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ABSTRACT

Global climate change has increased the frequency of extreme weather events,
significantly increasing disaster risk in coastal zones. Mangroves provide multiple
ecosystem services, including wave energy dissipation, sediment retention, maintenance
of ecological diversity, and carbon storage. In recent years, mangroves have been widely
regarded as a Nature-based Solution (NbS) to replace traditional engineered structures for
coastal protection, representing a sustainable strategy with both disaster mitigation and
ecological benefits. Kandelia obovata is the dominant mangrove species in northern
Taiwan, mainly distributed on both sides of the middle reach and downstream of the
Tamsui River. In contrast, mangroves are rarely distributed in the coastal zone of northern
Taiwan. Therefore, exploring the dispersal mechanisms of mangroves and proposing a
restoration strategy based on hydraulic conditions can help achieve NbS of both coastal
protection and habitat restoration, as well as provide a crucial foundation for the

sustainable management of the coastal zone in northern Taiwan.

This study aims to develop a mangrove restoration strategy for the coastal zone of
northern Taiwan by integrating multiple numerical models and empirical formulas. The
hydrological characteristics were used to evaluate the suitability of the potential habitats
for Kandelia obovata in the coastal zone of northern Taiwan, and the hydraulic
characteristics were utilized to analyze the dispersal trajectories of Kandelia obovata
propagules. The hydraulic model SRH-Coast was constructed to simulate the
hydrodynamics of the middle and lower reaches of the Tamsui River and the coastal zone
of northern Taiwan. The model integrates the comprehensive hydrodynamics induced by
the combined effects of wind, tide, waves, and river currents. The particle tracking model
PTM was then executed to estimate the dispersal trajectories of Kandelia obovata

propagules based on the hydrodynamic simulation results.

The results showed that Kandelia obovata propagules released from mangroves in Tamsui
River have the potential to drift to mudflats on both sides of the river and colonization.
However, complex estuarine hydrodynamics restrict their transport capacity and cannot
drift to the coastal zone. Therefore, this study combined the Stepping Stone Approach

(SSA) concept to simulate the artificial release of Kandelia obovata propagules at specific
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locations in the coastal zone and observe whether they can reach potential habitats in the
coastal zone through hydrodynamics. According to simulation results, Kandelia obovata
propagules released from most areas can only drift in a small range. Long-distance
dispersal (LDD) is possible and can reach multiple potential habitats in the coastal zone,
only releasing from a few specific locations. Among eight potential habitats, only a few
can achieve propagule exchange. Kandelia obovata propagules released from most
potential habitats are restricted by factors such as terrain, hydrodynamics, and large
structures, which limit the dispersal range only around the release source. In summary,
when Kandelia obovata propagules are released from specific locations in the coastal
zone and reach potential habitats for colonization, there is only a small probability that
they can achieve LDD and reach other potential habitats again for colonization. This study
also utilized the habitat suitability index (HSI) to evaluate potential habitats in the coastal
zone and found that the HSI is higher on the seaside of Qianshuiwan Beach and
Baodoucuo Beach. In comparison, only a few areas in the remaining potential habitats
have a higher HSI. Restoration can be initiated in these areas to enhance the opportunity

for successful colonization.

Finally, assuming that mangroves successfully colonize the potential habitats in the
coastal zone, hydraulic simulations are conducted under a real typhoon event to evaluate
the mangroves' capability in coastal protection under extreme climate conditions. The
optimal distribution and coverage ratio of each potential habitat can be determined.
According to the scenario simulation results, regardless of the mangrove coverage rate,
the configuration with whole coverage of potential habitats consistently exhibited the
poorest performance across coastal protection indicators. This condition was associated
with increased flow velocity and shear stress, as well as greater inundation volume. The
optimal mangrove distribution configuration varies depending on the specific topographic
and hydrodynamic conditions of each potential habitat and thus requires site-specific

analysis and discussion.

Keywords : Mangroves, Kandelia obovata, Propagule Dispersal, NbS, Coastal Protection
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# R (1959)% FEE 3T (1995)30F £4$Hil & o fihd £ Rt g o ¢
FOOER KR BAR RS CBBEAY

A ARG A2 K Akl Y IR R MY 20°C IR 0 R F A bR

ﬁﬁ%ﬁﬁﬁ#éﬂw&ﬁﬁ?ﬁ%&ibﬁﬁIWCTiﬁ’ﬁ$iﬁgém%’

R e AR @AY Gk 2 N IR B FI ik & ik
FEALMN 005 BT/ RiLTENERE > or BRI ZEALESH RGN
E@ﬁﬁ%@?‘%¢ﬁfﬂ*4@pﬁiﬁﬁﬁ&ﬁ&ﬁ%ﬁﬁﬁﬁ%i%%%
B EE A C A AKBAR RS T AL R B R G et p
HEf BB ™ s 2 G oa 4 S E RS Bt R 0 £
PHARP R R EFE AR BT REE pEFE 1 2 10 ) pF(Yang

etal,, 2013); i fHhiEdrif £ 2 B0 b 2 0 5 50T 4k i 4 R fE

pa;
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E«ﬁﬁﬁﬁ%i%iﬁhﬁ%ﬁ%ié’ﬂ&’éﬁ%ﬁﬁ%‘ﬁriﬁﬁié

“ﬁﬁﬁ#4Eﬁ@ﬁ’Fﬂ’%ﬁﬁ%ﬁﬁﬁ%iﬁﬂnﬁ%ﬁ%ﬁkﬁa

BROBHREF F2 22 8 AP r 2 W2 BP 30 RaRT 7 ZRH 0§ 2
FWE O RAREESE S SRR EF A

24 pHRE G4 IRTE

4 B & SepRix(Ecosystem services)— 3## % ¢ Ehrlich and Mooney (1983)#% !

WP R ML A AT S N N R A A SN E B P B e G
ERERAL ARANORR A IF T AR IR N deoRRE T S F
MEE AFIEW LT F AL ARG R N AR B o 4 EREY
Ao TP EIE R ARA R K MR EIF S PRI B S 5RG sten 34 o @ Costanza
et al. (1997)RI & g =t -2 & 5 SePRAFH B {1 2% R 5 23k ¢ R g Ay

B-BAP I G2 e AEE 178 S35 8 ToE ol w95 33

o B AR - R RT A A IR E RS KT R

LA BB E A F B HAE LA AR T A RIRAR O A A D

EX
PR 2 BT RT AR A H

Ry & B 2005 & 3% I enF AR E 4 & 5 5 (Millennium Ecosystem
Assessment, MA) » ‘= ke 5 % SLIRFET 1Y ETF fEw R F T BBPRAE
B AR ~ L FPRIRE 2 L PRI o kX PRF+(Provisioning Services) 0 iz k3 4
£~%H~%ﬁiﬁ%§ﬁ§’{ﬁﬁ%%gﬁﬁifxﬁi—;ﬁ&mﬁ
(Regulating Services) > ¢ 7 7 BB 3 2 pdt i K FEN cFFFE B AP E
RV e B R R T %8 0 L #F PRI (Supporting Services) i
B EgE S o g adF 2 SR PR ERE A RE LT e
%~ P5%k 5 ¢ it JRI%(Cultural Services) » i F 1 %25~ RFF 2 2 iRk T E 5w 0 &2

BHE? B ERE 2 R ATERADFEL DL o

PR R SIRIEET F R B NTIRI M LR T A F GRB IR g Y

_—

3 Jg % ¢ A # 3K 5 (Green Infrastructure, GI) 2 £ 3t 4 i & 3 e if 7%
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(Ecosystem-based Adaptation, EbA) » &4k ehfag2 ¢ 4™ T AL 7] » 5 38 B O 5 0F
SRR TRy B ERF B HE 2 K (United Nations Framework
Convention on Climate Change, UNFCCC)~ # # % #& % 2> ¥ (Convention on Biological
Diversity, CBD) 2 i» 5 j& & % A (Sendai Framework for Disaster Risk Reduction,
SFDRR) % > F]pt > 2 f& % SLpRBAAR 5 5 F # % % B # i (Climate Change
Adaptation, CCA) ~ F# j ¢ (Disaster Risk Reduction, DRR) # A § # B p 1%
(Sustainable Development Goals, SDGs):3 »<+ £ (Ruangpan et al., 2020) °

25 NbS p 2K fz-

i & ko p R f# > (Nature-based Solution, NbS) e 2 3¢ # ] p J& 7 R iLehE /2 2
Bt o 5 HF ERE A HRETEEBEFE DR E 0 pRfED NS chin g
B 5 3t 2008 & d £ B 4277 (World Bank)#74& ! (MacKinnon et al., 2008) » B p &
{%2£ 73 2 (International Union for Conservation of Nature, [IUCN)#-H % & 2 37
B s AR EAoMRAR P R A AR e J K S g e e SN R A
€ PR PR A REARAL A B 8 R E | (Epps, 2021) -

pERfE> NBS P pres AR ZE* R X ~Mma 2 RFRE 2~ BB AR
F3G 0SS FRAFHEEDLL Lo Tl L BEFRE BE LR Br-p R R
2 NbS Hp »pr L T 4o 0 B &7 4o MR B 3 (Low Impact Developments,
LIDs) ~ & & ¢ 72 3 5 (Best Management Practices, BMPs) ~ -k 57 1435 7 3% 3+(Water
Sensitive Urban Design, WSUD) ~ X & “f:fi'r‘? -k % % (Sustainable Urban Drainage
Systems, SuDS) ~ 2 i 7 & L T h & (Ecosystem-based Disaster Risk Reduction, Eco-
DRR)~ & % £ # % *5 (Blue-Green Infrastructure, BGI)~ %t p! % ¢ 5z % (European Green
Deal) ~ P 4 4 % # 1+ X% 2030(EU Biodiversity Strategy for 2030)% 2.4 & #74% 7|
1 GINEbA 35 i MEF SRt A F 0 p AR RS NbS ehjls ¥ § Bl 3% ~
TEXREBEEFEE AFFEPEREL L EaRG o

Cohen-Shacham et al. (2016)4% 11§ . p 2Rf2=> NbS 17 &1 & = 2 > & W4
£ = (Restoration) ~ 4 % ;% 4% % = (Issue-specific) ~ # # 3% *s (Infrastructure) ~ ¢ 32
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(Management) % & (Protect) o # ¢ T4 5 | g 4 53 Vi L pdfand ik i
Ao i e AR R R T T GREE e ) RS EHPF R SRR D

48 k%> & 27 EbA % Eco-DRR % {2 2y 4 5T A %% | PlENp R L

>

(Fi:

B%mm%@»@%mzﬁﬁﬁ%’#jﬁ%@%%‘iﬁ%?\%@ﬁﬁﬁﬁﬁ
s dele BGL et g - bl4e % B8 ~ kg ERF 3 SR A L2
Foa s E p RS NDS hivi e HEF AL g 2 BEL R LR
%’ﬁ‘ FEWA B A s B R e sl hladd WAL S F SRR R
BERN R - FT BAE RV HEPAFELERY CH LR P iR A AR
4 4 % %7 > Ruangpanetal. (2020)~ #—k FiRAF R * ~ 2 45 F i
AREFORESS B0 g RIES NDS 0P fRdevk o R4 2 NbS 2 Eco-
RR ¢ 3£ : p ZAet% (e.g., Shihetal.2015a) ~ # # % x4+ (e.g., Huangetal. 2012;

\

Shih etal. 2021) ~ A% % (e.g., Shihetal. 2023) ~ i E P Fe7 4p a4F (e.g., Lecet
al. 2022; Shih et al. 2015b; Shih and Cheng 2022 ) % -

ED

' \nfrastructure
ecf‘“

o,,s?
ik e

B 2.5-1~ 24 f& & %p #Af%> NbS #£ 4 Bl(Cohen-Shacham et al., 2016)

26 wHAHERAEMES R R HHR

G SRR S EIPE 0 £ 0 R LS B - e 1T S
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o0 R IE 4

@ % (Van der Stocken et al., 2013; Van der Stocken et al., 2015) ~ K I firks

t\ﬁs

%% 78 %82 # 4% (Van der Stocken et al., 2019a; Van der Stocken & Menemenlis,

\rm

2017)% i} & % 4% K F]4 47 (Ceron-Souza et al., 2015; Mori et al., 2015) » H ¢ %5
BEH T RIT LI A Ems g gEsI P AR A E
(L P e 2 e L#@@Fﬁ??ﬁ’ﬁﬁiﬁﬁﬁ?ﬁﬁﬁ?ﬁ
PR RAMT R ERE S AR S R ARSI PR
Pl E R FE S H RS - A e A ARt E Y R
Wae F IR P B RSREA AP P X I ROIEFE X I|H 8 F
B @ B @R LA R AR R N R P S Bk g aE o fr ik A ek
T, @iz @A 5 e o Bt LY AR RS g 2 2 0
A B EFF L PFRET R R S By P SRE I A SR B A A D

_3

H

4
F
-

i_‘—
B

Van der Stocken et al. (2019b)A532 5 1T > 3R 444 S AHRF R B F [ T > &
TR AL MWL PRI e i i R R ERRE E B2
M & +7 > Yamashiro (1961) e p *37 i @3-k L G254 5 > FE B30 X »
PR BN T EBEER I AZWE 50 m o A RS @ 3% (Short Distance
Dispersal, SDD) ; Komiyama et al. (1992) L_? Remig pP B2y HREaEH 0y
1~45122 31 % 4% wfc > LT 68%:% 5 L A JE4E-| > 300m > T 5T B
ko< EREEAE S 1210m 0 @} peendo S E A EREEA 40T P54 485 m 5 De Ryck
etal. (2012) te ¥ I ch— fuis BT HRE wB e BT AN A5 2 P FFEE
oo I B REE IR BREE S ESRPE L 60 m o PR F S 2
HAEHRZREES  EREAMEZ G o HEBHE oo T Ak S
% % 12 90% ; Van der Stocken et al. (2013)% Van der Stocken et al. (2015)4 %] ¥ 7
P E PR T JREAN PR PE AT AME L ESIERY 2
2783m @ P R B R A R A RS R A 150m o FBT e s AT
gk 4 i Kt R HEBIERERCE m AP TR L anRAE2 - NP p R
TR AN T RAP T RBRAFRDRE S BB T A B AR QW,%

P A% 5 Sousaetal 2007) T £ 5 A A i RAOR A T A- B

10
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TN w oo g IR A BEA 2L Y B $ F LK R4 ® 3% (Long Distance Dispersal,
LDD) > = SRR S 80% 0 ¥ FEEw T F R T 60% 0 BT T LM
W a0 TR EREE A D BcF L FEYE B 3% LDD 0% s i E 2 A w Tt ~ Sy en

R

2P FIPRFERS RARESRHK DL 0 A F T R AN
@ BERET LA £ & B 5 clidp2 - > DiNitto etal. (2013)
MEERR AL I NP EPFEE T R i T amt o FR
AZiB 95% R MR A Wi A BT > K EELUEH LDD R G F 0> RFIVEF
KNI A B A5 B F RN AR S 0 Rk B BB R

L

WEBWE  for P T i+ B oS 5EB A 0 4o 432 HATRP
Van der Stocken and Menemenlis (2017) & 27k = & p av 33 5 g i i & P07 8 f#
FRAFERERSCEFRAMES IR R 2561 SRR E L Y G FE
BAAFDREZE S e HNES NG R BRI PSR AR
R AERES LR AR LA oA T R RN E L 0 o432 TP o B
EAS LA K 3T 50km o fe 3t 3= b 5L s s (Mozambique Channel) % & ® 5 % 4 B
Aend FEHEE A5 LDD o 4oB] 2.6-1 #7515 Vander Stockenetal. (2019a) & >Zf &
PorLE g in 7 0B R R A FBCE RN B 7R AR O R 2Tk
4000 Bk F R R FFBRTET A ) B EFY T &
FEMBEAR P R EF IR ST AMOES PP L 50km o SEF R A D
B GRIEE R So 0 EBERLEAS LDD v i BB 4o B oa g 3 BRSO 4

PRI RR A G AP Bl B JRfR o Ao F W R 2 Rl ik R 2 3 i

BEH L BlAcB] 3.6-1 77 0 S L OB iR 2 IR AR BRI £ R &

FERTRAMEST RS EERREFFL Tt AATEALIEL 0
- TR AE e FR AR - PR EFT I RS IE R T Y
PRI BN S S B A 0 349 %% 114K - Ngeveetal.
(2017b)2 Ngeveetal. (2017a)4 W] 2t ed 1P v R3S & HT HRAE v o
A BEBH O FHRSEFRAINASFAMESIERE T <20 1 km o B~ B FEY
5 5kmo m BE RS S DR S EHIEYR L 215km o Bor AP ARFIRT T i duE

11
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BIERIE » A S REFFIE ) BB EA B g o

-2
A 10 ' B dd O Release location South Africa
== Beta =0.00 b
< . P Beta = 0.01
Western Indian Ocean T
0 ' == Beta =0.04
-30 | = Beta=0.05 o
5 A
w @ ' )
-g -10 -g -31 y
[ o
® ® £
8 s S = :
-20
O Release location 33
= Beta=0.00
-25 = Beta=0.01
== Beta=0.02
30 Beta = 0.03 -34
= Beta=0.04
1 ~ Beta = 0.05 Lo
30 35 40 45 50 55 60 65 70 V5 28 29 30 31 32 33 34 35
Longitude Longitude

Bl 2.6-1 ~ B¢ B 3 = b 50 a W e RS e 88 R 4% U B (Van der Stocken &
Menemenlis, 2017)

12
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¥R B3

31 B

AP ARFEE 2 RE G A gRESHGY T R SRR g AR
SRH-Coast -k I Ho5¢ - g » F RJene 25 % k2 2 F0RH 28 7 1R > 12 é%‘&ﬁ% PTM
B ﬂi?l roKEHEEREE R ERERE R FEE S8 e SSA
BT PP L R R R R RS B D BHRR R A T - 3R
R INE: ] ﬁtﬁﬁ;ﬁi};—?ﬁ.’i?' ® Btz %3 4 5 (Inundation Frequency,
IF) > ie— H 3 B OBates B & B RSk EE & RGO kR
AWESEREF I RE A AR EEE  TUEHEELHFNIR AT D
LR ER AT KRB FHH > BT AR AR 3.1-1 AT o

TFRF A nd B IA B S BRI R B A1 0 AR ] B ek # 2
2NE AN AR > FER SR E D e R AR F T s AR 4 0 T
#t & SRH-Coast -k I 5\ ¢ R R B EE K FEoR o F RIS
= 444 (obstructions) * % = i HEM & 17 iR 0 PO ORI HORR S R E 2 i
R A R A TR RESFEET > N A ESNDS i 4

H B A A7 AR R4 B 3.1-2 97 5F o

ok wRMAH |
SSA :
Do asmame

B 3.1-1~ # 5 i A )

13
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ABBEA |
SRH-Coast
: o (BEE TR SN

NbS#E 71 3F 46

ENCESCES S-S T

B 312~ 5 AL A
32 MRS

AT UK RIPIRBE KRR B RRITLkE S FT RS Re i

931,741,289m? » ¥ -k @ % i i ik

P

‘ -—
i
A=
St
She
=
"
B
R
o
N
o~
i}
5

i
J PR A B A R R A AT R DA AR i R B T
e B RILE W D PR RE BEL JP sk 2 kR T kR 6 28km Ao P R
B g Bl4e B 3.2-1 577 o

FrREAARERGSTkm 0dkF e AR AAG ARG FRRA R
AR A o kP T R AR 3 AR A EARA BAF RN B
B G EE S RGP E T R iR VNP T R AR 0 A 2 R W AG s gk s IR R
LTSI e 3 TR NI B e R 0 A R Ve ) kP T
ARST R L REG AR R VA FRRE S AS AR, L SRR
B RB A AR BN ER R PR R TR RERTE T R

PUAR o B @ A A o

Fp RN e 5 AT B RE SRR RO F S Bk s RF
TERUERTED RET R AP L PP E s bk S 5 cpHRE o 4oF] 3222
S BB 1D 6 AW AT B A MR AT A ARS8 2 T ke

A EONF R D R T R aP R R PR e o R R
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= s B 4o oK iE ok 'k (Lee & Shih, 2004) 5 28 @ > 4 £ 30jE AL F anioptk
¥R B enE R 2%k - 4 B F (van Hespen et al., 2023) » ¥ 12 % 4 & ALz i eh
TR G R E M F A R R R DR Pt AT R
kiR k2 B A BLE G BHRRE cdpsR i 4 0 IR IRIP G B0 Bk 4 R
FEad AR A HRRE LT R A R BB R P SR
BRAFPETL KL RAITEFLRE TR EZREY

=
ABRFY HRE AR 32397 0 AR EIRT RGO FL B AT AR

v

AN B RE TS

HE~S B AR IES S 3 EARIEE S ROREEES 0 I EAKIEHE XN
- HATEE RS ITL R G o ER 7T A2 BT K o T
FE BN B AP EGLE AT R AT E Y L B R T T
E KRR R s N BIEARY OILE 2 Y h B e 10 4R
11~ 545 12 ~ "4 ) 13 ~ "4 14 ~ 5428 15 ~ 548 16 ~ "Har B 17 5757 o

Bk LL 23 1 0

HETTERE

< MSEREERS
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2 157

[ potential habitat
#% Google Satellite

Bl 323~ i A4 CHHKEAER T BB
16
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3.3 SRH-Coast -k 32 5%

~ % 3 ¢ * SRH-Coast(Sedimentation and River Hydraulics-Coast) K 3 #-5% i€ {7
Aok x B A ek #s 4 ikt 0 SRH-Coast "RKIZH;N 2018 #4= 2 d 2 R R i%
fd R BEAICRIIFETTRE g 0 ¢ BEEE B BRERGD RE S e

F 5 % vk (7 5% % (Lai, 2023; Lai, 2024) > # ¢ - B * Z 6T L LBk 2 4

&:

AEF RS BB AP RBIEERORELS SRS F

E‘f‘j;}gﬁ:rﬂ'_ o

SRH-Coast "k 5N B & = + i > & W] 5 34 e (Current Module) ~ 4 2
‘2(Wave Module) ~ #;#) -t (Sediment Module) - # * %48 & (Loosely Coupled):& {7
BiE B o £ 2§ e 8 & (Two-Way Coupling)shfic B 2 4 » & B e jh > Kz
Rl st Q@ FAIREF T S LF PO B2 3

FifAe(Lai, 2024) - AFFF ¢ 0 AIRSHEY FRE A PEMETAZ PN ET
FEng B i LU Y &R LIL A A Sl AR Y AT A
WA 0 FIp G Rt %]P/%E— R
/ Current Module }\\
’ River Data ‘ / //7 \ \‘\\
‘ Tidal Data }/ \
= | Final
\ /// Resuilts
//’
Wave Module Sediment Module | —.
‘ Wave Data ‘ ‘ Sediment Data ‘
Bl 3.3-1 ~ SRH-Coast -k 3 5% i B % Bl(Lai, 2024)
SRH-Coast -k 32 $5-;% & # 7|(command-line) s~ ;5 1% » & * —“" asﬁip

LT AR TR HEAT RS B S5 % "~ SMS (Surface-water

17
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Modeling System, Version 12.2) #ii#8:& 72 % VARV BT %2 s a7 Ht B 2%
G IREE FRKAT R AR HEC R s i RIRE KRR o R F AN Y i

RN G SR S S
331 mafile

d 304 F e BORIERGY 0 T U L B 2o s o T A FRA kIR
B3t g > A83% € #-= M ch Navier-Stokes equations ff it & 77 & L 32eh- 550 >

A5 = = 4 St. Venant equations > 4zt 3.3-1 ~ 38 3.3-2 ~ 3% 3.3-3 A7 o

Oh | O0hU | OhV

_ X313
at  ox dy 7 331
dhU | dRUU | dhVU _ ORTyy , ORTxy 9z Tpx .
y Py + 3y ox + 3y ghax +Dxx+ny v 332
OhV | OhUV | 9hVV _ OhTyy  OhTyy 0z Thy ‘
—ghZ_ .41 p D A 33
ot T ox T oy ax T oy ghay o T Dyx T Dyy Fr 333

He st RAPFRF > x vy & & -kT § + 5224 (horizontal Cartesian coordinates)
VKT E £ B o h R A KFE UV AUAL AL x vy 3w b auER T
Boe NAREER g R AT BB Ty Ty T, A2 FEAE T NI R ES >
Dyy > Dyy ~Dyy ~ Dy 8 4 FIIRR T304 2 chif gz =2z, + hi8 k6 § 42> 2, 10
FREBAL pREKBR > Tpy ~ Ty, N R A BET R4 o d 3 SRH-Coast 2§
REFTRIEIP S W BPRFRL ONHLE? FAPER IR PP
Pedl oA o e ATt plh U E A G TR A otk 4 IE b SR B RCEeh

Rk BT R4 2@ & BREA S #2575 (Manning’s roughness equation):ig {7 3

¥ et 334 507
(25) = pG (VTZ+ V7 : ¢ =2 & 334
He sn 4§ SRR Gl

18
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FRIBOE LIRS AR F 3 R #5425 (Boussinesq equation)iE 73 & o

hest 3.3-5 5 58 33-6~ 58 3.3-7 #F o

Tex = 200 +v) 5 — 2k X335
[710) av .

ny=@+ug@;+5) & 3356

Ty, = 2(v+vt)Z—Z—§k i 3.3-7

B¢ o uk & ok giE B 4k T fic(kinematic viscosity) b v & KRR R AR (ki

(turbulent eddy viscosity) » k% #% ¥ /i # st (turbulent kinematic energy) °

¥ B AR T Bc(turbulent eddy viscosity) £ K i eV iR TR 0 o8 A
XF IR AU ESER T P AN 2 ke H07(Rodi, 1993) 0 AR T YRR
T IoPe P MBS B KRR R AT Thd

SR T o d AHCN ot 3.3-8 S o
Uy = CtU*h ;T\‘ 33-8

Ho U, R4 RRBERE C A4 5% Gl 8 & 42 03~1.00 % SRH-Coast

k-g Bzt 4ezt 3.3-9 ~ 58 3.3-10 ~ 5% 3.3-11 #771 » 3§00 P Arig * e St Thlicde
79 3.3-12 2 34 3.3-13 ~ 3% 3.3-14 #75% o
_ Cuk?

Ut ;¢ 339

&

dhk . OhUk . OhVk d (hvt 6k) a (hut dk
— 4 b AL Bitd Tadd (==t
at ay

— X _
dx dy ax )+Ph+Pkb he v 3.3-10

o) 0x o 0y

dhe = O0hUe . OhVe a (hvt 68) a (hvt de

2
)+ Cer Py + Poy — Ch = 3% 3.3-11

E x ay T oax o 0x a o 0y
U2 av\? = (ou , av\? N
Py, = hv; |2 (a) + 2 (a) + (E + a) v 3.3-12
19
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Py = Cr 1203 Pey = CerCerC, /2C,™ /40,2 /R & 3313
C,=009: Cy=144:C =192 0, =10, =13 Cor = 1.8~3.6 3 3.3-14

HY s P2 Py, N4 A0 iR T d SRR B AT E A 2

2 4 o

% SRH-Coast "KJZHC: ¥ » & B4R (hdlen 3 - B2 sinjmacgeani i 7
MR R R ORFETRER L AE 0 b RRA GEon o VoY
F:E KR RER 607 38 5 S sl kEF A (equivalent roughness height)k, » & B4R H#ic
nx E i kEd R kg2 DB (4ot 3.3-15 #1F o

k1/6

n= Z ;v 3.3-15

Ao oA RAgsk Gl A F 95 260 §IUBARILT A S AR
FFEAGF R HN TP R kT RS 2deg s FRA BRI T (E

ks P22k % AR BE o
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332 AL E

SRH-Coast sij ;A ® ¥ g 7 37 57 KRR iTRZ PU ERIBER

AP M R IR AR 0 33 A 3341

Zo 0 3.3-1~ ez LA RiEAR

FER G wm
IS

LN SR B A LT SR
(Wind-Induced Wave Generation)

I8¢ d e AT 2 R ER R R TA A T
(Refraction) bt IR %
A RREd) d 3t A2 N ER R R TA L PR
(Shoaling) i iy
:“%‘é,j- 74 > [ z
Bk B0 S ehdESE IR %
(Diffraction)
Bk , ,
dTR ARSI A 2 SRR %
(Wave Breaking)
J TR B d AR BEERA sl i £ AT

P SRR R N _
eI SIS L £ SR
(quadruplet wave-wave interaction)
ZRRIT AT

NoKBZRRLIT I A B
(triplet wave-wave interaction)

IR b3 Kk Tl R oA G R ATE S D
(Whitecapping) IR e

21
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BRI > VR AR T BT RS TE S 4 AR
FREFEFE RS BTRHE P ERF S Z R AGFROTRE AL D RHR
B R R U S 2 e DR SR G FRPIE E AL T A R
* § (Wave Action Density)N it 47 tfe PF 4 Jg i 30k i cnfiin ™ 45 =z o T
SRH-Coast "k T HC 45 % i iF® £ N 4 4 R4l 9 8 22 7 Henpjuies £
BB TGS ARN 0 et 33417 #1 o

E .

N=- 7 3.3-16
o
ON(tx,y,0,0) | 0(cgxtVy)N(txy,0,0) = 8(cgy+Vy)N(txy,0,0)  dcoN(tx,y,0,0)
+ + +
at dx dy L

dcgN(tx,y,0,0 S tx,y,0,0 .

+ N(txy )= totwave (t£,X,y,0,0) ;\‘ 3.3-17

do o

. 5 sy 21 . oy — 2, e 1o s

R o0t dd x phig prgAc il w0 = SR R LS TR A LI

B o Cgy =CgCOSOZ% Cyy =CgsSin@ i Bl & X 2 y 3w i Lig R 0V 2 1 0 W &
2xE2y P o auRERAA RE g R AP RINF O o, N EABFBE T Siorwave

MR T R KR E AT .

Tkt Rcgt B A d A % 5% (Dispersion Relation) B 44 & » 4o3¢ 3.3.18
R o
2 = gktanhkh & 3.3-18
Cpp =7 = /%tanh kh X 3.3-19
Cg = NCpp 7 3.3-20
1 2kh

— - =\ -
n_2(1+sinh2kh) 3321
Ao k=T LR AR > gR A S R hS R RIE S g B

22
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AARPEER nt L Bepp 2t B

B I F g Al R AR R R R YA A S MR
Lk gt B Aot 3322 4 o

A

1 (80 dh = 00U
__1(0c X i}
Co = k(6h6m+k 6m) 7 3.3-22

He omi 4 B3 epEdE o k = (kcosO, ksing)» S5 L 5 - BN 4 d
PARICE RS > EE LR S DN A d SRR R o 58 3322 <
#4847 M 7% 3% (Dispersion Relation) 7% 3.3-18 & » » & 0§ + 524 % 34 5
(Adam, 2016) » ¥ ¥

/if’ i']ﬁ& %; ﬁj/ﬁ»ré' % jL .1% C@ A ;\4 ) -{1\—7;\4 33_23 »:’l-i—fl- °

0 (sin 0 on cos @ ah)
" sinh2kh dx dy

Co

+cosl9sin6’a — cos? 9 +sn 0 — cos@sineg—; v 3.3-23
BEH A T, N dd B VR E N RERPRTAL ST BB IR G 0 A

F i K it B et 3.3-24 9557 o

do au
_ X -
Co = ah(at +U - Vh) Cgk on i 3.3-24
Ca g _ - . . 0h =
He >on K& e > 3 =2 BFF € R ATUEF AL K 3’/’>EJJBE‘U'Vh5
= U oh
-—’:[:‘l_\iJ 5—'—L]t7 =
Cok -5, A

CRMEFERY NS Tt o U VR & B A5 ens 1  2  JUIE S e
T #% CgE - Z—ZTL Foin BRI VU I nim A% o 5% 3.3-24 ¥ B 4T B % 7% (Dispersion
Relation) % 3.3-18 #~ » » I 0§ + s2 & 4% % 5L 77 (Adam, 2016) > 7 & 3|3 B (& n

F A F ey 38 0 Aot 3.3-25 AT o

ok oh
Co =

on on
sz loc TV T V@

—cgk(cos* 6 % 4 cosOsin2Y + cosOsin 0L + sin? a_v) ;4 3.3-25
ax ady ax
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PR AR B AT G AR T B0 G ML 30 R B9

- BERFRFINEAI B OREKE THERAS

(Significant Wave Height) H T
& LEPIYE R

Z A2 - AR BTG 2L E O N e 33226 “a o

H, = 4,/m, 7 3.3-26
Mo = Eror = [, [ 2 E(0,0)d8do X 3327
Ho ome A BB IR T LN RS E e A F e

SRH-Coast "k I H-58 ¢ & g 7

AN R A A 5ﬂ"§ifﬁ#§’ﬂ—ﬁﬁ-’ Stot,wave
S 4 2

it B A Bt e B2 0ot 3328 AT o
Stot,wave = Swina + Snl3 + Snl4 + Sds,wc + Sds,bf + Sds,br ;\: 3.3-28

H e

HP o S ima™&d Rex#aa 274 4 i i4 38 5 S 3% Syu s B R & 2Rk

D R R I G R R I I S AU G T P
AT A 4 e (vl (Whitecapping) i) 98 > Sgspp A G B4 d1Az U

WHCHE > Sggpr N F 0 3TIT Flengs A5 % 1 A 3R er gt (Wave Breaking) i) $798 o

% SRH-Coast "k ;i ¢ » 2 & ﬁ%l » ek B s o Mk B (Significant Wave

Height) Hg ~ = % #7 & (Peak Frequency) f, % &+ > ﬁis?l R R HtS o TPV U

AN R H TR ARSI A AT o A A B FBiER
TE;" “E\.E’f”k\‘# \Zl’;:a'{%\»_xg 5 -&r;\ 33_29 »_«’Li—ﬂ- °

E(t,0,f) = Eo(t,0)Ef(t, f) ;¢ 3.3-29

Hoe ot AP 0N Ak o fRAMES 0 Egih Ak v A F Silic o Ep 8 4 F
.3/4.7\—47 @13{0

ok st Sl - o de @b B I d xS AE > 2 LR B
A3 —=2m % 2m2 B o b A F Soficetit B 3+ Mitsuyasu et al. (1975)4% ) chcos?S
0 et 3.3-31 Ao o
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J" Eq(t,0)d0 =1 3330

2s—1 p2
Eo(t,0) = 2 rz(s+1) 0525 (9)

Z =\ A
T (2s+1) 2 33,331

He >4 Gamma S#c 53 N & TV S ~ RV MR F Z R i chdiHi
o ansE & { Rk 2% > 1295 Goda (1985) T cs ezt & 45t 3.3-32

AT o

Swr (L) P <,

s = ;¢ 3.3-32

e (2) " irr 25

Ho 5§ =108 %k 2> Sppp = 258 % B R FEMRICEAT L > Spyy = 75

A R EERRRE R .

SRH-Coast # i 5 f6> & k- E#f 5 A % & » & 5§ JONSWAP #z# -
GAUSSIAN 413§ 2 & * & fi {7 R & Shdd T8 > 1 ¢ 1 JONSWAP #4735 F 2

2L o i % 20 KGE h>45m Rk R o

f 4
_ ag? 125 p/f a X
Ef(t’f) - (2m)4f5 e ( ) )4 3.3-33

_[(f/fp‘l)z/(zaz)]

N

a=e & 3334
a = 0.076 (j/—i)_o'zz & 33235
fo = %(%)_0_33 * 3.3-36
y=7(2)"" #3337
7={o00 whonts 1
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He > W R LR35 & 10m B 0k 3 > F 8 4 fetch JEAE > T 52 b B 4ordd /s
BOIOAINE AR R ARV LR AR HEfeEd L B
g F2 W5 M atd 5okl 04 FHES AT JkEd~ | > HiEfrg 4
i BRg F 2 W 3 B oy RS B Rl HEfrdd i Rg F 2 W
FHoarAAEHE ER IR o AMPH DT R LB F 2 R FLBE

Bl o i § A 4 RO Bk e gE o
333 it 4

#7717 t SRH-Coast -k I H5Y ¥ 22 = Bt ik S e Hin g
BHGEY R F T IR TGS O D RIVE AR B R 1 T E(C)
VK s Hped 2 4 2R A N8 ulhet 33-39 2 3.3-40 4om o HERN et B
AL F AT R TR ke o YR T e T SRR RE S 2k 0
ﬁgiéﬁﬁéﬁﬁﬁéﬁ%%%ﬁﬁmiaéﬁ%’#%ﬂﬁ@m%ﬁﬁﬂ*
A2 (331~ 74332250 333) sy o

Fy =5 Cap(U? + V?)BA, X 33.39

Ttotal = Tp + - Cdp(Uz + Vz) ZAL ;?‘ 3.3-40

Ao o Fh 2 8P A2 204 > it & BHpdonfed Gl UfeV 2wt 4
X oy 3 eaiid o B & B I E 0 Ay A KR 05 0 Tror U
RIPBS R EAARRT RS -

34 PTM #.3 i B

~F 3 i@ * PTM(Particle Tracking Model)#-3¢ #dt R 3£ 3 754 3 Ak 4 iF
TR 5 0 PTM A - fa A 89 p (Lagrangian)BLEk sk + 3 Hidr;t > d
FRMEE AT 2 E ¢ < (US. Army Engineer Research and Development
Center, ERDC)® % o PTM #-5% % * £+ 9 p (Lagrangian)gLgk » R+ 3dc 5 3
Bl TEEFKE A R A HE 3 A EP(Eulerian)BLEE 0 129 P OBLEE RN
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wu 3 S ek dn R R mxﬁ%ﬁﬁ £ 2 IR NS 25
P PR p BB A ek - gﬁﬂ‘iﬁﬂiﬁﬁﬁlﬁ & o

PTM $5% ye 4kt SMS ficdi? » i@ # ﬁ 7oL if i SMS Bt R 8 (7 RN ek 2
W ZE 2475 > PTM #5342 Aﬁ@?l N R R T ek de 4 RS R A ;’%gh 5%
Foode RE R 75 R o B PTM S Y o iRt 27 & 5 BhiR -~ SURZ 4 iR
SR ETVUREGATEREF LRI L A PTM Y 0 & Bk UL
E Rl R i R ) g S £F (LR C A U R WV SR - A R
T ARG G b BRI R

e PTM #5538 ¢ f ik = A st > 2 B 5 - A58 (2D mode) ~ # = i
7 (Qusai 3D mode) ~ = (45 (3D mode) » # * K ¥ MARGFT M wmALR hF Rk
FEE - MG AARPE NE ARG LR L E 2 el WY kT

e Bz GNP R R RS Ak T2 %
Bonig Hd nBnd B i NS B2 R T N R e S e liciE s =
AN EEH e E TN RS R T Ak TR L
ZR) R Tk .‘rﬁ@ﬁﬁ] ST S R REEERIL G o PTM oS 4R 0 ¢ MR
(Neutrally-Buoyant Option) » ¢t # ic 3 * 3t 0 "% i R ARIT>T 0 crppF > FhTH* ¢ 4
FRH o F TSR R G 0 T SRR BN A o kTt P R o
AP N FREERE G g hF2 T ERZ BV E AR ¥
d AT RE G d w R IRFF SRR RS W BB ARRZITS ) 1000
kg/m? > & B i 43R5 kG oo Flpt o & PTM $558 ¢ ¥ ¢ Mgtk 3 g 5E o
LR RN PR = =S SE N2 gF o I

PTM #5538 @ % = F# 3 P+ & $i(Second-order Predictor-Corrector Technique)
PFHNE BT A AR > B ERFE R B ixcy sz F oo
B R RS f B e B X PR L R (S APt

Bx' o dost 3.4-1 #9F o
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|{x’ =X, +%(uAdt + updt)
4 Y' = Y +5 (vadt + vpdt) 2341
LZ’ =z, + %(wAdt + wpdt)

B oy Zuph Bl EA I g maimixg, Yy 22 BRI X 3 e T g
BEFIGER v 2vptuii i3 daazix vy, 22,2 BRIy 3 T
MEREBICER oW R wp AN R AR T E R, vy, 22 R R 22

CiEITE Y S SOy

SoprplR X B %(t-{—%ﬂt)ﬁﬁ?ﬁ’!;‘}ii—? FRR B x A E DT R B

AT RV E N R EREE L (E+ AP 8 X 0 Aot 3.4-2 T o

Xps1 = Xn +uydt + updt
Yn+1 = Yo + v4dt + vpdt X 342
Zn41 = Zn + wudt + wpdt

B g kup A u R AR S L BT R IR iy 2R T+
LAES X 4 T R R R ARECE R vp R vp A S R A L R £ i)
BEX Y 2R EREEIACY y S T R R AECE R whE wp A u
ﬁﬁﬁ?i%ﬁﬂﬁﬁéﬁﬁﬁwﬁﬁx’“W\Zqﬁg@t+%Aﬁ?Z.%@ﬁﬂwﬁi&}
ACE R e

G2 RN R kT TR R L Y RS £ 3 e R kT
TRAE 0 dogt 3.4-3 #1oF o

{ﬁA = lz) & 343
Vg = 17(Zp)

R R TP VPSR AN A L Exdry 3w avk T TR R ’ﬁ(zp) ,1-;(Zp)4\g7,1

RS RS L BRI A X fry B e vk TIRE 0z R A RS PR AR

Gz AR 0 R Sk B TR R At 344 fr A o
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wy = w(zp) = ws 344

e oyt et g3 T R w(z,) R A e £ § AR D

VAR LR i T DS

d *“ﬁg?]% PTM 458 59 SRH-Coast "k JZH-58 s % 4 2 1R A T - 550 »

B PTM 558 Y gl end8 JRag F a3 o827 m 3t o 4ot 3.4-5 977 o

-~

w(zy) = (32 +7U) (h—2z,) & 345

He SR EApdRG g AR

d *‘ﬁi;] ~ PTM 258 e7 SRH-Coast 7K T2 558 enis & 4% 2 02 A T - a3 »
R PR G E SRR T R4S (BEddy Diffusivity) » F]@t & PTM #550 ¢ Jp

Y

3+ 8 % ¥ $7 F (Lateral Diffusivity) » % 7 # %z % % (Turbulent Diffusion

Coefficient) 73+ & 4o 3% 3.4-6 #757
E; = Kg,hu, ;4 3.4-6

B B %A R iR Al o Kp, %A Sk Bl BB A 0051 062 7

" L,
his & KiF > u, R & T 27 o

PTM H55¢ ¢ 4 Findpic fh et B N 34-6 i2 (73 BINGpenB e o 5 - B
Mg i 5 At ¢ 4e » T R T fi(Wave Breaking Coefficient) » B 8 3 5 o

B sl A el for i 0 B 18 e E IR IET BB B dost 3427 A1 o
E; = MyKg, hu, 347

He o M, & AR i B2 B ded 3.4-8 4 o

1, outside surf zone i
M. — { & 348

1+ Kg Hs, inside surf zone
B oo Kp MBS s 2 r A BB E M B S SR Tl 0 i
FREE S H A2 ienn bk 3 -
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¥ BAMBDE LR A B ?Md%(ﬂ@f%moﬁﬁ346ﬁéﬁ?ﬁ%
/#ff’ %' tr Y e 1§ é" L I/JI :% lL m ’ L—l-_,“i )%. ‘g‘:
nid g EGE O B e AREE T

$c B HRE, 4995k »HORFA e
Uimek B o Fin b § AR 0

(e

vl

£y
BAE B AL & PTM KR ¥ 4o r = B Ao ] Xindhic 0B, > AR T ARk
RN SRS & f e g 500 WL AR R R i EAR MG > B 1

EE=zkPm
I BB B Aot 3.4-9 Ao o

E, = max(Etmin,MbKEthu;) i 3.4-9
';ﬂé ’Etm 4 ?\ ‘?—/u ﬁf{lé‘ﬁi P’TM’I‘E—‘\“:I £ ?}:E’;é Ozm/s
B PTM 038 ¢ e B S @ % e 3 s #8720 4ot 3.4-10 #7

2
Lzﬂ@&#ﬂi%?i] X 3.4-10
H ¢

- ’

E, & 2 33 FFicthdic » Kp, 4 Bk 5142 e de 55 22 7 110k 3 B 7
BE Bif e o (i o

L5 L
B FAE ;-ﬁ’}

3 34-10 2R T XA Ot Bk 0 BT

g o 4ot 3.4-11 #75F o

o] = K‘—l#;l]

2
&=mw&%wm&ﬂﬁgéq} F* 34-11

B9 0By, SRSl TE RAC e B PTM 50 Y i i 5

& PTM #5389 > st ef R T %

I B Fais e el 8 e i R A s B
(Random Walk Model) » &

Bt E R I RT3 B R AGE B

o kT AR R H
doi 3.4-12 #17 o
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(uD =2(I1—0.5) |2
dt ‘
& 34-12
\vo = 2(-0.5) %

2P oupfevp A stk A xfry P e ark TAtE A NI A 01 12

¥ 303 A % i s i o
LB PHACE B E Ao 3.4-13 #1% o

6Ev

wp = 2(IT— 0.5) ;4 3.4-13
#Poowp A ol B P A

35 HSI## i & R H

4 i £ & 4p #k(Habitat Suitability Index)HSI & - &2 i §#7] » LA+ £
REABTHETFD DGR BEL M REE DI AR FEA S 5B S
FEY Rl Sl kfpd - Bipdc o * NI RRE BB ALY i £

R F s A P R 0 BiRE  £ R4 HST gt B X Tl
#2 & (Inundation Frequency)IF ~ 2 3 # & & #c(Soil Sort Coefficient)SC % & & -k en%

kS

i

& (Salinity)S #2358 > izt FlF &k L 3 end £ R Al o

Yangetal. 2013)4% 1 7 f30 k2 3 2 s 4 & [F 28 2 % » #-5 - 80

TR A2 P ERILES R B F 5 10 dost 35-1 4707 o
IF =2 % 100% & 3.5
n+1

B o MR A RFTREEAEE2ZEE  nit L T AE SHN 2Ty F

EHEMEFIF B L Bk 2 b %o

A7 7 & * SRH-Coast K IZ #5818 (7 it & ¥ > SMS i ¥ 2 (7 5% % A 49>
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HO g e PR ¢ 30 KRR R F AR G R AR AR
ki< 220 % 5% (Inundation) » e — R FRR B - BLREL BAF - B
FER ,f YACER AL P £ (Time Step) » v 17 3] =

- Bt azFAE S IF > 4ot 3.5-2 #75F o

>‘1\v

mlul)k/\?' FE":F'&t ’

m:%xlm% 352
e ’tifl:Z\ - EREEDRFEFIRFR TR AR OBEFRFH L o

R4 £ R SRR AR S AR B 4 ks TR {o gt B R ehit E:’ﬁ B > Yang et
al. (2013)% EH KR § e BRI E B A TR T iF A Z AN RE g
I & AR

EFRAVKBREZFA I 2O %o dosV 353 A1 0 B @ T Y

S

0.076—IFs HE = 385 .
s v 3.5-3
=99

0.076—IFs g

ﬁ L) Sll“%\-&li”ﬁ}i(ppt) IFSHEa IFSLEAV E"J ll‘ %\ ﬁ:pﬁﬁfﬁ—r&"‘ Fgﬁiz‘

B B AReE b 4E S IF o

Shih (2020)#% &) &4k £ 3 e 3§ £ RApHEHSI> 5 03 12 B endp ik > &
ANHENEF ECAHRRE B A ST S N HST 2 Y 2 A
HEFIF 2 2 PR g SCF HSIehb B » a4 a3 X8 7

B% o 4ot 3545 583555 58356 #5F o

1.0, 12.76% < IF < 14.72% ;¢ 3.54

0.0652 X IF + 0.1680, 0% < IF < 12.76%
Shr = {
—0.0374 X IF + 1.5508, 14.72% < IF < 41.45%

Sl = { 1.5197 x SC — 2.5105, 1.93 <SC< 2.31 X 355
5€ 7 1-1.7035 x SC + 4.9351, 2.31 < SC < 2.69 S
SICOMBO == min(SI”:, Slsc) ;\‘ 35'6
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1.2 T T T T

0O 2013 Measurement
A 2015 Measurement

A: S| =0.0652 IF + 0.1680
. 0.0% =IF=12.76%)

3 B SI=10 ! :

2 (12.76% = IF < 14.72%)
= : :

£ 06 A C: SI=-0.0374 IF +1.5508
= (14.72% = IF =< 41.45%)
= :

w

i 1 1
0 5 10 15 20 25 30 a5 40 45 50
Inundation Frequency (%)

Bl 3.5-1~ #23 & ;=4 47 & [F(Shih, 2020)

1.2F T T T T T =
. A: Sl= 1.51975C- 2.5105
(1.93<8C <231
1= : 4
B: Sl=-1.70355C+ 4.9351
(2.31 < SC < 2.69)
0.8} b
=
[ib]
=]
£
Z 06+ g
=
=
3
0.4 g E
02} ~
0\ 1 1 | Il 1 1 1 1 Il
19 2 241 22 23 24 25 26 27 28

Sorting Coefficient

B 3.5-2~$3F & 2 H# A ik SC(Shih, 2020)

Shih (2020) 2 #2 5 £ = BHFTLE 3 & enFRHEE 10 5§ £ R4 1 HSI ¢
a5 2 2 Shp ~ Slgc ® Sleompo * 3 MR SRR E FoRE 0t d 37 iRe

Ji

R F IF 2 BR S 3L R MBS EF £ o RIERS AR &
RAedyloks L5 BRSKRK REFKLFF AL FRBESF IF FF®F

F1H429% Yang et al. (2013) e sz ¥z 5 [FE 7R & > doB) 3.5-3 #5577 o
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EHRAvK AL A Rt 2 B BRI TR A HMACARERFES IF o0

LD BRI o

70 <<

@ »
& =3

Inundation Frequency (%)
Inungauon rrequency (7)
o
8

0 i L L L L - H
10 12 14 16 18 20 22 24 26 28 30 % 12 14 16 18 20 F] 24 26 28 30
Annual Mean Salinity (ppt) Annual Mean Salinity (ppt)

B 3.5-3 ~ MR AR 4 S IF S8 & Bl(Shih, 2020)

Shih (2020) 12 B & ‘= #FHR ek i £ B 47 1k HST 22908 0 & T Aok 8
LR S TF R (73 5 (30 3.5-4)ehih s i £ B 4 15 HST L B mgch > T (5 5

S PSR E F T

AR TR AR o T R AR E AT T BR A Ah B

K x

REEAPR ¥ 2 BR KL G oHRAd A B AR RS AR FI & T A

P RS IF s B R o e BB AR iR M IF P RA TS £ ok
B RR A RS IF 0 F g RS IF A3 41.45%¢h
Shpfik 5 00 ¥ 50 354 (FB0 > A2 * 204 LA AN g i &

Jdp B HSTHCES 0 45t 3.5-7 4751 o

0.0652 X IF + 0.1680, 0% < IF < 12.76%

Ny 1.0, 12.76% < IF < 14.72% X 357
IF = —0.0374 x IF + 1.5508, 14.72% < IF < 41.45% v
0, 41.45% < IF < 100%
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HSI (Habitat Suitability Index)

1.2

= S/=0.0652 /F+0.1680 (0% =< IF= 12,76%)
Sl=1.0(1276% = IF < 14.72%)

1.0 —_— G 0.0374-IF 4+ 1.5508 (14.72% < IF 5 41.45%)
= S=0(41.45% = IF = 100%)

0.8

0.6

Sl

0.4

0.2

0.0

=0.e 0 20 40 60 80 100
IF (35)

Bl 3.5-4 ~ Bt fgd if & R dp R 0 5 MR )
3.6 SSA#%E

#%° % % (Stepping Stone Approach, SSA)#.4- & ¢ Ackoff # Flood ¥ & i **
1950 4 % & B N PRE R > R AR P0G BB R AR T ki L E R
%E(Taha, 2017) - Kimura and Weiss (1964) ]t = 5 A3 3 8% 7 507] > * My
HAF AR BT EFH BB B EA Y YA R IRBEFLE
FI2AAMAL Y o

AT HEAPT 2 SSA Mt TR A G A W adBAcIS ] 0 kR E sy d A
BHE T 5 BB RF 4 BACI L he B E A A2 0 L kst 5o
Wit B e e BhFd > B BAREAR G - B 5 RIS A PTM
70 3 FEcis 4158 7 56 - Van der Stocken et al. (20192) % e 2 7k §= B} 4218 4000
Bt RS TR MRS FAMN T T ORE R AR AR

LBMBEPENTRCEARAE > FP o SSARHT A L RHRIEE DT & Foz o H
Py REgFms T Eh4ad o f 4> 4o Galapagos ~ Polynesia ~ Micronesia %
Melanesia % % 3 ¥ i +>if B A E RS DAY EhE § o d B 3.6-1 ¢ 7 F R
ddENEE T E Fent TELLATE G - B R A KR s R
POLE oA Rd ST gl FROREL 0 T R B LB R R P B 4 o B
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Shih et al. (2022)7 # #-3 %°7 i* SSA
RGP PEMEIT 2 SSA T ¥R

a

TEEE K TR S
Js svim g pok A F A g AR ATHCR
PN OREF RHRRACE B AF RL G AR R T K hpl L TR E R B
Aok 4 chZ B2 B RE F0 2 R R R o

=t

e

AP HRACRPREY T e S F B AT R LR G RE R
A R LR YR Y ) MR LT A AR N FA T
FPAC B AR LT A SR R AT A A ot A R
ARl B h k& s S M a”’aﬁp?ﬁ‘;%’ﬁ“d k#e 4R TGS
RS LA R AR e B Fai i RS I Ay RIE- SRS
Fred AR R MRS T R B s B B o BB JRd BYPE 2 SSA
R A AR KL AR T K

Latitude (deg)
N
Iogm(density]

) 180 -120 -60 0 60 120 180
Longitude (deg)

B 3.6-1~ 23k ® & > & %L 4 #ui* % & (Van der Stocken et al., 2019a)
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Frd Whesing

41 FHEEzFR

E o BB RS B AT 0 F R B2 TR £ B BT A TR 7§ ke
BB R R R 4 e RS R TR AT o 2 2 BB R AT g

BATIT A BB R R b

AT Y PR VB AETHEL L Z BINA LB ARETER PR

RIS ANl S T

AETATRY 2B AREE TR 5l ﬁ%]/zﬂ’“ 471 @sttmp PRI
2008 & 5% Hk LRIFRRIFZHACKRPTERE B R AT o d T E T
A LATZABRIFTOR > 2 A8 252 KR E FIER > FIE AP T * %0 2008
EZ PR A% RASBIET RGP e i L AP TR B R 2 B
R FH > £ J1* SMS (Surface-water Modeling System, Version 12.2) #t %8 #& 4% &
2 scatter fh%k » GERPERZ P RO VLRI AE B RZBEFRS
Hps A, LR B R AR ¥R L > i Bk E T #icL # (Lesseretal., 2004) 0 F]t o g
552008 & ik AT B E A TR T 2 ST fo 2002 & e if 2 ¥ DEM FALE

> e oo e F SRR KR s R AR DE - TN A ;,alg ERCE T
FEAIVRAIE S LR e Rtk TR O F 02022 &£ K RPN R X BT o
TR RBETe TN BLEEFIARP RS RER SRR T L3 SMS i
B P R 2K IR IR P AE B ) scatter A% 5 BER BB ERT N FCINR S RIS
Pouat 2022 #E o E RGP E h2 £ 820 & R Rl A0 DTM TR 2t
SMS #i#8 # #- TIF 4 74l 4 = pE Fe 3 A5 scatter % > T RFREPNFED

scatter f% % o
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412 k2 FH

SRH-Coast(Sedimentation and River Hydraulics-Coast)-k 32 #-3% i& {7 {32 7
TR AR ERE R R R T A R R e o O R g R 52022 £
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