Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99032
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor施上粟zh_TW
dc.contributor.advisorShang-Shu Shihen
dc.contributor.author張証惟zh_TW
dc.contributor.authorCheng-Wei Changen
dc.date.accessioned2025-08-21T16:07:36Z-
dc.date.available2025-08-22-
dc.date.copyright2025-08-21-
dc.date.issued2025-
dc.date.submitted2025-07-23-
dc.identifier.citationAdam, A. (2016). Finite element, adaptive spectral wave modelling Imperial College London].
Alongi, D. M. (2014). Carbon sequestration in mangrove forests. Carbon management, 3(3), 313-322.
Alongi, D. M., & Mukhopadhyay, S. K. (2015). Contribution of mangroves to coastal carbon cycling in low latitude seas. Agricultural and forest meteorology, 213, 266-272.
Cerón‐Souza, I., Gonzalez, E. G., Schwarzbach, A. E., Salas‐Leiva, D. E., Rivera‐Ocasio, E., Toro‐Perea, N., Bermingham, E., & McMillan, W. O. (2015). Contrasting demographic history and gene flow patterns of two mangrove species on either side of the C entral A merican I sthmus. Ecology and Evolution, 5(16), 3486-3499.
Chou, M.-Q., Lin, W.-J., Lin, C.-W., Wu, H.-H., & Lin, H.-J. (2022). Allometric equations may underestimate the contribution of fine roots to mangrove carbon sequestration. Science of The Total Environment, 833, 155032.
Chow, V.-T. (1959). Open-channel hydraulics / Ven-Te Chow. McGraw-Hill.
Cohen-Shacham, E., Walters, G., Janzen, C., & Maginnis, S. (2016). Nature-based solutions to address global societal challenges. IUCN: Gland, Switzerland, 97(2016), 2036.
Costanza, R., d'Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'neill, R. V., & Paruelo, J. (1997). The value of the world's ecosystem services and natural capital. Nature, 387(6630), 253-260.
Davis, J. H. (1940). The Ecology and Geologic Role of Mangroves in Florida. Carnegie Institution of Washington Publication, 305–412.
De Ryck, D. J., Robert, E. M., Schmitz, N., Van der Stocken, T., Di Nitto, D., Dahdouh-Guebas, F., & Koedam, N. (2012). Size does matter, but not only size: Two alternative dispersal strategies for viviparous mangrove propagules. Aquatic botany, 103, 66-73.
Di Nitto, D., Erftemeijer, P., Van Beek, J., Dahdouh-Guebas, F., Higazi, L., Quisthoudt, K., Jayatissa, L., & Koedam, N. (2013). Modelling drivers of mangrove propagule dispersal and restoration of abandoned shrimp farms. Biogeosciences, 10(7), 5095-5113.
Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., & Kanninen, M. (2011). Mangroves among the most carbon-rich forests in the tropics. Nature geoscience, 4(5), 293-297.
Ehrlich, P. R., & Mooney, H. A. (1983). Extinction, Substitution, and Ecosystem Services. BioScience, 33(4), 248-254. https://doi.org/10.2307/1309037
Epps, M. (2021). IUCN NbS template. UNFCCC. https://unfccc.int/sites/default/files/resource/RD13%20Presentation%20Day%202%20MEpps%20.pdf
Goda, Y. (1985). Random Seas and the Design of Maritime Structures.
Hsueh, M.-L., & Lee, H.-H. (2000). Diversity and distribution of the mangrove forests in Taiwan. Wetlands Ecology and Management, 8(4), 233-242.
Huang, S. C., Shih, S. S., Ho, Y. S., Chen, C. P., & Hsieh, H. L. (2012). Restoration of shorebird‐roosting mudflats by partial removal of estuarine mangroves in northern Taiwan. Restoration Ecology, 20(1), 76-84.
Jennerjahn, T. C. (2020). Relevance and magnitude of'Blue Carbon'storage in mangrove sediments: Carbon accumulation rates vs. stocks, sources vs. sinks. Estuarine, Coastal and Shelf Science, 247, 107027.
Kimura, M., & Weiss, G. H. (1964). The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics, 49(4), 561.
Komiyama, A., Chimchome, V., & Kongsangchai, J. (1992). Dispersal patterns of mangrove propagules. A preliminary study on Rhizophora mucronata.
Lai, Y. G. (2023). Integrated flow-wave-sediment modeling at Tamsui Estuarywith SRH-2D Coast.
Lai, Y. G. (2024). An Integrated Current–Wave–Sediment Model for Coastal and Estuary Simulation. Water, 16(3), 415. https://www.mdpi.com/2073-4441/16/3/415
Lee, H.-Y., & Shih, S.-S. (2004). Impacts of vegetation changes on the hydraulic and sediment transport characteristics in Guandu mangrove wetland. Ecological Engineering, 23(2), 85-94. https://doi.org/https://doi.org/10.1016/j.ecoleng.2004.07.003
Lee, K.-Y., Shih, S. S., & Huang, Z.-Z. (2022). Mangrove colonization on tidal flats causes straightened tidal channels and consequent changes in the hydrodynamic gradient and siltation potential. Journal of Environmental Management, 314, 115058.
Lesser, G. R., Roelvink, J. A., van Kester, J. A. T. M., & Stelling, G. S. (2004). Development and validation of a three-dimensional morphological model. Coastal Engineering, 51(8), 883-915. https://doi.org/https://doi.org/10.1016/j.coastaleng.2004.07.014
Lin, C.-W., Lin, W.-J., Ho, C.-W., Kao, Y.-C., Yong, Z.-J., & Lin, H.-J. (2024). Flushing emissions of methane and carbon dioxide from mangrove soils during tidal cycles. Science of The Total Environment, 919, 170768.
MacKinnon, K., Sobrevila, C., & Hickey, V. (2008). Biodiversity, climate change, and adaptation: nature-based solutions from the World Bank portfolio.
MacNae, W. (1969). A general account of the fauna and flora of mangrove swamps and forests in the Indo-West-Pacific region. In Advances in marine biology (Vol. 6, pp. 73-270). Elsevier.
Mitsuyasu, H., Tasai, F., Suhara, T., Mizuno, S., Ohkusu, M., Honda, T., & Rikiishi, K. (1975). Observations of the directional spectrum of ocean WavesUsing a cloverleaf buoy. Journal of Physical Oceanography, 5(4), 750-760.
Mori, G. M., Zucchi, M. I., Sampaio, I., & Souza, A. P. (2015). Species distribution and introgressive hybridization of two Avicennia species from the Western Hemisphere unveiled by phylogeographic patterns. BMC Evolutionary Biology, 15, 1-15.
Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10(3), 282-290. https://doi.org/https://doi.org/10.1016/0022-1694(70)90255-6
Nepf, H. M. (2012). Hydrodynamics of vegetated channels. Journal of Hydraulic Research, 50(3), 262-279.
Ngeve, M. N., Van der Stocken, T., Menemenlis, D., Koedam, N., & Triest, L. (2017a). Hidden founders? Strong bottlenecks and fine-scale genetic structure in mangrove populations of the Cameroon Estuary complex. Hydrobiologia, 803, 189-207.
Ngeve, M. N., Van der Stocken, T., Sierens, T., Koedam, N., & Triest, L. (2017b). Bidirectional gene flow on a mangrove river landscape and between-catchment dispersal of Rhizophora racemosa (Rhizophoraceae). Hydrobiologia, 790, 93-108.
Ritter, A., & Muñoz-Carpena, R. (2013). Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments. Journal of Hydrology, 480, 33-45. https://doi.org/https://doi.org/10.1016/j.jhydrol.2012.12.004
Rodi, W. (1993). Turbulence models and their application in hydraulics. Balkema.
Ruangpan, L., Vojinovic, Z., Di Sabatino, S., Leo, L. S., Capobianco, V., Oen, A. M. P., McClain, M. E., & Lopez-Gunn, E. (2020). Nature-based solutions for hydro-meteorological risk reduction: a state-of-the-art review of the research area. Nat. Hazards Earth Syst. Sci., 20(1), 243-270. https://doi.org/10.5194/nhess-20-243-2020
Sheng, Y. P., Lapetina, A., & Ma, G. (2012). The reduction of storm surge by vegetation canopies: Three‐dimensional simulations. Geophysical research letters, 39(20).
Shih, S.-S. (2020). Spatial Habitat Suitability Models of Mangroves with Kandelia obovata. Forests, 11(4), 477. https://www.mdpi.com/1999-4907/11/4/477
Shih, S.-S., & Cheng, T.-Y. (2022). Geomorphological dynamics of tidal channels and flats in mangrove swamps. Estuarine, Coastal and Shelf Science, 265, 107704.
Shih, S.-S., Ding, T.-S., Chen, C.-P., Huang, S.-C., & Hsieh, H.-L. (2021). Management recommendations based on physical forces driving land-covers and habitat preferences of polychaete and bird assemblages for a mangrove-vegetated estuary. Wetlands, 41(2), 19.
Shih, S.-S., Hsieh, H.-L., Chen, P.-H., Chen, C.-P., & Lin, H.-J. (2015a). Tradeoffs between reducing flood risks and storing carbon stocks in mangroves. Ocean & Coastal Management, 105, 116-126.
Shih, S.-S., Hsu, W.-C., & Hsu, Y.-W. (2023). Waterline digital elevation model development to quantify inundation duration and coastal protection of tidal wetlands. Science of The Total Environment, 874, 162519.
Shih, S.-S., Huang, Z.-Z., & Hsu, Y.-W. (2022). Nature-based solutions on floodplain restoration with coupled propagule dispersal simulation and stepping-stone approach to predict mangrove encroachment in an estuary. Science of The Total Environment, 851, 158097. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.158097
Shih, S.-S., Hwang, G.-W., Hsieh, H.-L., Chen, C.-P., & Chen, Y.-C. (2015b). Geomorphologic dynamics and maintenance following mudflat, creek and pond formation in an estuarine mangrove wetland. Ecological Engineering, 82, 590-595.
Sousa, W. P., Kennedy, P. G., Mitchell, B. J., & Ordóñez L, B. M. (2007). Supply‐side ecology in mangroves: do propagule dispersal and seedling establishment explain forest structure? Ecological monographs, 77(1), 53-76.
Taha, H. A. (2017). Operations Research: An Introduction. Pearson Education.
Tansley, A. G., & Fritsch, F. E. (1905). Sketches of vegetation at home and abroad. I. The flora of the Ceylon littoral. New Phytologist, 4(1), 1-17.
Tomlinson, P. (1986). The Botany of Mangroves Cambridge University Press London. Tully K, Gedan K, Epanchin-Niell R et al (2019) The invisible ood: The chemistry, ecology, and social implications of coastal saltwater intrusion. BioSci, 69(5), 368-378.
Van der Stocken, T., Carroll, D., Menemenlis, D., Simard, M., & Koedam, N. (2019a). Global-scale dispersal and connectivity in mangroves. Proceedings of the National Academy of Sciences, 116(3), 915-922.
Van der Stocken, T., De Ryck, D. J., Balke, T., Bouma, T. J., Dahdouh-Guebas, F., & Koedam, N. (2013). The role of wind in hydrochorous mangrove propagule dispersal. Biogeosciences, 10(6), 3635-3647.
Van der Stocken, T., De Ryck, D. J., Vanschoenwinkel, B., Deboelpaep, E., Bouma, T. J., Dahdouh-Guebas, F., & Koedam, N. (2015). Impact of landscape structure on propagule dispersal in mangrove forests. Marine Ecology Progress Series, 524, 95-106.
Van der Stocken, T., & Menemenlis, D. (2017). Modelling mangrove propagule dispersal trajectories using high-resolution estimates of ocean surface winds and currents. Biotropica, 49(4), 472-481. https://doi.org/https://doi.org/10.1111/btp.12440
Van der Stocken, T., Wee, A. K., De Ryck, D. J., Vanschoenwinkel, B., Friess, D. A., Dahdouh‐Guebas, F., Simard, M., Koedam, N., & Webb, E. L. (2019b). A general framework for propagule dispersal in mangroves. Biological Reviews, 94(4), 1547-1575.
van Hespen, R., Hu, Z., Borsje, B., De Dominicis, M., Friess, D. A., Jevrejeva, S., Kleinhans, M. G., Maza, M., van Bijsterveldt, C. E. J., Van der Stocken, T., van Wesenbeeck, B., Xie, D., & Bouma, T. J. (2023). Mangrove forests as a nature-based solution for coastal flood protection: Biophysical and ecological considerations. Water Science and Engineering, 16(1), 1-13. https://doi.org/https://doi.org/10.1016/j.wse.2022.10.004
Yamashiro, M. (1961). Ecological study of Kandelia candel (L.) Druce with special reference to the structure and falling of the seedlings.
Yang, S.-C., Shih, S.-S., Hwang, G.-W., Adams, J. B., Lee, H.-Y., & Chen, C.-P. (2013). The salinity gradient influences on the inundation tolerance thresholds of mangrove forests. Ecological Engineering, 51, 59-65. https://doi.org/https://doi.org/10.1016/j.ecoleng.2012.12.049
Zong, L., & Nepf, H. (2012). Vortex development behind a finite porous obstruction in a channel. Journal of Fluid Mechanics, 691, 368-391.
王丰聖. (2023). 紅樹林作為國土保育自然解方之潛力評估 國立臺灣大學]. 臺灣博碩士論文知識加值系統. 台北市. https://hdl.handle.net/11296/aug88b
林幸助. (2024). 臺灣海洋碳匯潛力復育點調查與評估計畫:期末報告(修正版). 海洋委員會海洋保育署.
施習德, 許秋容, & 楊遠波. (2025). 臺灣紅樹林分布的變遷. 國立臺灣博物館學刊.
胡敬華. (1959). 臺灣南部紅樹林植物之研究. 臺灣省立博物館科學年刊, 2, 77-95.
許偉斌. (2020). 淡水河水筆仔胎生苗移流及延散特性研究 國立臺灣大學]. 臺灣博碩士論文知識加值系統. 台北市. https://hdl.handle.net/11296/q98j8b
黃中澤. (2021). 淡水河紅樹林擴散模式發展及防洪與生態保育權衡探討 國立臺灣大學]. 臺灣博碩士論文知識加值系統. 台北市. https://hdl.handle.net/11296/jz3q6j
蔡政翰. (2023). 海岸裂流監測與預警技術研究(3/3).
薛美莉. (1995). 消失中的濕地森林 : 記臺灣的紅樹林 / 薛美莉著. 臺灣省特有生物硏究中心.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99032-
dc.description.abstract全球氣候變遷加劇極端氣象事件發生頻率,顯著提升沿海區域災害風險,紅樹林因具備波浪消能、固砂、維持生態多樣性及碳儲存等多重生態系統服務功能,故被廣泛視為取代傳統硬體結構物作為海岸防護的自然解方(Nature-based Solution, NbS),可提供兼具防災及生態效益的生態系統防減災永續策略(Ecosystem-based DRR)。水筆仔(Kandelia obovata)為臺灣北部的優勢種紅樹林植物,主要分布於淡水河中下游河段兩岸,於局部區域甚至因過度生長導致通洪能力降低。相對的,臺灣北部海岸帶卻鮮見紅樹林的分布,因此,探討紅樹林在海岸帶的擴散機制,並提出具水理及胎生苗擴散基礎的復育策略,有助於檢討臺灣北部沿海永續治理方略。
本研究旨在透過整合多種數值模式及經驗公式制定出適合臺灣北部海岸帶的紅樹林復育策略,分別以水文特性評估水筆仔於臺灣北部海岸帶的潛在棲地生長環境及以水理特性分析水筆仔胎生苗的擴散軌跡。使用SRH-Coast水理模式模擬淡水河系中下游及其鄰近之北臺灣海岸帶的水動力,該模式整合了「風場、潮汐、波浪及河道流場」的交互作用,並根據此水理模擬結果銜接PTM粒子追蹤模式模擬水筆仔胎生苗的擴散軌跡。
結果顯示,由淡水河道內紅樹林釋放的水筆仔胎生苗有機會擴散至河道內的灘地並建立新棲地,但受限於河口地區複雜潮波流的水動力流場,不易直接擴散至海岸帶。因此,本研究再引入SSA墊腳石法概念,在數值模式中於研究區域特定地點釋放水筆仔胎生苗,以觀察其是否能夠透過水動力的方式擴散至海岸帶的潛在棲地,模擬結果發現於大部分區域釋放水筆仔胎生苗,其主要軌跡呈現胎生苗在小範圍內進行循環往復漂移的現象,僅有少數具有明顯離岸流區域釋放水筆仔胎生苗,才能夠實現長距離擴張(Long Distance Dispersal, LDD)並抵達多個海岸帶潛在棲地。在前述選定之八個潛在棲地中,僅有少數能夠實現透過胎生苗的飄流入植而達成種源之間的交換,大部分的潛在棲地,都受限於地形、水流及大型結構物等因素,導致其漂移範圍僅限於釋放源附近。綜上所述,當水筆仔胎生苗由海岸帶特定地點釋放並抵達潛在棲地著生後,僅有很小的機率實現長距離擴張LDD並再次抵達其他潛在棲地而有機會著生。本研究同時以HSI棲地適合度指標評估海岸帶潛在棲地,發現於淺水灣沙灘及寶斗厝沙灘的向海側HSI指標較高,而其餘潛在棲地則只有少數區域有較高的HSI指標,因此建議可以優先針對這些區域進行復育,有助於提升成功機率。
最後,假設紅樹林成功建立於海岸帶潛在棲地,以真實颱洪事件進行水理模擬,評估極端氣候條件下紅樹林對於海岸防護的效果,並比較不同的紅樹林覆蓋率及排列方式對水理條件的影響,期望能針對各個海岸帶潛在棲地率定出最佳分布及覆蓋率。根據評估結果,無論覆蓋率高低,在三種不同的紅樹林分布情境下,發現當紅樹林全面分布於潛在棲地時,各項海岸防護指標表現最差,顯示流速、剪應力上升,且浸淹體積增加。而最佳配置情境則與各潛在棲地的地形及流場等複雜綜合條件有關,需依個別場址進行討論分析。
zh_TW
dc.description.abstractGlobal climate change has increased the frequency of extreme weather events, significantly increasing disaster risk in coastal zones. Mangroves provide multiple ecosystem services, including wave energy dissipation, sediment retention, maintenance of ecological diversity, and carbon storage. In recent years, mangroves have been widely regarded as a Nature-based Solution (NbS) to replace traditional engineered structures for coastal protection, representing a sustainable strategy with both disaster mitigation and ecological benefits. Kandelia obovata is the dominant mangrove species in northern Taiwan, mainly distributed on both sides of the middle reach and downstream of the Tamsui River. In contrast, mangroves are rarely distributed in the coastal zone of northern Taiwan. Therefore, exploring the dispersal mechanisms of mangroves and proposing a restoration strategy based on hydraulic conditions can help achieve NbS of both coastal protection and habitat restoration, as well as provide a crucial foundation for the sustainable management of the coastal zone in northern Taiwan.
This study aims to develop a mangrove restoration strategy for the coastal zone of northern Taiwan by integrating multiple numerical models and empirical formulas. The hydrological characteristics were used to evaluate the suitability of the potential habitats for Kandelia obovata in the coastal zone of northern Taiwan, and the hydraulic characteristics were utilized to analyze the dispersal trajectories of Kandelia obovata propagules. The hydraulic model SRH-Coast was constructed to simulate the hydrodynamics of the middle and lower reaches of the Tamsui River and the coastal zone of northern Taiwan. The model integrates the comprehensive hydrodynamics induced by the combined effects of wind, tide, waves, and river currents. The particle tracking model PTM was then executed to estimate the dispersal trajectories of Kandelia obovata propagules based on the hydrodynamic simulation results.
The results showed that Kandelia obovata propagules released from mangroves in Tamsui River have the potential to drift to mudflats on both sides of the river and colonization. However, complex estuarine hydrodynamics restrict their transport capacity and cannot drift to the coastal zone. Therefore, this study combined the Stepping Stone Approach (SSA) concept to simulate the artificial release of Kandelia obovata propagules at specific locations in the coastal zone and observe whether they can reach potential habitats in the coastal zone through hydrodynamics. According to simulation results, Kandelia obovata propagules released from most areas can only drift in a small range. Long-distance dispersal (LDD) is possible and can reach multiple potential habitats in the coastal zone, only releasing from a few specific locations. Among eight potential habitats, only a few can achieve propagule exchange. Kandelia obovata propagules released from most potential habitats are restricted by factors such as terrain, hydrodynamics, and large structures, which limit the dispersal range only around the release source. In summary, when Kandelia obovata propagules are released from specific locations in the coastal zone and reach potential habitats for colonization, there is only a small probability that they can achieve LDD and reach other potential habitats again for colonization. This study also utilized the habitat suitability index (HSI) to evaluate potential habitats in the coastal zone and found that the HSI is higher on the seaside of Qianshuiwan Beach and Baodoucuo Beach. In comparison, only a few areas in the remaining potential habitats have a higher HSI. Restoration can be initiated in these areas to enhance the opportunity for successful colonization.
Finally, assuming that mangroves successfully colonize the potential habitats in the coastal zone, hydraulic simulations are conducted under a real typhoon event to evaluate the mangroves' capability in coastal protection under extreme climate conditions. The optimal distribution and coverage ratio of each potential habitat can be determined. According to the scenario simulation results, regardless of the mangrove coverage rate, the configuration with whole coverage of potential habitats consistently exhibited the poorest performance across coastal protection indicators. This condition was associated with increased flow velocity and shear stress, as well as greater inundation volume. The optimal mangrove distribution configuration varies depending on the specific topographic and hydrodynamic conditions of each potential habitat and thus requires site-specific analysis and discussion.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-21T16:07:36Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-21T16:07:36Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 I
中文摘要 II
ABSTRACT IV
目次 VI
圖次 VIII
表次 XI
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 2
1.3 論文架構 2
第二章 文獻回顧 4
2.1 紅樹林植物 4
2.2 臺灣紅樹林的變遷及分布 5
2.3 紅樹林適生環境 6
2.4 紅樹林生態系統服務 7
2.5 NBS自然解方 8
2.6 紅樹林繁殖體漂移實驗及模擬 9
第三章 研究方法 13
3.1 研究流程 13
3.2 研究區域 14
3.3 SRH-COAST水理模式 17
3.3.1 流場模組 18
3.3.2 波浪模組 21
3.3.3 結構物阻力計算 26
3.4 PTM粒子追蹤模式 26
3.5 HSI棲地適合度指標 31
3.6 SSA墊腳石法 35
第四章 模式建立及驗證 37
4.1 資料蒐集及整理 37
4.1.1 地形資料 37
4.1.2 水文資料 38
4.2 SRH-COAST水理模式 45
4.2.1 模式建立 45
4.2.2 模擬結果與驗證 48
4.3 PTM粒子追蹤模式 52
4.3.1 模式建立 52
4.3.2 模擬結果與驗證 55
4.4 HSI棲地適合度指標 84
4.4.1 IF浸淹頻率分析結果 84
4.4.2 SI適合度指標分析結果 88
第五章 颱洪情境模擬分析 92
5.1 颱洪事件水文條件 92
5.2 建立潛在棲地 97
5.3 評估海岸防護潛力 102
第六章 結論與建議 113
6.1 結論 113
6.2 建議 115
參考文獻 117
附錄 123
-
dc.language.isozh_TW-
dc.subject紅樹林zh_TW
dc.subject水筆仔zh_TW
dc.subject胎生苗擴散zh_TW
dc.subjectNbS自然解方zh_TW
dc.subject海岸防護zh_TW
dc.subjectPropagule Dispersalen
dc.subjectMangrovesen
dc.subjectCoastal Protectionen
dc.subjectNbSen
dc.subjectKandelia obovataen
dc.title紅樹林作為海岸防護自然解方的擴散機制及復育策略zh_TW
dc.titleDispersal Mechanisms and Restoration Strategies of Mangroves as a Nature-based Solution for Coastal Protectionen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林幸助;游晟暐zh_TW
dc.contributor.oralexamcommitteeHsing-Juh Lin;Cheng-Wei Yuen
dc.subject.keyword紅樹林,水筆仔,胎生苗擴散,NbS自然解方,海岸防護,zh_TW
dc.subject.keywordMangroves,Kandelia obovata,Propagule Dispersal,NbS,Coastal Protection,en
dc.relation.page132-
dc.identifier.doi10.6342/NTU202501578-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-25-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2025-08-22-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf10.9 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved