請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99280完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉建豪 | zh_TW |
| dc.contributor.advisor | Chien-Hao Liu | en |
| dc.contributor.author | 劉家銘 | zh_TW |
| dc.contributor.author | Chia-Ming Liu | en |
| dc.date.accessioned | 2025-08-21T17:06:27Z | - |
| dc.date.available | 2025-08-22 | - |
| dc.date.copyright | 2025-08-21 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-04 | - |
| dc.identifier.citation | [1] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc., vol. 131, no. 17, pp. 6050-6051, 2009.
[2] M. A. Green et al., “Solar cell efficiency tables (version 66),” Prog. Photovolt.: Res. Appl., pp. 1-16, 2025. [3] E. Raza and Z. Ahmad, “Review on two-terminal and four-terminal crystalline-silicon/perovskite tandem solar cells; progress, challenges, and future perspectives,” Energy Rep., vol. 8, pp. 5820-5851, 2022. [4] A. Babayigit, A. Ethirajan, M. Muller, and B. Conings, “Toxicity of organometal halide perovskite solar cells,” Nat. Mater., vol. 15, no. 3, pp. 247-251, 2016. [5] J.-P. Correa-Baena et al., “Promises and challenges of perovskite solar cells,” Science, vol. 358, no. 6364, pp. 739-744, 2017. [6] Y. Lei, Y. Xu, M. Wang, G. Zhu, and Z. Jin, “Origin, influence, and countermeasures of defects in perovskite solar cells,” Small, vol. 17, no. 26, Art. no. 2005495, 2021. [7] Z. Zhang et al., “Over 12% efficient CsSnI3 perovskite solar cells enabled by surface post-treatment with bi-functional polar molecules,” Chem. Eng. J., vol. 490, Art. no. 151561, 2024. [8] Y. Chen et al., “In situ management of ions migration to control hysteresis effect for planar heterojunction perovskite solar cells,” Adv. Funct. Mater., vol. 32, no. 1, Art. no. 2108417, 2022. [9] Y. Rong et al., “Challenges for commercializing perovskite solar cells,” Science, vol. 361, no. 6408, Art. no. eaat8235, 2018. [10] S. Reichert, Q. An, Y.-W. Woo, A. Walsh, Y. Vaynzof, and C. Deibel, “Probing the ionic defect landscape in halide perovskite solar cells,” Nat. Commun., vol. 11, no. 1, Art. no. 6098, 2020. [11] X. Liu et al., “Full defects passivation enables 21% efficiency perovskite solar cells operating in air,” Adv. Energy Mater., vol. 10, no. 38, Art. no. 2001958, 2020. [12] Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, “Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells,” Nat. Commun., vol. 5, Art. no. 5784, 2014. [13] B. Chen, M. Yang, S. Priya, and K. Zhu, “Origin of J–V hysteresis in perovskite solar cells,” J. Phys. Chem. Lett., vol. 7, no. 5, pp. 905-917, 2016. [14] W. Chu, W. A. Saidi, J. Zhao, and O. V. Prezhdo, “Soft lattice and defect covalency rationalize tolerance of β‐CsPbI3 perovskite solar cells to native defects,” Angew. Chem. Int. Ed., vol. 59, no. 16, pp. 6435-6441, 2020. [15] S. Srivastava et al., “Advanced spectroscopic techniques for characterizing defects in perovskite solar cells,” Commun. Mater., vol. 4, no. 1, Art. no. 52, 2023. [16] J. Chen et al., “Unveiling full-dimensional distribution of trap states toward highly efficient perovskite photovoltaics,” eScience, vol. 5, no. 2, Art. no. 100326, 2025. [17] S. Khatoon et al., “Perovskite solar cell’s efficiency, stability and scalability: A review,” Mater. Sci. Energy Technol., vol. 6, pp. 437-459, 2023. [18] T. Kirchartz et al., “Sensitivity of the Mott–Schottky analysis in organic solar cells,” J. Phys. Chem. C, vol. 116, no. 14, pp. 7672-7680, 2012. [19] W. A. Laban and L. Etgar, “Depleted hole conductor-free lead halide iodide heterojunction solar cells,” Energy Environ. Sci., vol. 6, no. 11, pp. 3249–3253, 2013. [20] A. Guerrero, E. J. Juarez-Perez, J. Bisquert, I. Mora-Sero, and G. Garcia-Belmonte, “Electrical field profile and doping in planar lead halide perovskite solar cells,” Appl. Phys. Lett., vol. 105, no. 13, Art. no. 133902, 2014. [21] O. Almora, C. Aranda, E. Mas-Marzá, and G. Garcia-Belmonte, “On Mott-Schottky analysis interpretation of capacitance measurements in organometal perovskite solar cells,” Appl. Phys. Lett., vol. 109, no. 17, Art. no. 173903, 2016. [22] F. Babbe, H. Elanzeery, M. Melchiorre, A. Zelenina, and S. Siebentritt, “Potassium fluoride postdeposition treatment with etching step on both Cu-rich and Cu-poor CuInSe2 thin film solar cells,” Phys. Rev. Mater., vol. 2, no. 10, Art. no. 105405, 2018. [23] I. M. Dharmadasa, Y. Rahaq, A. A. Ojo, and T. I. Alanazi, “Perovskite solar cells: A deep analysis using current–voltage and capacitance–voltage techniques,” J. Mater. Sci.: Mater. Electron., vol. 30, no. 2, pp. 1227-1235, 2018. [24] M. Fischer, K. Tvingstedt, A. Baumann, and V. Dyakonov, “Doping profile in planar hHybrid perovskite solar cells identifying mobile ions,” ACS Appl. Energy Mater., vol. 1, no. 10, p. 5129−5134, 2018. [25] O. Almora, M. García-Batlle, and G. Garcia-Belmonte, “Utilization of temperature-sweeping capacitive techniques to evaluate band gap defect densities in photovoltaic perovskites,” J. Phys. Chem. Lett., vol. 10, no. 13, pp. 3661-3669, 2019. [26] E. Regalado-Pérez, E. B. Díaz-Cruz, and J. Villanueva-Cab, “Impact of the hole transport layer on the space charge distribution and hysteresis in perovskite solar cells analysed by capacitance–voltage profiling,” Sustain. Energy Fuels, vol. 9, no. 5, pp. 1225-1235, 2025. [27] J. Zhou et al., “Highly efficient and stable perovskite solar cells via a multifunctional hole transporting material,” Joule, vol. 8, no. 6, pp. 1691-1706, 2024. [28] C. E. Michelson, A. V. Gelatos, and J. D. Cohen, “Drive-level capacitance profiling: Its application to determining gap state densities in hydrogenated amorphous silicon films,” Appl. Phys. Lett., vol. 47, no. 4, pp. 412-414, 1985. [29] A. J. Yun, S. Ryu, J. Lim, J. Kim, and B. Park, “Thermal degradation of the bulk and interfacial traps at 85°C in perovskite photovoltaics,” Nanoscale, vol. 15, no. 9, pp. 4334-4343, 2023. [30] E. Artegiani, D. Menossi, A. Salavei, S. di Mare, and A. Romeo, “Analysis of the influence on the performance degradation of CdTe solar cells by the front contact,” Thin Solid Films, vol. 633, pp. 101-105, 2017. [31] Z. Ni et al., “Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells,” Science, vol. 367, no. 6484, pp. 1352-1358, 2020. [32] W. Q. Wu et al., “Reducing surface halide deficiency for efficient and stable iodide-based perovskite solar cells,” J. Am. Chem. Soc., vol. 142, no. 8, pp. 3989-3996, 2020. [33] Z. Ni et al., “Evolution of defects during the degradation of metal halide perovskite solar cells under reverse bias and illumination,” Nat. Energy, vol. 7, no. 1, pp. 65-73, 2021. [34] S. Ravishankar, T. Unold, and T. Kirchartz, “Comment on ‘Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells’,” Science, vol. 371, no. 6532, Art. no. eabd8014, 2021. [35] J. Liu et al., “A near-infrared colloidal quantum dot imager with monolithically integrated readout circuitry,” Nat. Electron., vol. 5, no. 7, pp. 443-451, 2022. [36] Z. Su et al., “Device postannealing enabling over 12% efficient solution‐processed Cu2ZnSnS4 solar cells with Cd2+ substitution,” Adv. Mater., vol. 32, no. 32, Art. no. 2000121, 2020. [37] P. Fan et al., “High-efficiency ultra-thin Cu2ZnSnS4 solar cells by double-pressure sputtering with spark plasma sintered quaternary target,” J. Energy Chem., vol. 61, pp. 186-194, 2021. [38] F. Zhang et al., “Comprehensive passivation strategy for achieving inverted perovskite solar cells with efficiency exceeding 23% by trap passivation and ion constraint,” Nano Energy, vol. 89, Art. no. 106370, 2021. [39] X. Liu et al., “Over 28% efficiency perovskite/Cu(InGa)Se2 tandem solar cells: Highly efficient sub-cells and their bandgap matching,” Energy Environ. Sci., vol. 16, no. 11, pp. 5029-5042, 2023. [40] U. Farooq et al., “Defects passivation by solution-processed titanium doping strategy towards high efficiency kesterite solar cells,” Chem. Eng. J., vol. 451, Art. no. 139109, 2023. [41] S. Ryu, B. Gil, B. Kim, J. Kim, and B. Park, “Understanding the trap characteristics of perovskite solar cells via drive-level capacitance profiling,” ACS Appl. Mater. Interfaces, vol. 15, no. 49, p. 56909−56917, 2023. [42] Y. Zhao et al., “Over 12% efficient kesterite solar cell via back interface engineering,” J. Energy Chem., vol. 75, pp. 321-329, 2022. [43] S. Ravishankar, Z. Liu, U. Rau, and T. Kirchartz, “Multilayer capacitances: How selective contacts affect capacitance measurements of perovskite solar cells,” PRX Energy, vol. 1, no. 1, Art. no. 013003, 2022. [44] Y. Sui et al., “Understanding the role of crown ether functionalization in inverted perovskite solar cells,” ACS Energy Lett., vol. 9, no. 4, pp. 1518-1526, 2024. [45] M. A. Uddin et al., “Iodide manipulation using zinc additives for efficient perovskite solar minimodules,” Nat. Commun., vol. 15, no. 1, Art. no. 1355, 2024. [46] J. T. Heath, J. D. Cohen, and W. N. Shafarman, “Distinguishing metastable changes in bulk CIGS defect densities from interface effects,” Thin Solid Films, vol. 431-432, pp. 426-430, 2003. [47] W. Li et al., “Reactive plasma deposition of ito as an efficient buffer layer for inverted perovskite solar cells,” Adv. Mater., vol. 37, no. 12, Art. no. e2417094, 2025. [48] Y. Li et al., “Defect-level trap optimization in Cu₂ZnSn(S,Se)₄ photovoltaic materials via Sb3+-doping for over 13% efficiency solar cells,” J. Mater. Chem. A, vol. 12, no. 17, pp. 10260-10268, 2024. [49] J. Zhou et al., “Control of the phase evolution of kesterite by tuning of the selenium partial pressure for solar cells with 13.8% certified efficiency,” Nat. Energy, vol. 8, no. 5, pp. 526-535, 2023. [50] D. Menossi, E. Artegiani, A. Salavei, S. Di Mare, and A. Romeo, “Study of MgCl2 activation treatment on the defects of CdTe solar cells by capacitance-voltage, drive level capacitance profiling and admittance spectroscopy techniques,” Thin Solid Films, vol. 633, pp. 97-100, 2017. [51] J. T. Heath, J. D. Cohen, and W. N. Shafarman, “Bulk and metastable defects in CuIn1−xGaxSe2 thin films using drive-level capacitance profiling,” J. Appl. Phys., vol. 95, no. 3, pp. 1000-1010, 2004. [52] I. Rimmaudo et al., “Improved stability of CdTe solar cells by absorber surface etching,” Sol. Energy Mater. Sol. Cells, vol. 162, pp. 127-133, 2017. [53] A. Y. Polyakov et al., “Trap states in multication mesoscopic perovskite solar cells: A deep levels transient spectroscopy investigation,” Appl. Phys. Lett., vol. 113, no. 26, Art. no. 263501, 2018. [54] S. Wang, P. Kaienburg, B. Klingebiel, D. Schillings, and T. Kirchartz, “Understanding thermal admittance spectroscopy in low-mobility semiconductors,” J. Phys. Chem. C, vol. 122, no. 18, pp. 9795-9803, 2018. [55] M. T. Khan, M. Salado, A. Almohammedi, S. Kazim, and S. Ahmad, “Elucidating the impact of charge selective contact in halide perovskite through impedance spectroscopy,” Adv. Mater. Interfaces, vol. 6, no. 21, Art. no. 1901193, 2019. [56] J. Xue et al., “Diagnosis of electrically active defects in CH3NH3PbI3 perovskite solar cells via admittance spectroscopy measurements,” Appl. Opt., vol. 59, no. 2, pp. 552-557, 2020. [57] H.-S. Duan et al., “The identification and characterization of defect states in hybrid organic–inorganic perovskite photovoltaics,” Phys. Chem. Chem. Phys., vol. 17, no. 1, pp. 112-116, 2015. [58] Y. Chen et al., “Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells,” Nat. Commun., vol. 10, no. 1, Art. no. 1112, 2019. [59] A. A. Vasilev, D. S. Saranin, P. A. Gostishchev, S. I. Didenko, A. Y. Polyakov, and A. Di Carlo, “Deep-level transient spectroscopy of the charged defects in p-i-n perovskite solar cells induced by light-soaking,” Opt. Mater.: X, vol. 16, Art. no. 100218, 2022. [60] A. Urbaniak, A. Czudek, J. Dagar, and E. L. Unger, “Capacitance spectroscopy of thin-film formamidinium lead iodide based perovskite solar cells,” Sol. Energy Mater. Sol. Cells, vol. 238, Art. no. 111618, 2022. [61] Y. Jia et al., “A new lock-in amplifier-based deep-level transient spectroscopy test and measurement system for solar cells,” Sol. Energy Mater. Sol. Cells, vol. 244, pp. 507-515, 2022. [62] H.-C. Hsieh et al., “Analysis of defects and traps in n–i–p layered-structure of perovskite solar cells by charge-based deep level transient spectroscopy (Q-DLTS),” J. Phys. Chem. C, vol. 122, no. 31, pp. 17601-17611, 2018. [63] S. Heo et al., “Deep level trapped defect analysis in CH3NH3PbI3 perovskite solar cells by deep level transient spectroscopy,” Energy Environ. Sci., vol. 10, no. 5, pp. 1128-1133, 2017. [64] M. H. Futscher, M. K. Gangishetty, D. N. Congreve, and B. Ehrler, “Quantifying mobile ions and electronic defects in perovskite-based devices with temperature-dependent capacitance measurements: Frequency vs time domain,” J. Chem. Phys., vol. 152, no. 4, Art. no. 044202, 2020. [65] A. R. Peaker, V. P. Markevich, and J. Coutinho, “Tutorial: Junction spectroscopy techniques and deep-level defects in semiconductors,” J. Appl. Phys., vol. 123, no. 16, Art. no. 161559, 2018. [66] N. Ahmad et al., “Cadmium‐free kesterite thin‐film solar cells with high efficiency approaching 12%,” Adv. Sci., vol. 10, no. 26, Art. no. 2302869, 2023. [67] X.-Y. Chen et al., “Ag, Ti dual-cation substitution in Cu2ZnSn (S, Se)4 induced growth promotion and defect suppression for high-efficiency solar cells,” J. Mater. Chem. A, vol. 10, no. 42, pp. 22791-22802, 2022. [68] G.-X. Liang et al., “Optimizing the ratio of Sn4+ and Sn2+ in Cu2ZnSn(S, Se)4 precursor solution via air environment for highly efficient solar cells,” Solar Rrl, vol. 5, no. 11, Art. no. 2100574, 2021. [69] S. Heo et al., “Defect visualization of Cu(InGa)(SeS)2 thin films using DLTS measurement,” Sci. Rep., vol. 6, no. 1, Art. no. 30554, 2016. [70] 陳衍安, “電性量測應用於太陽能電池之缺陷分析,” 碩士論文, 國立臺灣大學機械工程學研究所, 2024. [71] M. T. Khan, N. H. Hemasiri, S. Kazim, and S. Ahmad, “Decoding the charge carrier dynamics in triple cation-based perovskite solar cells,” Sustain. Energy Fuels, vol. 5, no. 24, pp. 6352-6360, 2021. [72] H. Dhifaoui, N. H. Hemasiri, W. Aloui, A. Bouazizi, S. Kazim, and S. Ahmad, “An approach to quantify the negative capacitance features in a triple‐cation based perovskite solar cells,” Adv. Mater. Interfaces, vol. 8, no. 22, Art. no. 2101002, 2021. [73] E. Ghahremanirad, O. Almora, S. Suresh, A. A. Drew, T. H. Chowdhury, and A. R. Uhl, “Beyond protocols: Understanding the electrical behavior of perovskite solar cells by impedance spectroscopy,” Adv. Energy Mater., vol. 13, no. 30, Art. no. 2204370, 2023. [74] E. von Hauff and D. Klotz, “Impedance spectroscopy for perovskite solar cells: Characterisation, analysis, and diagnosis,” J. Mater. Chem. C, vol. 10, no. 2, pp. 742-761, 2022. [75] A. J. Riquelme, K. Valadez-Villalobos, P. P. Boix, G. Oskam, I. Mora-Sero, and J. A. Anta, “Understanding equivalent circuits in perovskite solar cells. Insights from drift-diffusion simulation,” Phys. Chem. Chem. Phys., vol. 24, no. 26, pp. 15657-15671, 2022. [76] A. R. Pascoe, N. W. Duffy, A. D. Scully, F. Huang, and Y.-B. Cheng, “Insights into planar CH3NH3PbI3 perovskite solar cells using impedance spectroscopy,” J. Phys. Chem. C, vol. 119, no. 9, pp. 4444-4453, 2015. [77] T. Mukametkali et al., “Effect of the TiO2 electron transport layer thickness on charge transfer processes in perovskite solar cells,” Phys. B: Condens. Matter, vol. 659, Art. no. 414784, 2023. [78] M. T. Khan, P. Huang, A. Almohammedi, S. Kazim, and S. Ahmad, “Protocol for deciphering the electrical parameters of perovskite solar cells using immittance spectroscopy,” STAR Protoc., vol. 2, no. 2, Art. no. 100510, 2021. [79] D. Sharma, R. Mehra, and B. Raj, “Comparative analysis of photovoltaic technologies for high efficiency solar cell design,” Superlattices Microstruct., vol. 153, Art. no. 106861, 2021. [80] A. S. Al-Ezzi and M. N. M. Ansari, “Photovoltaic solar cells: A review,” Appl. Syst. Innov., vol. 5, no. 4, Art. no. 67, 2022. [81] S. M. Sze, Y. Li, and K. K. Ng, Physics of semiconductor devices. Hoboken, NJ: Wiley, 2006. [82] H. S. Duan, W. Yang, B. Bob, C. J. Hsu, B. Lei, and Y. Yang, “The role of sulfur in solution‐processed Cu2ZnSn(S, Se)4 and its effect on defect properties,” Adv. Funct. Mater., vol. 23, no. 11, pp. 1466-1471, 2013. [83] D. V. Lang, “Deep-level transient spectroscopy: A new method to characterize traps in semiconductors,” J. Appl. Phys., vol. 45, no. 7, pp. 3023-3032, 1974. [84] X. Shan, J. Li, M. Chen, T. Geske, S. G. R. Bade, and Z. Yu, “Junction propagation in organometal halide perovskite–polymer composite thin films,” J. Phys. Chem. Lett., vol. 8, no. 11, pp. 2412-2419, 2017. [85] A. C. Lazanas and M. I. Prodromidis, “Electrochemical impedance spectroscopy─a tutorial,” ACS Meas. Sci. Au, vol. 3, no. 3, pp. 162-193, 2023. [86] A. Guerrero, J. Bisquert, and G. Garcia-Belmonte, “Impedance spectroscopy of metal halide perovskite solar cells from the perspective of equivalent circuits,” Chem. Rev., vol. 121, no. 23, pp. 14430-14484, 2021. [87] E. von Hauff, “Impedance spectroscopy for emerging photovoltaics,” J. Phys. Chem. C, vol. 123, no. 18, pp. 11329-11346, 2019. [88] M. T. Neukom et al., “Consistent device simulation model describing perovskite solar cells in steady-state, transient, and frequency domain,” ACS Appl. Mater. Interfaces, vol. 11, no. 26, pp. 23320-23328, 2019. [89] D. Moia et al., “Ionic-to-electronic current amplification in hybrid perovskite solar cells: Ionically gated transistor-interface circuit model explains hysteresis and impedance of mixed conducting devices,” Energy Environ. Sci., vol. 12, no. 4, pp. 1296-1308, 2019. [90] A. Guerrero et al., “Properties of contact and bulk impedances in hybrid lead halide perovskite solar cells including inductive loop elements,” J. Phys. Chem. C, vol. 120, no. 15, pp. 8023-8032, 2016. [91] A. R. Bredar, A. L. Chown, A. R. Burton, and B. H. Farnum, “Electrochemical impedance spectroscopy of metal oxide electrodes for energy applications,” ACS Appl. Energy Mater., vol. 3, no. 1, pp. 66-98, 2020. [92] J. Bisquert, A. Guerrero, and C. Gonzales, “Theory of hysteresis in halide perovskites by integration of the equivalent circuit,” ACS Phys. Chem. Au, vol. 1, no. 1, pp. 25-44, 2021. [93] C. Aranda, J. Bisquert, and A. Guerrero, “Impedance spectroscopy of perovskite/contact interface: Beneficial chemical reactivity effect,” J. Chem. Phys., vol. 151, no. 12, Art. no. 124201, 2019. [94] I. Zarazua et al., “Surface recombination and collection efficiency in perovskite solar cells from impedance analysis,” J. Phys. Chem. Lett., vol. 7, no. 24, pp. 5105-5113, 2016. [95] W. Peng, C. Aranda, O. M. Bakr, G. Garcia-Belmonte, J. Bisquert, and A. Guerrero, “Quantification of ionic diffusion in lead halide perovskite single crystals,” ACS Energy Lett., vol. 3, no. 7, pp. 1477-1481, 2018. [96] Y. Wang et al., “Reliable measurement of perovskite solar cells,” Adv. Mater., vol. 31, no. 47, Art. no. e1803231, 2019. [97] I. Mesquita, L. Andrade, and A. Mendes, “Temperature impact on perovskite solar cells under operation,” ChemSusChem, vol. 12, no. 10, pp. 2186-2194, 2019. [98] J.-F. Liao, W.-Q. Wu, J.-X. Zhong, Y. Jiang, L. Wang, and D.-B. Kuang, “Enhanced efficacy of defect passivation and charge extraction for efficient perovskite photovoltaics with a small open circuit voltage loss,” J. Mater. Chem. A, vol. 7, no. 15, pp. 9025-9033, 2019. [99] D. H. Kang and N. G. Park, “On the current–voltage hysteresis in perovskite solar cells: Dependence on perovskite composition and methods to remove hysteresis,” Adv. Mater., vol. 31, no. 34, Art. no. 1805214, 2019. [100] Q. Jiang et al., “Surface passivation of perovskite film for efficient solar cells,” Nat. Photonics, vol. 13, no. 7, pp. 460-466, 2019. [101] R. Brenes, M. Laitz, J. Jean, D. W. deQuilettes, and V. Bulović, “Benefit from photon recycling at the maximum-power point of state-of-the-art perovskite solar cells,” Phys. Rev. Appl., vol. 12, no. 1, Art. no. 014017, 2019. [102] F. Yang et al., “Magnesium-doped MAPbI3 perovskite layers for enhanced photovoltaic performance in humid ar amosphere,” ACS Appl. Mater. Interfaces, vol. 10, no. 29, pp. 24543-24548, 2018. [103] X. Wen et al., “Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency,” Nat. Commun., vol. 9, no. 1, Art. no. 2179, 2018. [104] D. Wei et al., “Ion-migration inhibition by the cation-pi interaction in perovskite materials for efficient and stable perovskite solar cells,” Adv. Mater., vol. 30, no. 31, Art. no. e1707583, 2018. [105] C. J. Q. Teh, M. Drieberg, K. N. M. Hasan, A. L. Shah, and R. Ahmad, “Indoor PV modeling based on the one-diode model,” Appl. Sci., vol. 14, no. 1, Art. no. 427, 2024. [106] J. Ma, K. L. Man, T. Ting, N. Zhang, S.-U. Guan, and P. W. Wong, “Approximate single‐diode photovoltaic model for efficient i‐v characteristics estimation,” Sci. World J., vol. 2013, no. 1, Art. no. 230471, 2013. [107] M. Ćalasan, S. H. A. Aleem, and A. F. Zobaa, “On the root mean square error (RMSE) calculation for parameter estimation of photovoltaic models: A novel exact analytical solution based on Lambert W function,” Energy Convers. Manag., vol. 210, Art. no. 112716, 2020. [108] E. H. Balaguera and J. Bisquert, “Accelerating the assessment of hysteresis in perovskite solar cells,” ACS Energy Lett., vol. 9, no. 2, pp. 478-486, 2024. [109] J. Wang et al., “Enhancing photostability of Sn‐Pb perovskite solar cells by an alkylammonium pseudo‐halogen additive,” Adv. Energy Mater., vol. 13, no. 15, Art. no. 204115, 2023. [110] I. M. Dharmadasa, Y. Rahaq, and A. E. Alam, “Perovskite solar cells: Short lifetime and hysteresis behaviour of current–voltage characteristics,” J. Mater. Sci., vol. 30, no. 14, pp. 12851-12859, 2019. [111] M. Taukeer Khan, F. Khan, A. Al-Ahmed, S. Ahmad, and F. Al-Sulaiman, “Evaluating the capacitive response in metal halide perovskite solar cells,” Chem. Rec., vol. 22, no. 7, Art. no. e202100330, 2022. [112] N. Liu et al., “Recycling single‐crystal perovskite solar cells with improved efficiency and stability,” Adv. Funct. Mater., vol. 34, no. 52, Art. no. 2410631, 2024. [113] S.-M. Yoo, S. J. Yoon, J. A. Anta, H. J. Lee, P. P. Boix, and I. Mora-Seró, “An equivalent circuit for perovskite solar cell bridging sensitized to thin film architectures,” Joule, vol. 3, no. 10, pp. 2535-2549, 2019. [114] X. Chen, Y. Shirai, M. Yanagida, and K. Miyano, “Effect of light and voltage on electrochemical impedance spectroscopy of perovskite solar cells: An empirical approach based on modified randles circuit,” J. Phys. Chem. C, vol. 123, no. 7, pp. 3968-3978, 2019. [115] J. Bisquert, L. Bertoluzzi, I. Mora-Sero, and G. Garcia-Belmonte, “Theory of impedance and capacitance spectroscopy of solar cells with dielectric relaxation, drift-diffusion transport, and recombination,” J. Phys. Chem. C, vol. 118, no. 33, pp. 18983-18991, 2014. [116] D. Klotz, D. S. Ellis, H. Dotan, and A. Rothschild, “Empirical in operando analysis of the charge carrier dynamics in hematite photoanodes by PEIS, IMPS and IMVS,” Phys. Chem. Chem. Phys., vol. 18, no. 34, pp. 23438-23457, 2016. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99280 | - |
| dc.description.abstract | 鈣鈦礦太陽能電池(Perovskite Solar Cells, PSCs)因其高光吸收係數、可調整的能隙、低製成溫度等優點,在過去十年間受到廣泛關注。然而,其材料內部與面所形成的缺陷,仍嚴重限制元件的穩定性與性能表現。因此,發展一套能在不同溫度與頻率下有效探測與分析缺陷性質之方法,對於未來太陽能電池製成優化與結構設計具有相當關鍵的意義。本研究針對同一個反式 P-I-N 鈣鈦礦太陽能電池,結合多項電性量測技術與等效電路分析模型,系統性的探討鈣鈦礦太陽能電池於低溫與低頻環境下之缺陷特性 。 使 用 之 量 測 方 法 包 含 : DLCP ( Drive-Level Capacitance Profiling )、 CV(Capacitance-Voltage)、TAS(Thermal Admittance Spectroscopy)、DLTS(Deep LevelTransient Spectroscopy),並利用 IS(Impedance Spectroscopy)結果建立等效電路模型。所有實驗針對同一元件進行,並於實驗前後分別進行照光之 IV 測試,以確認離子分布不受長時間且重複的電性量測影響。其反向 IV 的光電轉換效率由原來的18.62% 降為 18.20%,僅變化 1.5%,表示樣品經過多輪測試後仍維持良好穩定性。TAS 量 測透 過 變溫 條 件掃 描元 件 的電 容 頻率 響 應, 並繪 製 阿瑞尼 斯 圖(Arrhenius plot)後進行擬合,得到缺陷活化能為 45.70 meV,對應之陷阱密度約為 8.84 × 1014 cm−3,屬於較淺層陷阱。DLTS 則是給予元件電壓脈衝,透過電容的瞬態變化觀察到較深的缺陷能階,並成功分離出電子與電洞陷阱,其中電子陷阱能量深度為 511.4 meV,陷阱密度約為 5.86 × 1013 cm−3;電洞陷阱能量深度則為660.4 meV,陷阱密度約為 5.35 × 1013 cm−3。CV 分析利用 Mott-Schottky 擬合法求得內建電壓值約為 1.076 V,並估算摻雜濃度約為 2.03 × 1016 cm−3。進一步透過DLCP 分析於不同頻率與溫度條件下量測,並與 CV 結果比較,可推得樣品缺陷密度於空間中的分布與界面效應。最後,透過利用等效電路模擬阻抗圖譜,成功擷取鈣鈦礦太陽能電池元件的電路元件參數。阻抗分析顯示樣品於低頻區間出現明顯電荷累積與界面極化,對應之界面電容約為 45.7 nF,電荷轉移電阻則約為 14.4 kΩ。綜上所述,本研究建立一套以單一樣品為對象的缺陷量測流程,涵蓋空間、能階深度與頻率響應等。研究結果不僅驗證元件在測試後具有良好穩定性,也提供多項定量參數,對於製程優化與缺陷控制具有重要參考價值。 | zh_TW |
| dc.description.abstract | Perovskite solar cells (PSCs) have attracted widespread attention over the pastdecade due to their high light absorption coefficient, tunable bandgap, and low fabricationtemperature. However, defects formed within the material and at the interfaces stillsignificantly limit the device's stability and performance. Therefore, developing a methodthat can effectively detect and analyze defect characteristics under different temperaturesand frequencies is critical for future optimization of solar cell fabrication and structuraldesign.In this study, a single inverted P-I-N perovskite solar cell was investigated using acombination of electrical measurement techniques and equivalent circuit modeling tosystematically explore its defect characteristics under low-temperature and low-frequency conditions. The measurement techniques used include DLCP (Drive-LevelCapacitance Profiling), CV (Capacitance-Voltage), TAS (Thermal AdmittanceSpectroscopy), and DLTS (Deep Level Transient Spectroscopy), while IS (ImpedanceSpectroscopy) data were used to establish an equivalent circuit model (ECM). Allmeasurements were performed on the same device, with IV tests conducted before andafter the experiments. The reverse-scan power conversion efficiency changed onlyslightly from 18.62% to 18.20%, indicating that the sample maintained good stabilityafter multiple tests.In the TAS measurement, temperature-dependent capacitance-frequency responseswere recorded and fitted using an Arrhenius plot, yielding an activation energy of45.70 meV and a corresponding trap density of approximately 8.84 × 1014 cm−3 ,indicating a shallow trap. DLTS identified deeper trap levels and successfullydistinguished between electron and hole traps. The electron trap energy level was511.4 meV with a density of about 5.86 × 1013 cm−3, while the hole trap level was 660.4 meV with a density of around 5.35 × 1013 cm−3 .The CV analysis used theMott-Schottky method to extract the built-in potential, which was around 1.076 V, andthe estimated doping concentration was about 2.03 × 1016 cm−3 . Further DLCPmeasurements at different frequencies and temperatures, compared with CV results,provided insights into the spatial distribution of defect density and interfacial effects.Finally, an equivalent circuit was used to simulate the impedance spectrum, allowingextraction of key electrical parameters. The impedance analysis showed clear chargeaccumulation and interface polarization in the low-frequency region, with an interfacialcapacitance of about 45.7 nF and a charge transfer resistance of approximately 14.4 kΩ.In summary, this study establishes a defect characterization process based on a singledevice, covering spatial distribution, energy level depth, and frequency response. Theresults confirm the device's stability after testing and provide various quantitativeparameters that are valuable for future process optimization and defect control inperovskite solar cells. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T17:06:27Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-21T17:06:27Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書.....i
誌謝.....ii 中文摘要.....iii Abstract.....v 目次.....vii 圖次.....x 表次.....xix 符號表.....xx 1 第一章 緒論.....1 1.1 研究背景與動機.....1 1.2 文獻回顧.....2 1.2.1 電性量測於缺陷分析之應用.....3 1.2.2 低溫與低頻條件下之電性行為與缺陷活化能分析.....12 1.2.3 等效電路模型於太陽能電池之應用.....20 2 第二章 理論.....24 2.1 半導體理論.....24 2.1.1 太陽能電池之工作原理.....24 2.1.2 PN接面與空乏層.....25 2.1.3 載子傳輸與復合機制.....30 2.2 電容量測理論.....33 2.2.1 CV.....33 2.2.2 DLCP.....35 2.2.3 TAS.....40 2.2.4 DLTS.....43 2.3 等效電路分析.....48 2.3.1 阻抗頻譜分析原理.....49 2.3.2 基本元件與模擬電路.....50 2.3.3 缺陷機制與阻抗響應.....55 3 第三章 太陽能電池樣品說明.....58 3.1 電池結構與材料組成.....58 3.2 效率量測與IV分析.....60 4 第四章 量測實驗.....63 4.1 實驗儀器介紹.....63 4.1.1 SS-X50太陽光模擬器與Keithley 2450多功能電源電錶.....63 4.1.2 Agilent E4980A LCR錶.....65 4.1.3 溫度控制器與探針座.....65 4.1.4 恆電位儀PGSTAT204.....67 4.2 實驗流程.....68 4.2.1 儀器架設.....68 4.2.2 量測流程.....71 5 第五章 量測結果、結論與未來展望.....73 5.1 量測結果與分析.....73 5.1.1 光電轉換效率與IV特性.....73 5.1.2 CF與TAS.....76 5.1.3 CV與DLCP.....80 5.1.4 DLTS.....91 5.1.5 IS與等效電路.....93 5.2 結論.....98 5.3 未來展望.....102 參考文獻.....103 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 鈣鈦礦太陽能電池 | zh_TW |
| dc.subject | 缺陷密度 | zh_TW |
| dc.subject | 光電轉換效率 | zh_TW |
| dc.subject | TAS | zh_TW |
| dc.subject | CV | zh_TW |
| dc.subject | DLCP | zh_TW |
| dc.subject | DLTS | zh_TW |
| dc.subject | 阻抗分析 | zh_TW |
| dc.subject | 電路模擬 | zh_TW |
| dc.subject | DLTS | en |
| dc.subject | Perovskite Solar Cells | en |
| dc.subject | Defect Density | en |
| dc.subject | Power Conversion Efficiency | en |
| dc.subject | TAS | en |
| dc.subject | Circuit Simulation | en |
| dc.subject | CV | en |
| dc.subject | DLCP | en |
| dc.subject | Impedance Analysis | en |
| dc.title | 結合電性量測與等效電路模型於低溫與低頻率之鈣鈦礦太陽能電池深缺陷分析 | zh_TW |
| dc.title | Deep Defect Analysis of Perovskite Solar Cells under Low Temperature and Low Frequency via Electrical Measurements and Equivalent Circuit Modeling | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 許麗;林彥宏 | zh_TW |
| dc.contributor.oralexamcommittee | Li Xu;Yen-Hung LIN | en |
| dc.subject.keyword | 鈣鈦礦太陽能電池,缺陷密度,光電轉換效率,TAS,CV,DLCP,DLTS,阻抗分析,電路模擬, | zh_TW |
| dc.subject.keyword | Perovskite Solar Cells,Defect Density,Power Conversion Efficiency,TAS,CV,DLCP,DLTS,Impedance Analysis,Circuit Simulation, | en |
| dc.relation.page | 109 | - |
| dc.identifier.doi | 10.6342/NTU202503213 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-07 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2025-08-22 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 7.94 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
