Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98890
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王建凱zh_TW
dc.contributor.advisorChien-Kai Wangen
dc.contributor.author陳宇揚zh_TW
dc.contributor.authorYu-Yang Chenen
dc.date.accessioned2025-08-20T16:10:25Z-
dc.date.available2025-08-21-
dc.date.copyright2025-08-20-
dc.date.issued2025-
dc.date.submitted2025-08-13-
dc.identifier.citation[1] Kasperski, M. and H.-J. Niemann, The LRC (load-response-correlation)-method a general method of estimating unfavourable wind load distributions for linear and nonlinear structural behaviour. Journal of Wind Engineering and Indusrial Aerodynamics, 1992, 43(1-3), p. 1753-1763.
[2] Lin, Y., Harmonic Load-Response Correlation Method for Analytical Mechanics Investigation of Random Vibrations. Dep.ME, National Taiwan University Master Thsis, 2022
[3] Biot, M.A., Thermoelasticity and irreversible thermodynamics. Journal of Applied Physics, 1956, 27(3), p.240-253.
[4] Coleman, B. D, & Noll,W. The thermodynamics of elastic materials with heat conduction and viscosity. Archive for Rational Mechanics and Analysis, 1963, 13 (1), p.197-178.
[5] Eslami, M. R., Hernarski, R. B., Ignaczak, J., Noda, N., Sumi, N., & Tanigawa, Y., Theory of Elasticity and Thermal Stresses. Dordrecht: Springer. doi:10.1007/978-94-007-6356-2, 2013.
[6] Tan, K. H., Toh, W. S., Huang, Z. F., & Phng, G. H. Structural responses of restrained steel columns at elevated temperatures. Part 1: Experiments. Engineering Structures, 2007, 29, 1641–1652. doi:10.1016/j.engstruct.2006.12.005
[7] Usmani, A. S., Rotter, J. M., Lamont, S., Sanad, A. M., & Gillie, M. Fundamental principles of structural behaviour under thermal effects. Fire Safety Journal, 2001, 36, 721–744. doi:10.1016/S0379-7112(01)00037-6
[8] Titulaer, R.H.A., Engineering model for coupled thermomechanical behaviour of steel elements under fire conditions. Eindhoven University of Technology Graduation Thesis, 2016
[9] Kasperski, M., Extreme wind load distributions for linear and nonlinear design. Engineering Structures, 1992, 14 (1),p.27-34.
[10] Wang, C.-K., et al., Structural optimization with design constraints on peak responses to temporally correlated quasi-static load processes. Structural and Multidisciplinary Optimization, 2019, 59 (2), p.521-538.
[11] 單片太陽能板支架結構風例分析研究,2016,內政部建築研究所研究報告
[12] He,Niu, The Effect of Load Properties on the Reliability of Machine Drives-The Temperature and Stress Analysis of Power module Bond Wires, 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 2017, pp. 2533-2539, doi: 10.1109/ECCE.2017.8096482.
[13] G. S. Lakshmi, S. R. Karumuri, G. S. Kondavitee and A. Lay-Ekuakille, Design and Performance Analysis of a Microbridge and Microcantilever-Based MEMS Pressure Sensor for Glucose Monitoring, in IEEE Sensors Journal, vol. 23, no. 5, p. 4589-4596, 1 March1, 2023, doi: 10.1109/JSEN.2023.3234594.
[14] Chang-Chun Lee, Meng-Tse Chen, Jui-Chang Chuang, Process-induced influences on epoxy-based encapsulated reliability of high Power modules, International Journal of Mechanical Sciences, Volumes 297–298, 2025
[15] A. A. Woodworth et al., Thermal Analysis of Potted Litz Wire for High-Power-Density Aerospace Electric Machines,
[16] Thyssenkrupp Materials (UK), Material Data Sheet Aluminium Alloy 6005A - T6 Extrusion, 2016
[17] Cree, Inc, CCS020M12CM2 1.2kV, 80 mΩ Silicon Carbide Six-Pack (Three Phase) Module
[18] M. L. Spencer and R. D. Lorenz, Analysis and In-Situ Measurement of Thermal-Mechanical Strain in Active Silicon Power Semiconductors, 2008 IEEE Industry Applications Society Annual Meeting, Edmonton, AB, Canada, 2008, p. 1-7, doi: 10.1109/08IAS.2008.360.
[19] P. Jacob, M. Held and P. Scacco, IGBT power semiconductor reliability analysis for traction application, Proceedings of 5th International Symposium on the Physical and Failure Analysis of Integrated Circuits, Singapore, 1995, p. 169-175, doi: 10.1109/IPFA.1995.487618.
[20] 王建凱,有限元素法課程講義,2024,機械工程學研究所,國立臺灣大學
[21] Cadence Design Systems, Inc, A temperature profile of 3D structures inside a package with metal interconnects, as generated by Cadence Celsius Thermal Solver,2019.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98890-
dc.description.abstract本論文針對熱固耦合結構於不確定熱邊界條件下所產生之機械極值響應進行深入探討,首創一套具解析能力的熱載響應關聯預測方法(Thermal load response correlation,TLRC)。此方法突破傳統以大量數值模擬或實驗數據採集才能估算極值區間的限制,建立一套可直接預測結構關鍵自由度最大熱致變形與內部應力分佈的高效率解法,兼具解析性、可重現性與工程實用性,為熱固耦合結構之安全設計與可靠度評估提供全新技術典範。
本研究首度將 TLRC 方法系統性應用於一維與二維二力桿件 (Truss) 架構中,並結合隨機熱邊界建模與有限元素法進行統計驗證。透過與大規模採集數值樣本比對,證實本方法不僅在極值預測上具高準確性,其對結構內部應力集中區域之定位亦顯著優於傳統手段。研究同時深入分析在極端熱擾動下之應力回應特徵,評估結構是否面臨塑性破壞風險,展現方法於熱致安全性診斷上的關鍵價值。
本論文架構涵蓋五大核心章節:第一章說明研究動機與背景脈絡;第二章推導熱固耦合有限元素理論與座標轉換機制;第三章提出 TLRC 模型與數學化極值預測策略;第四章以多組實例(包含太陽能支架、高功率導線、微機電橋式元件等)進行應用驗證,具體展現方法的跨尺度適用性與工程意義;第五章綜合研究成果並針對未來應用與理論延伸提出具體建議。
綜上所述,本研究不僅建立一個兼具物理保真性與數值效率的預測架構,更有效解決熱場不確定性對結構設計帶來的風險預測瓶頸,為熱固耦合問題的極值解析開啟一條具高度前瞻性的研究新路徑。
zh_TW
dc.description.abstractThis thesis presents a novel analytical methodology for predicting the peak mechanical responses of thermo-solid coupled structures under uncertain thermal boundary conditions. A Thermal load response correlation (TLRC) framework is proposed to efficiently estimate the critical thermal deformation and internal stress response without relying on large-scale numerical sampling. This framework breaks through the traditional limitations of data-acquisition-based uncertainty quantification by offering a high-fidelity, computationally efficient, and physically transparent alternative, laying a robust foundation for reliable structural design under thermal uncertainty.
The TLRC method is systematically implemented on both 1D and 2D Truss-based structural systems and rigorously verified through finite element simulations incorporating random thermal boundary conditions. The predicted peak displacements and stress distributions are benchmarked against data-acquisition results, demonstrating excellent agreement and confirming the accuracy and robustness of the proposed method. Furthermore, the internal stress behavior under extreme thermal loads is thoroughly investigated to assess potential material failure risks and stress concentration zones.
This work is structured into five core chapters. Chapter 1 introduces the research motivation and contextual background. Chapter 2 provides a comprehensive derivation of the thermo-mechanical finite element formulation and coordinate transformation mechanisms. Chapter 3 details the theoretical development of the TLRC model and its peak prediction capability. Chapter 4 validates the methodology through various practical case studies, including solar panel aluminum frames, high-power conductor wires, and MEMS-based microbridge structures, showcasing the wide applicability and engineering relevance of the method. Finally, Chapter 5 summarizes the findings and discusses future directions for extending the theory and broadening its applications.
In conclusion, this study offers a significant advancement in peak response prediction under thermal uncertainty. It establishes an efficient and generalizable framework that not only improves analytical insight into thermo-mechanical behaviors but also provides practical tools for structural safety assessment and reliability engineering.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:10:25Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-20T16:10:25Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 iii
Abstract iv
目次 vi
圖次 x
第一章 緒論 1
1.1 研究目的 1
1.2 文獻回顧 2
1.3 研究內容介紹 3
第二章 熱固耦合問題之相關理論推導 5
2.1 熱固耦合問題之總弱形式有限元素推導 5
2.1.1 弱形式的建立 6
2.1.2 各剛度矩陣與載重定義 7
2.1.3 材料性質與常數定義 8
2.2 一維線性形狀函數與其導數推導 8
2.3 一維元素剛度矩陣推導與數值積分 9
2.3.1 機械剛度矩陣Kuu的推導 9
2.3.2 熱固耦合剛度矩陣Kuθ的推導 10
2.3.3 熱傳導剛度矩陣Kθθ的推導 10
2.4 二維熱固耦合系統之總變分原理與剛度矩陣展開 11
2.4.1 全域與局部自由度定義 13
2.4.2 座標轉換矩陣 14
2.4.3 軸向應力計算之推導與轉換 16
2.4.4 小結 17
第三章 熱固耦合極值反應解析方法 18
3.1 系統之不確定性 18
3.2 熱固耦合負載響應關聯法(Thermal load response correlation,TLRC) 20
3.2.1 熱載輸入建模與統計特徵設定 20
3.2.2 熱載與響應之相關統計關係 21
3.2.3 TLRC 與樣本模擬結果比對 25
3.3 隨機熱邊界條件負載響應關聯法 25
3.3.1 隨機位移邊界條件的矩陣改寫策略 26
3.3.2 統整優勢與物理意涵 27
第四章 實例分析 28
4.1 太陽能板鋁合金支架熱固耦合極值分析 29
4.1.1 幾何與模型架構 30
4.1.2 材料參數 31
4.1.3 邊界條件 32
4.1.4 熱負載條件(隨機邊界條件) 32
4.1.5 LRC應用與目標節點 33
4.1.6 數據成果討論 34
4.1.6.1 針對 ρ=0 熱邊界條件下之分析討論 34
4.2 Power module導線分析(Wire Analysis) 40
4.2.1 幾何與模型架構 41
4.2.2 材料參數 42
4.2.3 邊界條件 43
4.2.4 熱負載條件(隨機邊界條件) 43
4.2.5 LRC 應用與目標節點 44
4.2.6 數據成果討論 46
4.2.6.1 針對 ρ=1 熱邊界條件下之分析討論 46
4.2.6.2 針對 ρ=0 熱邊界條件下之分析討論 52
4.2.6.3 針對 ρ=-1 熱邊界條件下之分析討論 57
4.3 外層導線架熱固耦合極值響應分析 63
4.3.1 幾何與模型架構 64
4.3.2 固體位移邊界條件 65
4.3.3 LRC 應用與目標節點 66
4.3.4 數據成果討論 67
4.3.4.1 針對 ρ = 0.5 熱邊界條件下之分析討論 67
4.3.4.2 針對 ρ = -0.5 熱邊界條件下之分析討論 73
4.4 微橋式感測結構熱固耦合極值響應分析 79
4.4.1 幾何與模型架構 80
4.4.2 固體位移邊界條件 81
4.4.3 TLRC 應用與設計自由度定義 82
4.4.4 數據結果分析 83
4.4.4.1 針對 ρ = 0 熱邊界條件下之分析討論 83
4.5 微尺度曲線導線熱固耦合極值響應分析 89
4.5.1 TLRC 應用與設計自由度定義 91
4.5.2 在Curing製程條件下之數據結果分析 92
4.5.2.1 針對 ρ=1 熱邊界條件下之分析討論 92
4.5.2.2 針對 ρ = 0 熱邊界條件下之分析討論 98
4.5.2.3 針對 ρ = -1 熱邊界條件下之解析討論 103
4.5.3 在Pre-curing製程條件下之數據結果分析 108
4.5.3.1 針對 ρ=0.5 熱邊界條件之解析研究 108
4.5.3.2 針對 ρ = -0.5 熱邊界條件下之解析討論 113
4.6 高功率密度應用之 Litz 線彎曲結構熱固耦合極值分析 118
4.6.1 TLRC 應用與目標節點選定 120
4.6.2 數據結果分析 121
4.6.2.1 針對 ρ = 1 熱邊界條件下之解析討論 121
4.6.2.2 針對 ρ = 0 熱邊界條件下之解析研究 127
4.6.2.3 針對 ρ = -1 熱邊界條件下之解析研究 132
第五章 結論與未來展望 137
5.1 結論 137
5.2 未來展望 138
參考文獻 139
附錄 142
-
dc.language.isozh_TW-
dc.subject有限元素法zh_TW
dc.subject熱固耦合分析zh_TW
dc.subject熱應力診斷zh_TW
dc.subject不確定性分析方法zh_TW
dc.subject極值預測理論zh_TW
dc.subjectPeak response predictionen
dc.subjectLoad-response correlationen
dc.subjectThermal stress diagnosticsen
dc.subjectFinite Element Methoden
dc.subjectThermo-mechanical couplingen
dc.title考慮不確定性於熱固耦合機械尖峰反應之解析力學研究zh_TW
dc.titleAnalytical Mechanics Study on Thermo-Solid Coupled Mechanical Peak Response under Uncertaintyen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉建豪;吳筱梅;陳壁彰;董奕鍾zh_TW
dc.contributor.oralexamcommitteeChien-Hao Liu;Hsiao-Mei Wu;Bi-Chang Chen;Yi-Chung Tungen
dc.subject.keyword熱固耦合分析,有限元素法,極值預測理論,不確定性分析方法,熱應力診斷,zh_TW
dc.subject.keywordThermo-mechanical coupling,Finite Element Method,Peak response prediction,Load-response correlation,Thermal stress diagnostics,en
dc.relation.page143-
dc.identifier.doi10.6342/NTU202504172-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-14-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2025-08-21-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf9.23 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved