Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99051
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葛宇甯zh_TW
dc.contributor.advisorLouis Geen
dc.contributor.author張詒茹zh_TW
dc.contributor.authorYi-Ru Changen
dc.date.accessioned2025-08-21T16:12:03Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-08-04-
dc.identifier.citation[1] ASTM International. (2017). Standard practice for classification of soils for engineering purposes (Unified Soil Classification System)( ASTM D2487-17). ASTM International.
[2] ASTM International. (2015). Standard test method for modulus and damping of soils by the resonant-column method (ASTM D4015-15). ASTM International.
[3] ASTM International. (2021). Standard test methods for modulus and damping of soils by fixed-base resonant column devices (ASTM D4015-21). ASTM International.
[4] Banik, N., Sarkar, R., & Uddin, M. E. (2023). Assessment of strength and low-strain shear modulus of bio-cemented sand considering MICP treatment. Environmental Earth Sciences, 82(4).
[5] Behzadipour, H., & Sadrekarimi, A. (2023). Effect of microbial-induced calcite precipitation on shear strength of gold mine tailings. Bulletin of Engineering Geology and the Environment, 82(8).
[6] Blauw, M., Lambert, J. W. M., & Latil, M. N. (2009). Biosealing: A method for in situ sealing of leakages. Ground improvement technologies and case histories.
[7] Curry, T. S., Dowdey, J. E., & Murry, R. C. (1990). Christensen's Physics of Diagnostic Radiology (4th Edition ed.). Lea & Febiger.
[8] DeJong, J. T. (2006). Microbially Induced Cementation to Control Sand Response to Undrained Shear. J. Geotech. Geoenviron., 132(11): 1381-1392.
[9] DeJong, J. T., Mortensen, B. M., Martinez, B. C., & Nelson, D. C. (2010). Bio-mediated soil improvement. Ecological Engineering, 36(2), 197-210.
[10] Drnevich, V. P. (1970). Effects of strain history on the dynamic properties of sand. . Ph.D. Dissertation, University of Michigan.
[11] Duliu, O. G. (1999). Computer axial tomography in geosciences: An overview. Earth-Science Reviews, 48(4), 265-281.
[12] Duo, L., Kan-liang, T., Hui-li, Z., Yu-yao, W., Kang-yi, N., & Shi-can, Z. (2018). Experimental investigation of solidifying desert aeolian sand using microbially induced calcite precipitation. Construction and Building Materials, 172, 251-262.
[13] Fujita, Y., Taylor, J. L., Wendt, L. M., Reed, D. W., & Smith, R. W. (2010). Evaluating the potential of native ureolytic microbes to remediate a 90Sr contaminated environment. Environmental Science & Technology, 44(19), 7652–7658.
[14] Han, Z., Cheng, X., & Ma, Q. (2016). An experimental study on dynamic response for MICP strengthening liquefiable sands. Earthquake Engineering and Engineering Vibration, 15(4), 673-679.
[15] Hardin, B. O., & Drnevich, V. P. (1972). Shear modulus and damping in soils: Measurement and parameter effects. . Journal of Soil Mechanics & Foundations Div, ASCE, 98(SM6), 603-624.
[16] Li, M., Cheng, X., & Guo, H. (2013). Heavy metal removal by biomineralization of urease producing bacteria isolated from soil. International Biodeterioration & Biodegradation, 76, 81-85.
[17] Li, Y., & Chen, J. (2022). Experimental Study on the Permeability of Microbial-Solidified Calcareous Sand Based on MICP. Applied Sciences, 12(22).
[18] Lim, J. X., Tanaka, Y., Chong, S. Y., Ong, Y. H., & Lee, M. L. (2025). Mechanistic Comparisons of MICP-treated Residual Soil and Sand Part I – Microstructural Formation and Deformation Behaviour of Soils. Universiti Tunku Abdul Rahman.
[19] Liu, B., Tang, C.-S., Pan, X.-H., Xu, J.-J., & Zhang, X.-Y. (2024). Suppressing Drought-Induced Soil Desiccation Cracking Using MICP: Field Demonstration and Insights. Journal of Geotechnical and Geoenvironmental Engineering, 150(3).
[20] Ma, L., Pang, A. P., Luo, Y., Lu, X., & Lin, F. (2020). Beneficial factors for biomineralization by ureolytic bacterium Sporosarcina pasteurii. Microb Cell Fact, 19(1), 12.
[21] Prongmanee, N., Horpibulsuk, S., Dulyasucharit, R., Noulmanee, A., Boueroy, P., & Chancharoonpong, C. (2023). Novel and simplified method of producing microbial calcite powder for clayey soil stabilization. Geomechanics for Energy and the Environment, 35.
[22] Rahman, M. M., Hora, R. N., Ahenkorah, I., Beecham, S., Karim, M. R., & Iqbal, A. (2020). State-of-the-Art Review of Microbial-Induced Calcite Precipitation and Its Sustainability in Engineering Applications. Sustainability, 12(15).
[23] Richart, F. E., Jr., Hall, J. R., Jr., & Woods, R. D. (1970). Vibrations of soils and foundations. Prentice-Hall.
[24] Seed, H. B., & Idriss, I. M. (1970). Soil moduli and damping factors for dynamic response analyses. Earthquake Engineering Research Center, University of California, Berkeley.
[25] Tian, Z., Tang, X., Xiu, Z., & Xue, Z. (2023). The Spatial Distribution of Microbially Induced Carbonate Precipitation in Sand Column with Different Grouting Strategies. Journal of Materials in Civil Engineering, 35(2).
[26] Torfehnezhad, M., Zareei, S. A., & Salemi, N. (2025). Experimental study of dynamic performance of loose sandy soil improved with micro-Organisms. Soil Dynamics and Earthquake Engineering, 190.
[27] Wang, S., Shen, T., Tian, R., & Li, X. (2023). Uniformity evaluation and improvement technology of sandy clayey purple soil enhanced through microbially-induced calcite precipitation. Biogeotechnics, 1(4).
[28] Wang, Y., Konstantinou, C., Soga, K., Biscontin, G., & Kabla, A. J. (2022). Use of microfluidic experiments to optimize MICP treatment protocols for effective strength enhancement of MICP-treated sandy soils. Acta Geotechnica, 17(9), 3817-3838.
[29] Whiffin, V. S., van Paassen, L. A., & Harkes, M. P. (2007). Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, 24(5), 417-423.
[30] Yao, X., Huafeng, D., Jianlin, L., & Xingzhou, C. (2022). Shear performance and reinforcement mechanism of MICP-treated single fractured sandstone. Frontiers in Earth Science, 10.
[31] Zhang, J., Su, P., Wen, K., Li, Y., & Li, L. (2020). Mechanical Performance and Environmental Effect of Coal Fly Ash on MICP-Induced Soil Improvement. KSCE Journal of Civil Engineering, 24(11), 3189-3201.
[32] Zhang, M. S., Chiu, C. F., Zhou, Y. Z., & Wang, Y. N. (2024). Compression and water retention behavior of saline soil improved by MICP combined with activated carbon. Sci Rep, 14(1), 31484.
[33] Zhang, X., Chen, Y., Liu, H., Zhang, Z., & Ding, X. (2020). Performance evaluation of a MICP-treated calcareous sandy foundation using shake table tests. Soil Dynamics and Earthquake Engineering, 129.
[34] Zhang, X., Guo, J., Chen, Y., Han, Y., Yi, R., Gao, H., Liu, L., Liu, H., & Shen, Z. (2022). Mechanical Properties and Engineering Applications of Special Soils—Dynamic Shear Modulus and Damping of MICP-Treated Calcareous Sand at Low Strains. Applied Sciences, 12(23).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99051-
dc.description.abstract本研究旨在應用一種有效且環境友善的地盤改良技術——微生物誘導碳酸鈣沉澱法,於砂土改良上,瞭解其動態性質之變化。微生物誘導碳酸鈣沉澱法透過一系列生化反應促使方解石沉積於土壤孔隙中,藉此降低孔隙率與水力傳導性,顯著提升土壤強度。本研究以不同改良澆灌次數及不同養護齡期為主題,探討其對碳酸鈣沉澱行為與砂土動態力學性質之影響。實驗中改良液濃度固定為OD₆₀₀ = 1.0,養液採用0.5 M氯化鈣與0.5 M尿素等莫耳混合溶液。試體製備採單向注入方式,分別進行1、2、3與5次改良,其中改良1次與2次組設有7、14與21天養護條件,改良3次與5次者則固定養護7天。為評估微生物誘導碳酸鈣沉澱法改良效果,本研究亦以酸洗試驗、電腦斷層掃描與掃描式電子顯微鏡分析碳酸鈣沉澱量與分佈,並以共振柱試驗量測剪力模數與阻尼比等動態參數。試驗結果顯示,碳酸鈣沉澱量隨改良次數增加而顯著提升,顯示膠結反應可隨灌漿次數累積而增強。剪力模數亦隨養護齡期與改良次數提升而增加,反映碳酸鈣生成與結晶成長對土壤之勁度具有強化效果。阻尼比則於中高剪應變區顯現顯著提升,顯示膠結結構於變形過程中具有良好能量耗散能力。本研究確認了微生物誘導碳酸鈣沉澱技術在不同養護時間及多次改良條件下,能有效增強土壤動態力學性質,為地震易液化區域提供一種環境友善且永續的地盤改良解決方案。zh_TW
dc.description.abstractThis study aims to apply an effective and environmentally friendly ground improvement technique—Microbially Induced Calcite Precipitation (MICP)—to investigate the dynamic behavior of treated sandy soils. MICP promotes the precipitation of calcite within soil pores through a series of biochemical reactions, thereby reducing porosity and hydraulic conductivity, and significantly enhancing soil strength.
The experimental program focuses on evaluating the effects of varying grouting frequencies and curing periods on calcium carbonate precipitation and the dynamic mechanical properties of sand. The treatment solution was prepared at a fixed bacterial concentration (OD₆₀₀ = 1.0), using an equimolar mixture of 0.5 M calcium chloride and 0.5 M urea. Specimens were prepared via unidirectional injection and subjected to one, two, three, or five treatment cycles. For one-time and two-time treatments, curing durations of 7, 14, and 21 days were adopted, whereas three-time and five-time treatments were cured for 7 days.
To evaluate the effectiveness of microbially induced calcium carbonate precipitation (MICP), this study employed acid-washing tests, computed tomography (CT) scanning, and scanning electron microscopy (SEM) to analyze the amount and distribution of calcium carbonate. In addition, resonant column tests were conducted to measure dynamic properties such as shear modulus and damping ratio.
The results show that calcium carbonate content increased significantly with the number of treatment cycles, indicating that the cementation reaction is accumulative. The shear modulus also increased with curing duration and treatment frequency, reflecting the strengthening effects of calcite formation and crystal growth. Moreover, notable enhancements in damping ratio were observed under medium to high shear strains, suggesting that the cemented structure effectively dissipates energy during deformation.
This study confirms that MICP can effectively enhance the dynamic properties of sandy soils under varying curing times and multiple treatment cycles. It demonstrates the potential of this sustainable and eco-friendly technique as a viable ground improvement solution for liquefaction-prone regions.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:12:03Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T16:12:03Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 I
誌謝 II
摘要 IV
Abstract V
目次 VII
圖次 X
表次 XV
第 1 章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法 2
1.3 研究架構 3
第 2 章 文獻回顧 5
2.1 微生物誘導碳酸鈣沉澱 (MICP) 的原理與應用 5
2.1.1 微生物誘導碳酸鈣沉澱基本原理 5
2.1.2 MICP在土壤改良中的應用範疇 6
2.2 共振柱試驗原理 14
2.3 MICP改良對砂土剪力模數與阻尼比影響 16
2.4 MICP改良參數對效能影響之研究 19
2.4.1 灌漿次數 19
2.4.2 養護齡期 21
2.4.3 灌漿均勻性與沉澱分佈關係 25
第 3 章 試驗內容 31
3.1 試驗材料 31
3.1.1 砂土 31
3.1.2 菌株 32
3.1.3 培養基 34
3.2 改良液配製與培養 35
3.2.1 試驗材料與器材 35
3.2.2 凍菌 37
3.2.3 液態培養基配製 38
3.2.4 MICP改良液之配製流程 40
3.3 MICP改良試體製備 42
3.3.1 電腦斷層掃描試體製備 42
3.3.2 共振柱試體製備 44
3.4 碳酸鈣含量檢測 50
3.4.1 酸洗試驗 50
3.4.2 電腦斷層掃描 52
3.4.3 掃描式電子顯微鏡 (SEM) 56
3.5 共振柱試驗 57
3.5.1 設備介紹 57
3.5.2 試驗步驟 59
第 4 章 結果與討論 79
4.1 改良試體均勻性 80
4.1.1 酸洗試驗結果 80
4.1.2 電腦斷層掃描結果 84
4.1.3 掃描式電子顯微鏡結果 93
4.2 共振柱試驗結果 99
4.2.1 養護齡期比較 99
4.2.2 改良次數比較 107
4.3 討論 118
4.3.1 酸洗結果與電腦斷層掃描結果之交叉比對 118
4.3.2 掃描式電子顯微鏡觀察與元素分析之整合探討 120
4.3.3 剪力模數與阻尼比之整體變化趨勢 121
4.3.4 非線性行為與能量耗散機制推論 122
第 5 章 結論與建議 125
5.1 結論 125
5.2 建議 127
參考文獻 128
-
dc.language.isozh_TW-
dc.subject微生物誘導碳酸鈣沉澱zh_TW
dc.subject液化zh_TW
dc.subject共振柱試驗zh_TW
dc.subject剪力模數zh_TW
dc.subject阻尼比zh_TW
dc.subjectShear Modulusen
dc.subjectMicrobially Induced Calcite Precipitationen
dc.subjectLiquefactionen
dc.subjectResonant Column Testen
dc.subjectDamping Ratioen
dc.title由微生物誘導碳酸鈣沉澱改良砂土之動態性質研究zh_TW
dc.titleDynamic Properties of Sand Improvement via Microbially Induced Calcite Precipitationen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee卓雨璇;黃郁惟zh_TW
dc.contributor.oralexamcommitteeYu-Syuan Jhuo;Yu-Wei Hwangen
dc.subject.keyword微生物誘導碳酸鈣沉澱,液化,共振柱試驗,剪力模數,阻尼比,zh_TW
dc.subject.keywordMicrobially Induced Calcite Precipitation,Liquefaction,Resonant Column Test,Shear Modulus,Damping Ratio,en
dc.relation.page130-
dc.identifier.doi10.6342/NTU202503201-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-07-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2025-08-22-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf7.64 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved