Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9895
Title: | 中尺度數值模式顯式與隱式的計算方法之比較 A comparison of an explicit forward-backward integration scheme and implicit schemes in mesocale models |
Authors: | Siou-Ying Jiang 江琇瑛 |
Advisor: | 許武榮 |
Co-Advisor: | 吳清吉 |
Keyword: | 線性穩定度分析,積分格式,非靜力模式, linear stability analysis,integration scheme,nonhydrostatic model, |
Publication Year : | 2008 |
Degree: | 碩士 |
Abstract: | 對於較大水平尺度的中尺度運動 (如:meso α尺度) 而言,數值模擬所用的垂直網格距離遠較水平網格距離為小。在全壓縮 (fully compressible) 的數值模式中,如使用顯式的積分方法,會受到CFL條件的限制,使得積分時間步長因高解析度的垂直網格架構而變得很小,需耗費大量計算資源。因此採用隱式積分方式不受網格大小所控制的優勢,套用在垂直方向,增加垂直方向的解析度,且不失計算上的效率,而水平方向仍用計算簡單的顯式積分方法,使模式在計算過程中不會太複雜。
不過垂直隱式方法 (垂直方向使用隱式,水平方向使用顯式) 並不能解決所有穩定度的問題。由Ikawa作加入地形效應的穩定度分析,得知地形坡度愈大,垂直隱式方法易不穩定,指出在比較阧峭的地形環境下,會有限制存在。只是此結論只分析某一網格距離情形下的結果,並且無仔細地用數值模式探討。 本研究為了進階探討不同水平與垂直的網格距離比值,對於不同坡度的影響程度,首先使用Ikawa所提出與地形有關聯的垂直座標,套用至顯式 (forward- backward) 和垂直隱式兩種時間積分格式,作線性穩定度分析。結果得出,在固定垂直網格距離為300 m時,當水平網格愈大,地形坡度愈陡峭愈不穩定,使時間步長不能有效率地增大;但當水平網格與垂直網格距離相近時,其穩定度並無任何變化,顯示出比較小的水平網距不受地形坡度干擾。 不過,對於線性穩定度分析而言,得到穩定結果並不一定能保證對非線性數值方程之計算方法是穩定的。因此本研究進一步利用台大-普渡 (NTU-Purdue) 非靜力可壓縮模式模擬不同個案,驗證、分析不同水平方向與垂直方向的網格距離比值對於不同坡度時,顯式與垂直隱式這兩種數值計算方法的穩定性與效率。由山岳波實驗結果中呈現坡度愈陡時,垂直隱式方法計算效率比垂直與水平方向都採用顯式積分方法的計算效率來得差,且為不穩定,尤其在水平網距愈接近垂直網距情形下,更為顯著。此與線性穩定度分析的穩定結果並不一致。 With the advent of the recent computer technology, fully compressible and nonhydrostatic numerical models are more and more populous in studying mesoscale atmospheric circulations. There are many choices of time integration schemes for formulating mesoscale models. Ikawa categorized three major types of algorisms as HI-VI (implicit), HE-VI (horizontally explicit and vertically implicit), and HE-VE (explicit) methods according to how prognostic variables are solved in horizontal and vertical directions. HE-VI methods are generally used due to the efficiency in treating high-frequency waves and the simplicity of the explicit algorism in horizontal directions. However, previous studies found that the method can be unstable in steep-terrain situations, and the problem can be avoided with the use of a more time consuming HE-VE method. The purpose of this study is to compare the two types of integration schemes in terms of stability and efficiency through both linear stability analyses and model simulations. In this study, we have shown that comparisons through linear stability analyses and model simulations are consistent that a typical HE-VI method indeed leads to instability in steep-terrain situations and also in cases with smaller aspect ratio of grid boxes. The problem cannot be solved with a simple reduction of time step alone. The HE-VE method use in the NTU/Purdue Nonhydrostatic Model, however, always produces stable results for all gravity-wave, linear and nonlinear mountain wave cases. |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9895 |
Fulltext Rights: | 同意授權(全球公開) |
Appears in Collections: | 大氣科學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-97-1.pdf | 4.24 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.