Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98903
Title: 以神經網路資訊解析茄子基因型與果實形態特徵間的關聯
Unveiling the Relationships between Genotype and Fruit Morphology in Eggplant via Latent Representations of Neural Networks
Authors: 高瑄蔚
Hsuan-Wei Kao
Advisor: 李承叡
Cheng-Ruei Lee
Keyword: 茄子,深度學習,全基因體關聯分析,植物表型,Variational Sparse Coding,
Eggplant,Deep Learning,GWAS,Plant Phenotyping,Variational Sparse Coding,
Publication Year : 2025
Degree: 碩士
Abstract: 本研究旨在結合植物果實影像與基因型資料,建立一套能解釋形態與遺傳關係的分析流程。為此,我們開發一個基於自編碼器架構的深度學習模型,用以自動萃取茄子(Solanum melongena)果實影像的latent representation,並進一步評估其與基因型的對應關係。模型訓練採用來自亞洲蔬菜中心共1,609張果實影像資料,透過一種稱為 Variational Sparse Coding(VSC)的方法,使所學得的特徵具備稀疏性與可解釋性。們對這些潛在特徵進行視覺化與統計分析,並將其作為性狀輸入,結合 GEMMA 工具進行全基因體關聯分析(GWAS),以鑑定與影像形態特徵相關的單核苷酸多態性(SNP)。
此外,我們比較了不同的特徵聚合方式(平均值、最大值、最小值)及其主成分分析(PCA)後的效果,探討表徵方式對後續分析結果的影響。最後,我們以多層感知器(MLP)模型,根據顯著 SNP 資訊預測影像所對應的latent representation,展示從基因型重建表型特徵的可行性與潛力。整體而言,本研究建立一套由影像特徵學習、基因型關聯分析到性狀預測的整合流程,為深入理解植物的基因型與表型關係提供一項具體而有效的技術架構。
This study aims to integrate plant fruit images and genotype data to establish an analytical framework for understanding the relationship between morphological traits and genetic variation. To this end, we developed a deep learning model based on an autoencoder architecture to automatically extract latent representations from fruit images of eggplant (Solanum melongena) and assess their correspondence with genotypic information. The model was trained on 1,609 fruit images provided by the World Vegetable Center, using a method known as Variational Sparse Coding (VSC) to obtain sparse and interpretable features.
We performed visualization and statistical analysis of these latent features and treated them as phenotypic traits for genome-wide association studies (GWAS) using the GEMMA tool, identifying single nucleotide polymorphisms (SNPs) associated with image-based morphological characteristics. In addition, we compared different feature aggregation methods (mean, maximum, minimum) and their principal component analysis (PCA) results to evaluate how representation strategies affect downstream analyses. Finally, we employed a multilayer perceptron (MLP) model to predict latent representations from significant SNPs, demonstrating the feasibility and potential of reconstructing phenotypic features from genotype data.
Overall, this study establishes an integrated workflow from image-based feature learning to genotype-to-trait association and phenotype prediction, providing a practical and effective framework for understanding the genotype–phenotype relationship in plants.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98903
DOI: 10.6342/NTU202503987
Fulltext Rights: 未授權
metadata.dc.date.embargo-lift: N/A
Appears in Collections:植物科學研究所

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
  Restricted Access
51.07 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved