的方向偏折效率,紅光與綠光效率達90%以上,藍光則因材料吸收影響略低但仍具應用潛力。
本研究進一步整合超穎介面與4K液晶顯示模組之裸眼3D顯示架構,結合具均勻指向性的背光源,實驗上成功展現18個視角的3D影像顯示。初步成果驗證此系統具備高解析、多視角與低功耗等設計潛力,為未來應用於AR/VR、3D醫療影像與智慧顯示技術提供一可行之技術路徑。
This study focuses on the development of the metasurface technology and its application in the large-area naked-eye 3D display. Through precise optical design and advanced fabrication processes, it is aimed to achieve high resolution, multi-view, and low-crosstalk 3D imaging and to overcome the limitations of conventional lenticular lens systems in terms of resolution and angular distribution. Traditional naked-eye 3D displays commonly employ slanted lenticular lenses for light field separation; however, increasing the number of viewing angles leads to resolution degradation and induces visual fatigue as well as the vergence-accommodation conflict (VAC). To address these issues, this research introduces metasurfaces as optical field modulation elements. By leveraging the polarization-dependent deflection capabilities of nanoscale structures, the proposed system enables dense angular allocation and resolution doubling. Metasurfaces based on high-refractive-index titanium dioxide (TiO₂) are employed to enhance both transmission efficiency and phase modulation capabilities.
In response to large-area fabrication requirements of metasurfaces, deep ultraviolet (DUV) lithography is utilized in conjunction with inductively coupled plasma (ICP) dry etching. This process successfully produces uniform arrays of 1500 nm-high nanopillars on 8-inch glass substrates, demonstrating large-area structural uniformity. The metasurface design is optimized for RGB wavelengths (450 nm, 532 nm, and 630 nm) through parameter sweeps of nanopillar dimensions, with Finite-Difference Time-Domain (FDTD) simulations employed to evaluate deflection efficiency and phase coverage. High deflection efficiency is achieved across all three wavelengths, with red and green channels exceeding 90%, and the blue channel demonstrating slightly lower performance due to material absorption, though still viable for practical applications.
This work further demonstrated an integrated naked-eye 3D display system combining a metasurface with a 4K liquid crystal display (LCD) module and a collimated backlight source. Experimental results demonstrated the successful rendering of 3D images with 18 distinct viewing angles. The preliminary findings validate the system's potential for high resolution, multi-view capability, and low power consumption, offering a promising technological pathway for future applications in augmented/virtual reality (AR/VR), 3D medical imaging, and next-generation smart display technologies.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99372
DOI: 10.6342/NTU202503063
Fulltext Rights: 同意授權(限校園內公開)
metadata.dc.date.embargo-lift: 2030-07-30
Appears in Collections:電子工程學研究所

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
  Restricted Access
7.63 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved