Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98872
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王泰典zh_TW
dc.contributor.advisorTai-Tien Wangen
dc.contributor.author陳柏輔zh_TW
dc.contributor.authorPo-Fu Chenen
dc.date.accessioned2025-08-20T16:06:30Z-
dc.date.available2025-08-21-
dc.date.copyright2025-08-20-
dc.date.issued2025-
dc.date.submitted2025-08-13-
dc.identifier.citation1.Bilotta, E., Lanzano, G., Madabhushi, S. G., & Silvestri, F. (2014). A numerical Round Robin on tunnels under seismic actions. Acta Geotechnica, 9(4), 563-579.
2.Bolt, B. A. (1969). Duration of strong motion Proceedings of the 4th World Conference on Earthquake Engineering, Santiago, Chile.
3.Chen, C.-H., Wang, T.-T., Jeng, F.-S., & Huang, T.-H. (2012). Mechanisms causing seismic damage of tunnels at different depths. Tunnelling and underground space technology, 28, 31-40.
4. Chen, J., Shi, X., & Li, J. (2010). Shaking table test of utility tunnel under non-uniform earthquake wave excitation. Soil Dynamics and Earthquake Engineering, 30(11), 1400-1416.
5. Chiu, Y. C., Kung, C. L., & Wang, T. T. (2019). Site characteristics of a rock tunnel based on field-monitored seismic. 2019 Rock Dynamics Summit: Proceedings of the 2019 Rock Dynamics Summit (RDS 2019), May 7-11, 2019, Okinawa, Japan, 333.
6. Cilingir, U., & Madabhushi, S. G. (2011). A model study on the effects of input motion on the seismic behaviour of tunnels. Soil Dynamics and Earthquake Engineering, 31(3), 452-462.
7. Dowding, C. H., & Rozan, A. (1978). Damage to rock tunnels from earthquake shaking. Journal of the Geotechnical Engineering Division, 104(2), 175-191.
8. Hashash, Y. M., Hook, J. J., Schmidt, B., John, I., & Yao, C. (2001). Seismic design and analysis of underground structures. Tunnelling and underground space technology, 16(4), 247-293.
9. Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C., & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, 454(1971), 903-995.
10. Huang, N. E., & Wu, Z. (2008). A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Reviews of geophysics, 46(2).
11. Kramer, S. L. (1996). Geotechnical earthquake engineering. Pearson Education India.

12. Kuhlemeyer, R. L., & Lysmer, J. (1973). Finite element method accuracy for wave propagation problems. Journal of the Soil Mechanics and Foundations Division, 99(5), 421–427.
13. Kung, C.-L., Wang, T.-T., Chen, C.-H., & Huang, T.-H. (2018). Response of a circular tunnel through rock to a harmonic Rayleigh wave. Rock mechanics and rock engineering, 51(2), 547-559.
14. Lanzano, G., Bilotta, E., Russo, G., Silvestri, F., & Madabhushi, S. G. (2012). Centrifuge modeling of seismic loading on tunnels in sand. Geotechnical Testing Journal, 35(6), 854-869.
15. Lee, G. C., & Loh, C.-H. (2000). The Chi-Chi, Taiwan, Earthquake of September 21, 1999: Reconnaissance Report. Multidisciplinary Center for Earthquake Engineering Research Buffalo, NY.
16. Li, L., Xian, L., Yao, C., Guo, D., & Liu, C. (2020). Numerical Modeling of Seismic Responses and Seismic Measures of Tunnel Crossing a Fault Zone: A Case Study. Advances in Materials Science and Engineering, 2020.
17. Li, T. (2012). Damage to mountain tunnels related to the Wenchuan earthquake and some suggestions for aseismic tunnel construction. Bulletin of Engineering Geology and the Environment, 71(2), 297-308.
18. Lysmer, J., & Kuhlemeyer, R. L. (1969). Finite dynamic model for infinite media. Journal of the Engineering Mechanics Division, 95(4), 859-877.
19. Moghaddam, M. R., & Baziar, M. H. (2016). Seismic ground motion amplification pattern induced by a subway tunnel: shaking table testing and numerical simulation. Soil Dynamics and Earthquake Engineering, 83, 81-97.
20. Mow, C., & Mente, L. (1963). Dynamic stresses and displacements around cylindrical discontinuities due to plane harmonic shear waves.
21. Ohtomo, K., Suehiro, T., Kawai, T., & Kanaya, K. (2001). Research on Streamlining Seismic Safety Evaluation of Underground Reinforced Concrete Duct-Type Structures in Nuclear Power Stations.-Part-2. Experimental Aspects of Laminar Shear Sand Box Excitation Tests with Embedded RC Models.
22. Owen, G. N., & Scholl, R. E. (1981). Earthquake engineering of large underground structures.
23. Pao, Y.-H. (1962). Dynamical stress concentration in an elastic plate.
24. Schnabel, P. B., & Bolton Seed, H. (1973). Accelerations in rock for earthquakes in the western United States. Bulletin of the Seismological Society of America, 63(2), 501-516.
25. Sharma, S., & Judd, W. R. (1991). Underground opening damage from earthquakes. Engineering geology, 30(3-4), 263-276.
26. Shen, Y., Gao, B., Yang, X., & Tao, S. (2014). Seismic damage mechanism and dynamic deformation characteristic analysis of mountain tunnel after Wenchuan earthquake. Engineering geology, 180, 85-98.
27. St John, C., & Zahrah, T. (1987). Aseismic design of underground structures. Tunnelling and underground space technology, 2(2), 165-197.
28. Sun, B., Zhang, S., Deng, M., & Wang, C. (2020). Nonlinear dynamic analysis and damage evaluation of hydraulic arched tunnels under mainshock–aftershock ground motion sequences. Tunnelling and underground space technology, 98, 103321.
29. Sun, T., Yue, Z., Gao, B., Li, Q., & Zhang, Y. (2011). Model test study on the dynamic response of the portal section of two parallel tunnels in a seismically active area. Tunnelling and underground space technology, 26(2), 391-397.
30. Trifunac, M. D., & Brady, A. G. (1975). A study on the duration of strong earthquake ground motion. Bulletin of the Seismological Society of America, 65(3), 581-626.
31. Tsinidis, G., de Silva, F., Anastasopoulos, I., Bilotta, E., Bobet, A., Hashash, Y. M., He, C., Kampas, G., Knappett, J., & Madabhushi, G. (2020). Seismic behaviour of tunnels: From experiments to analysis. Tunnelling and underground space technology, 99, 103334.
32. Wang, F., Jiang, X., & Niu, J. (2017). The large-scale shaking table model test of the shallow-bias tunnel with a small clear distance. Geotechnical and Geological Engineering, 35(3), 1093-1110.s
33. Wang, J. (1993). Seismic design of tunnels: a state-of-the-art approach. Parsons Brinckerhoff Quade & Douglas. Inc., New York, NY, Monograph, 7.
34. Wang, T.-T., Hsu, J.-T., Chen, C.-H., & Huang, T.-H. (2014). Response of a tunnel in double-layer rocks subjected to harmonic P-and S-waves. International Journal of Rock Mechanics and Mining Sciences, 70, 435-443.
35. Wang, T.-T., Kwok, O.-L. A., & Jeng, F.-S. (2021). Seismic response of tunnels revealed in two decades following the 1999 Chi-Chi earthquake (Mw 7.6) in Taiwan: A review. Engineering geology, 106090.
36. Wang, W., Wang, T., Su, J., Lin, C., Seng, C., & Huang, T. (2001). Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi earthquake. Tunnelling and underground space technology, 16(3), 133-150.
37. Wang, X., Chen, J., Zhang, Y., & Xiao, M. (2019). Seismic responses and damage mechanisms of the structure in the portal section of a hydraulic tunnel in rock. Soil Dynamics and Earthquake Engineering, 123, 205-216.
38. Wang, Z., Gao, B., Jiang, Y., & Yuan, S. (2009). Investigation and assessment on mountain tunnels and geotechnical damage after the Wenchuan earthquake. Science in China Series E: Technological Sciences, 52(2), 546-558.
39. Xu, H., Li, T., Xia, L., Zhao, J. X., & Wang, D. (2016). Shaking table tests on seismic measures of a model mountain tunnel. Tunnelling and underground space technology, 60, 197-209.
40. Yang, D., Naesgaard, E., Byrne, P. M., Adalier, K., & Abdoun, T. (2004). Numerical model verification and calibration of George Massey Tunnel using centrifuge models. Canadian geotechnical journal, 41(5), 921-942.
41. Yashiro, K., Kojima, Y., & Shimizu, M. (2007). Historical earthquake damage to tunnels in Japan and case studies of railway tunnels in the 2004 Niigataken-Chuetsu earthquake. Quarterly Report of RTRI, 48(3), 136-141.
42. Yu, H., Chen, J., Bobet, A., & Yuan, Y. (2016). Damage observation and assessment of the Longxi tunnel during the Wenchuan earthquake. Tunnelling and underground space technology, 54, 102-116.
43. Zhang, X.-P., Wong, L. N. Y., Wang, S.-J., & Han, G.-Y. (2011). Engineering properties of quartz mica schist. Engineering geology, 121(3-4), 135-149.
44. 張詠泳. (2010). 潛移深層地滑邊坡案例之變形特徵與運動歷程探討. 臺北科技大學資源工程研究所碩士論文, 1-72.
45. 陳正勳, 王泰典, &黃燦輝. (2011). 山嶺隧道受震損害類型與原因之案例研究. 岩石力學與工程學報, 30(1), 45-57.
46. 羅百喬. (2013). 深層地滑邊坡運動歷程暨微地動特性案例研究. 臺北科技大學資源工程研究所學位論文, 1-160.
47.蘇仁偉. (2021). 岩石隧道受震反應:現地監測資料解析與三維數值模擬. 國立臺灣大學土木工程學系學位論文,2021.
48. 何恭睿. (2015). 大南澳片岩的構造演化歷史-以和平、萬榮與南部橫貫公路為例. 臺北科技大學工程科技研究所博士學位論文
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98872-
dc.description.abstract隧道作為基礎建設的一環,扮演著連接交通網絡、促進經濟發展及縮短城鄉距離等關鍵角色。近年來在全球多起地震事件中,有多起山岳隧道受震損害的案例,如:1999年的集集大地震,有49條隧道受到程度不一的損壞;2004年的新潟中越地震,有24條鐵路及山岳隧道受損。有鑒於此對於山岳隧道的耐震安全性逐漸受到重視,過往認為山岳隧道因受周圍岩體包覆,所受慣性力較地上結構物小,不太受到地震影響的觀點被重新檢視。
  本研究旨在探討震源距離對山岳隧道受震反應之影響,透過分析案例隧道及鄰近地震測站之監測資料,探討隧道在不同地震震源距離下之動態響應與損害機制,將結果用於建立山岳隧道三維數值模擬方法。最後以數值模擬之結果對案例隧道之受震反應進行分析,並提出建議。
  本研究首先回顧國內外山岳隧道受震損害的相關案例與影響因素,以及前人如何透過不同方法探討山岳隧道的受震反應。現地監測記錄分析的部分,取得臺灣東部嘉寶隧道及其鄰近地震站在2014至2016年間記錄之多筆地震資料。透過結合隧道內光纖應變計與加速度歷時分析結果。釐清不同距離震源地震的頻率組成以及隧道受不同距離震源的反應,結果顯示距離隧道較近之地震,地震波傳遞至隧道時,其高頻成分尚未隨距離完全消散,意即高頻成分能量佔比較大,對應波長較短的地動效應是導致隧道受震損壞的原因之一。
  數值模擬部分,本研究透過有限元素軟體ABAQUS首先進行二維半無限域地震場動態分析,探討網格尺寸對模擬結果的影響。 後建立現地地形三維模型,並以現地監測資料對模擬結果進行驗證。最後以三維模擬結果,探討隧道不同位置的受震反應。結果顯示在隧道淺覆蓋段,會有特定頻率的振幅被放大,導致同一監測點在不同斷面上,主頻會產生交換。而在與隧道斷面同方向之震波,會因為地震波在洞口段,原先在傳遞之地震波與散射後之地震波疊加導致能量累積,因此在隧道洞口段之能量與加速度峰值會相較隧道一般段來的高。因此在工程設計上,可能須針對隧道洞口段、淺覆蓋度的受震反應進行檢核設計。另外,近源地震的影響亦需詳細分析考慮。
zh_TW
dc.description.abstractTunnels, as a vital part of infrastructure, play a crucial role in connecting transportation networks, facilitating economic growth, and reducing distances between urban and rural areas. In recent years, multiple seismic events worldwide have resulted in damage to mountain tunnels. For example, in the 1999 Chi-Chi earthquake, 49 tunnels suffered varying degrees of damage, while the 2004 Niigata Chuetsu earthquake damaged 24 railway and mountain tunnels. Consequently, there is increasing emphasis on the seismic safety of mountain tunnels. The previous assumption—that mountain tunnels, protected by surrounding rock mass, experience smaller inertial forces than above-ground structures and are therefore less susceptible to earthquakes—has been re-evaluated.
  This study investigates the influence of source distance on the seismic response of mountain tunnels. By analyzing monitoring data from selected case-study tunnels and nearby seismic stations, the study explores the dynamic responses and damage mechanisms under varying earthquake source distances. These findings are then utilized to develop a three-dimensional numerical simulation method for mountain tunnels. Finally, numerical simulation results are analyzed to evaluate seismic responses in the case-study tunnel and provide recommendations.
  Initially, this research reviews domestic and international cases of seismic damage in mountain tunnels, discussing relevant influencing factors and methodologies previously used to assess tunnel seismic responses. Field monitoring analysis involves examining seismic data collected between 2014 and 2016 from the Jiabao Tunnel in eastern Taiwan and its nearby seismic stations. By integrating data from fiber-optic strain gauges within the tunnel and analyzing acceleration time histories, the study clarifies frequency compositions and tunnel responses under earthquakes originating at various distances. Results indicate that near-field seismic waves, which retain higher frequency components due to limited energy dissipation with distance, contribute significantly to tunnel damage.
  For the numerical simulations, this study first conducted two-dimensional half‐space dynamic seismic field analyses in ABAQUS to investigate the influence of mesh size on the results. A three‐dimensional model representing the actual terrain was then developed and validated against field monitoring data. Finally, the three‐dimensional simulation results were used to examine the seismic response at different tunnel locations. The results show that in shallow‐cover sections, amplitudes at certain frequencies are amplified, causing the dominant frequency to shift between cross sections at the same monitoring point. Moreover, seismic waves traveling parallel to the tunnel cross section exhibit energy accumulation at the portal due to superposition of incident and scattered waves, resulting in higher energy and peak accelerations at the portal than in mid‐tunnel sections. Therefore, design checks should specifically address portal and shallow‐cover responses, and the effects of near‐source earthquakes must be explicitly considered.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:06:30Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-20T16:06:30Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目 次
誌謝 i
中文摘要 ii
英文摘要 iii
目 次 v
圖 次 viii
表 次 xii
第1章 緒論 13
1.1研究背景與目的 13
1.2研究方法與流程 14
1.3論文架構 15
第2章 文獻回顧 16
2.1隧道受震損壞案例 16
2.1.1隧道受震損壞案例 16
2.1.2隧道受震損壞型態 22
2.2隧道受震損壞影響因素 24
2.3隧道受震反應數值模擬探討 26
2.3.1簡諧震動歷時分析 26
2.3.2擴展物理模型試驗之數值分析 26
2.3.3全動態分析 27
第3章 案例隧道受震紀錄解析 32
3.1案例隧道與監測設備 32
3.1.1案例隧道周圍場址概況 32
3.1.2案例隧道鄰近中央氣象局地震測站 32
3.1.3案例隧道內監測儀器之布設 33
3.2地震加速度歷時處理流程 35
3.2.1取得加速度歷時 36
3.2.2座標系轉換 36
3.2.3消除均值 36
3.2.4資料擷取 37
3.2.5濾波 37
3.2.6地震動參數 37
3.2.7傅立葉轉換 37
3.2.8希爾伯特-黃轉換 38
3.3案例隧道內光纖應變計監測資料處理 38
3.4監測資料彙整 40
3.4.1區域震源地震 41
3.4.2特定震源地震 43
3.5監測資料分析結果 45
3.5.1傅立葉頻譜 45
3.5.2本質模態函數(IMF) 50
3.6監測資料解析 59
3.6.1Arias Intensity 59
3.6.2本質模態函數(IMF) 59
3.6.3PGA&PGV 59
第4章 分析模式建立與驗證 63
4.1分析模式建立 63
4.1.1有限元素法動態顯式分析 63
4.1.2二維半無限域數值模型設定 64
4.2模型元素尺寸 67
4.3二維模型驗證綜合討論 70
4.4案例三維數值模型設定 70
4.5模型輸入地震與輸入方法 74
4.6模擬結果與監測資料比較 77
4.6.1監測點加速度歷時與傅立葉頻譜 77
4.6.2IMF參數 81
4.6.3PGA與訊號能量 84
4.6.4三維數值模型輸入地震 85
4.6.5結果比較之結論 89
第5章 案例隧道受震反應 90
5.1隧道受震頻率特徵: 91
5.2隧道受震最大加速度與訊號能量: 99
第六章 結論與建議 103
6.1結論 103
6.1.1現地監測資料 103
6.1.2數值模擬方法 103
6.1.3隧道受震反應 103
6.2建議 104
參考文獻 105
附錄 口試問題紀錄與回覆 110
-
dc.language.isozh_TW-
dc.subject山岳隧道zh_TW
dc.subject現地監測資料zh_TW
dc.subject三維隧道受震數值模擬zh_TW
dc.subjectField monitoring dataen
dc.subject3-D seismic tunnel modellingen
dc.subjectMountain tunnelsen
dc.title震態主頻對山岳隧道變形關聯性分析:現地監測與數值模擬比較zh_TW
dc.titleAnalysis of the Relationship Between Seismic Predominant Frequency and Deformation of Mountain Tunnels: A Comparison Between Field Monitoring and Numerical Simulationen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張國楨;郭安妮;趙韋安;楊宜蓉zh_TW
dc.contributor.oralexamcommitteeKuo-Jen Chang;On-Lei Annie Kwok;Vvn Wei-an Chao;Yi-Rong Yangen
dc.subject.keyword山岳隧道,現地監測資料,三維隧道受震數值模擬,zh_TW
dc.subject.keywordMountain tunnels,Field monitoring data,3-D seismic tunnel modelling,en
dc.relation.page113-
dc.identifier.doi10.6342/NTU202504264-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-14-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2025-08-21-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf7.04 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved