請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98870完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘敏雄 | zh_TW |
| dc.contributor.advisor | Min-Hsiung Pan | en |
| dc.contributor.author | 康宏毅 | zh_TW |
| dc.contributor.author | Hong-Yi Kang | en |
| dc.date.accessioned | 2025-08-20T16:06:03Z | - |
| dc.date.available | 2025-08-21 | - |
| dc.date.copyright | 2025-08-20 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-12 | - |
| dc.identifier.citation | 呂瑞琳。2016。台灣公館產紅棗之肉皮籽成分與加工適性。大葉大學生物產業科技學系碩士論文。台中市。
林妤姍、徐敏記、黃肇家。2018。紅棗鮮果採後生理之初探。苗栗區農業專訊,82 2018.06: 15-17。 胡芳、趙智慧、劉孟軍。2011。HPLC法測定不同棗品種果實中白樺酯酸、齊墩果酸和熊果酸含量。中國農業通報,27(5): 434-438。 徐鴻華。2004。中草藥彩色圖鑑(四)華北篇。西北出版社。台南市。176。 黃微、徐瑞晗、程妮、王畢妮、高慧、曹煒。2012。紅棗生物活性成分的研究進展。食品研究與研發,33(4):198-201。 黃彥程。2018。介質研磨甘藷葉之理化性質及其葉黃素生物分布。國立台灣大學食品科技研究所碩士論文。台北市。 陳時欣。2006。蔗糖酯對奈米/次微米纖維素懸浮液穩定性之研究。國立台灣大學食品科技研究所碩士論文。台北市。 張慶、雷林生、林勤保、孫莉莎、楊淑琴。1999。三種大棗多醣促進小鼠脾細胞增殖作用的比較。第一軍醫大學學報,19: 398。 張慶、雷林生、楊淑琴、孫莉莎。2001。大棗中性多醣對小鼠脾細胞增殖作用影響。第一軍醫大學學報,21: 426-428。 張鐘、吳茂東。2006。大棗多醣對小鼠化學性肝損傷的保護作用和抗疲勞作用。南京農業大學學報,29: 94-97。 張采、李佳、張永清。2011。大棗化學成分研究概況。中國現代中藥,13(11): 49-51。 劉雲聰。1998。公館特產-紅棗。苗栗區農業專訊,3: 3-6。 劉雲聰。2000。苗栗地區紅棗栽培問題與對策。苗栗區農業專訊,12: 25-29。 衛生福利部食品藥物管理署。2014。奈米食品申請作業指引。衛生福利部食品藥物管理署103年11月24日。台灣。 魯周民、劉坤、闫忠心、李新崗。2010。棗果實營養成分及保健作用研究進展。園藝學報,37(12): 2017-2024。 韓志萍。2006。陝北紅棗中總黃酮的提取及含量比較。食品科學,27(12): 560-562。 蔡健。2004。大棗的營養保健作用及貯藏加工技術。中國食物與營養,9: 16-19。 曹艷萍、楊秀利、薛成虎。2007。紅棗中齊墩果酸提取工藝的研究。食品科學,28(10): 165-167。 雷昌貴、陳錦屏、盧大新。2006。紅棗的營養成分及其保健功能。現代生物醫學進展,6(3): 56-57。 Aletaha, D.; Neogi, T.; Silman, A. J.; Funovits, J.; Felson, D. T.; Bingham III, C. O.; Birnbaum, N. S.; Burmester, G. R.; Bykerk, V. P.; Cohen, M. D. 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis & Rheumatism 2010, 62, 2569-2581. American Society for Testing and Materials (ASTM). Standard guide for measurement of electrophoretic mobility and zeta potential of nanosized biological materials. Designation: E2865-12. 2012. Anderson, C. W. Turbidity 6.7. USGS National Field Manual for The Collection of Water Quality Data, US Geological Survey 2005. Antonio, G. C.; Faria, F. R.; Takeiti, C. Y.; Park, K. J. Rheological behavior of blueberry. Food Science and Technology 2009, 29, 732-737. Apak, R.; Capanoglu, E.; Shahidi, F. Measurement of antioxidant activity and capacity: Recent trends and applications. 2017. John Wiley & Sons Ltd. Awika, J. M.; Rooney, L. W.; Wu, X.; Prior, R. L.; Cisneros-Zevallos, L. Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. Journal of Agricultural and Food Chemistry 2003, 51, 6657-6662. Bauerova, K.; Bezek, S. Role of reactive oxygen and nitrogen species in etiopathogenesis of rheumatoid arthritis. General Physiology and Biophysics 2000, 18, 15-20. Beagley, K.; Huston, W. M.; Hansbro, P. M.; Timms, P. Chlamydial infection of immune cells: altered function and implications for disease. Critical Reviews™ in Immunology 2009, 29, 275-305. Beutler, B. Innate immunity: an overview. Molecular Immunology 2004, 40, 845-859. Bhakay, A.; Merwade, M.; Bilgili, E.; Dave, R. N. Novel aspects of wet milling for the production of microsuspensions and nanosuspensions of poorly water-soluble drugs. Drug Development and Industrial Pharmacy 2011, 37, 963-976. Bhakay, A.; Rahman, M.; Dave, R. N.; Bilgili, E. Bioavailability enhancement of poorly water-soluble drugs via nanocomposites: Formulation–Processing aspects and challenges. Pharmaceutics 2018, 10, 86. Bilgili, E.; Guner, G. Mechanistic modeling of wet stirred media milling for production of drug nanosuspensions. American Association of Pharmaceutical Scientists PharmSciTech 2021, 22, 1-23. Birk, R.; Gratchev, A.; Hakiy, N.; Politz, O.; Schledzewski, K.; Guillot, P.; Orfanos, C.; Goerdt, S. Alternative activation of antigen-presenting cells: concepts and clinical relevance. Der Hautarzt; Zeitschrift fur Dermatologie, Venerologie, und verwandte Gebiete 2001, 52, 193-200. Brudvik, K. W.; Taskén, K. Modulation of T cell immune functions by the prostaglandin E2–cAMP pathway in chronic inflammatory states. British Journal of Pharmacology 2012, 166, 411-419. Castro, E.; Conde, E.; Moure, A.; Falqué, E.; Cara, C.; Ruiz, E.; Domínguez, H. Antioxidant activity of liquors from steam explosion of Olea europea wood. Wood Science and Technology 2008, 42, 579-592. Chang, C.-C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis 2002, 10, 2224-6614.2748. Chang, S.; Hsu, B.; Chen, B. Structural characterization of polysaccharides from Zizyphus jujuba and evaluation of antioxidant activity. International Journal of Biological Macromolecules 2010, 47, 445-453. Chassaing, B.; Aitken, J. D.; Malleshappa, M.; Vijay‐Kumar, M. Dextran sulfate sodium (DSS)‐induced colitis in mice. Current Protocols in Immunology 2014, 104, 15.25. 1-15.25. 14. Chebil, L.; Humeau, C.; Anthoni, J.; Dehez, F.; Engasser, J.-M.; Ghoul, M. Solubility of flavonoids in organic solvents. Journal of Chemical & Engineering Data 2007, 52, 1552-1556. Checker, R.; Sandur, S. K.; Sharma, D.; Patwardhan, R. S.; Jayakumar, S.; Kohli, V.; Sethi, G.; Aggarwal, B. B.; Sainis, K. B. Potent anti-inflammatory activity of ursolic acid, a triterpenoid antioxidant, is mediated through suppression of NF-κB, AP-1 and NF-AT. PloS One 2012, 7, e31318. Chen, C.-J.; Shen, Y.-C.; Yeh, A.-I. Physico-chemical characteristics of media-milled corn starch. Journal of Agricultural and Food Chemistry 2010, 58, 9083-9091. Chen, C.; Li, H.; Lv, X.; Tang, J.; Chen, C.; Zheng, X. Application of near infrared spectroscopy combined with SVR algorithm in rapid detection of cAMP content in red jujube. Optik 2019, 194, 163063. Chen, Z.; Liang, G.; Ru, Y.; Weng, H.; Zhang, Y.; Chen, J.; Xiao, Q.; Xiao, A. Media-milled agar particles as a novel emulsifier for food pickering emulsion. International Journal of Biological Macromolecules 2023, 253, 127185. Chi, A.; Kang, C.; Zhang, Y.; Tang, L.; Guo, H.; Li, H.; Zhang, K. Immunomodulating and antioxidant effects of polysaccharide conjugates from the fruits of Ziziphus Jujube on chronic fatigue syndrome rats. Carbohydrate Polymers 2015, 122, 189-196. Chi, H. L.; Yeh, A. I.; Pan, M. H.; Chen, S. H. Physicochemical properties and film formation of the chitin hydrocolloid fabricated by a novel green process. Journal of Applied Polymer Science 2021, 138, 50762. Chiang, L.-H.; Chen, S.-H.; Yeh, A.-I. Preparation of nano/submicrometer yam and its benefits on collagen secretion from skin fibroblast cells. Journal of Agricultural and Food Chemistry 2012, 60, 12332-12340. Chiang, Y.-H.; Chen, S.-H.; Yeh, A.-I. Preparation of nano/submicrometer Ganoderma tsugae and its mutagenic potencies and cytotoxicity. Journal of Agricultural and Food Chemistry 2014, 62, 12244-12255. Chou, Y.-C.; Ho, P.-Y.; Chen, W.-J.; Wu, S.-H.; Pan, M.-H. Lactobacillus fermentum V3 ameliorates colitis-associated tumorigenesis by modulating the gut microbiome. American Journal of Cancer Research 2020, 10, 1170. Cos, P.; Rajan, P.; Vedernikova, I.; Calomme, M.; Pieters, L.; Vlietinck, A. J.; Augustyns, K.; Haemers, A.; Berghe, D. V. In vitro antioxidant profile of phenolic acid derivatives. Free Radical Research 2002, 36, 711-716. Coussens, L. M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860. Cyong, J.-C.; Hanabusa, K. Cyclic adenosine monophosphate in fruits of Zizyphus jujuba. Phytochemistry 1980, 19, 2747-2748. Davik, J.; Kjersti Bakken, A.; Holte, K.; Blomhoff, R. Effects of genotype and environment on total anti-oxidant capacity and the content of sugars and acids in strawberries (Fragaria× ananassa Duch.). The Journal of Horticultural Science and Biotechnology 2006, 81, 1057-1063. Ding, S.; Wang, R.; Shan, Y.; Li, G.; Ou, S. Changes in pectin characteristics during the ripening of jujube fruit. Journal of the Science of Food and Agriculture 2017, 97, 4151-4159. Duan, Y.; Liu, S.; Zhu, Y.; Wang, Y.; Yan, F.; Liu, Z.; Shi, X.; Liu, P.; Liu, M. The influences of soil and meteorological factors on the growth and fruit quality of Chinese Jujube (Ziziphus jujuba Mill.). Plants 2023, 12, 4107. Dubey, R.; Toh, Y.-R.; Yeh, A.-I. Enhancing cellulose functionalities by size reduction using media-mill. Scientific Reports 2018, 8, 11343. Duchrow, R. M.; Everhart, W. H. Turbidity measurement. Transactions of the American Fisheries Society 1971, 100, 682-690. Dudhgaonkar, S.; Thyagarajan, A.; Sliva, D. Suppression of the inflammatory response by triterpenes isolated from the mushroom Ganoderma lucidum. International Immunopharmacology 2009, 9, 1272-1280. Elenkov, I. J.; Chrousos, G. P. Stress hormones, Th1/Th2 patterns, pro/anti-inflammatory cytokines and susceptibility to disease. Trends in Endocrinology & Metabolism 1999, 10, 359-368. Eskin, D.; Zhupanska, O.; Hamey, R.; Moudgil, B.; Scarlett, B. Microhydrodynamics of stirred media milling. Powder Technology 2005, 156, 95-102. Förster, S.; Konrad, M. From self-organizing polymers to nano-and biomaterials. Journal of Materials Chemistry 2003, 13, 2671-2688. Gammon, K. A complex problem. Nature 2013, 502. Gao, Q.-H.; Wu, C.-S.; Wang, M. The jujube (Ziziphus jujuba Mill.) fruit: a review of current knowledge of fruit composition and health benefits. Journal of Agricultural and Food Chemistry 2013, 61, 3351-3363. Gao, Q.-H.; Wu, C.-S.; Wang, M.; Xu, B.-N.; Du, L.-J. Effect of drying of jujubes (Ziziphus jujuba Mill.) on the contents of sugars, organic acids, α-tocopherol, β-carotene, and phenolic compounds. Journal of Agricultural and Food Chemistry 2012a, 60, 9642-9648. Gao, Q.-H.; Wu, P.-T.; Liu, J.-R.; Wu, C.-S.; Parry, J. W.; Wang, M. Physico-chemical properties and antioxidant capacity of different jujube (Ziziphus jujuba Mill.) cultivars grown in loess plateau of China. Scientia Horticulturae 2011, 130, 67-72. Gao, Q. H.; Wu, C. S.; Yu, J. G.; Wang, M.; Ma, Y. J.; Li, C. L. Textural characteristic, antioxidant activity, sugar, organic acid, and phenolic profiles of 10 promising jujube (Ziziphus jujuba Mill.) selections. Journal of Food Science 2012b, 77, C1218-25. García‐Pérez, F.; Lario, Y.; Fernández‐López, J.; Sayas, E.; Pérez‐Alvarez, J.; Sendra, E. Effect of orange fiber addition on yogurt color during fermentation and cold storage. Color Research & Application 2005, 30, 457-463. Goyal, R.; Sharma, P. L.; Singh, M. Possible attenuation of nitric oxide expression in anti-inflammatory effect of Ziziphus jujuba in rat. Journal of Natural Medicines 2011, 65, 514-518. Gunther, E., Ethnobotany of Western Washington: The knowledge and use of indigenous plants by Native Americans. University of Washington Press: 1973; Vol. 10. Guo, S.; Duan, J.-A.; Tang, Y.-P.; Yang, N.-Y.; Qian, D.-W.; Su, S.-L.; Shang, E.-X. Characterization of triterpenic acids in fruits of Ziziphus species by HPLC-ELSD-MS. Journal of Agricultural and Food Chemistry 2010, 58, 6285-6289. Guo, S.; Duan, J.-a.; Tang, Y.; Su, S.; Shang, E.; Ni, S.; Qian, D. High-performance liquid chromatography-Two wavelength detection of triterpenoid acids from the fruits of Ziziphus jujuba containing various cultivars in different regions and classification using chemometric analysis. Journal of Pharmaceutical and Biomedical Analysis 2009a, 49, 1296-1302. Guo, S.; Duan, J.-A.; Zhang, Y.; Qian, D.; Tang, Y.; Zhu, Z.; Wang, H. Contents changes of triterpenic acids, nucleosides, nucleobases, and saccharides in Jujube (Ziziphus jujuba) fruit during the drying and steaming process. Molecules 2015, 20, 22329-22340. Guo, S.; Tang, Y. P.; Duan, J. A.; Su, S. L.; Ding, A. W. Two new terpenoids from fruits of Ziziphus jujuba. Chinese Chemical Letters 2009b, 20, 197-200. Haida, Z.; Hakiman, M. A comprehensive review on the determination of enzymatic assay and nonenzymatic antioxidant activities. Food Science & Nutrition 2019, 7, 1555-1563. Hamedi, S.; Arian, A. A.; Farzaei, M. H. Gastroprotective effect of aqueous stem bark extract of Ziziphus jujuba L. against HCl/Ethanol-induced gastric mucosal injury in rats. Journal of Traditional Chinese Medicine 2015, 35, 666-670. Heo, H.-J.; Park, Y.-J.; Suh, Y.-M.; Choi, S.-J.; Kim, M.-J.; Cho, H.-Y.; Chang, Y.-J.; Hong, B.; Kim, H.-K.; Kim, E. Effects of oleamide on choline acetyltransferase and cognitive activities. Bioscience, Biotechnology, and Biochemistry 2003, 67, 1284-1291. Huang, D.; Ou, B.; Prior, R. L. The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry 2005, 53, 1841-1856. Huang, R.-L.; Wang, W.-Y.; Kuo, Y.-H.; Lin, Y.-L. Cytotoxic triterpenes from the Fruit of Ziziphus jujuha. The Chinese Pharmaceutical Journal 2001, 53, 179-184. Hudina, M.; Liu, M.; Veberic, R.; Stampar, F.; Colaric, M. Phenolic compounds in the fruit of different varieties of Chinese jujube (Ziziphus jujuba Mill.). The Journal of Horticultural Science and Biotechnology 2008, 83, 305-308. Hung, C.-F.; Hsu, B.-Y.; Chang, S.-C.; Chen, B.-H. Antiproliferation of melanoma cells by polysaccharide isolated from Zizyphus jujuba. Nutrition 2012, 28, 98-105. Hung, W.-L.; Liao, C.-D.; Lu, W.-C.; Ho, C.-T.; Hwang, L. S. Lignan glycosides from sesame meal exhibit higher oral bioavailability and antioxidant activity in rat after nano/submicrosizing. Journal of Functional Foods 2016, 23, 511-522. Hur, S. J.; Lee, S. Y.; Kim, Y.-C.; Choi, I.; Kim, G.-B. Effect of fermentation on the antioxidant activity in plant-based foods. Food chemistry 2014, 160, 346-356. Igietseme, J. U.; Eko, F. O.; He, Q.; Black, C. M. Antibody regulation of T-cell immunity: implications for vaccine strategies against intracellular pathogens. Expert Review of Vaccines 2004, 3, 23-34. Ikeda, Y.; Murakami, A.; Ohigashi, H. Ursolic acid: An anti‐and pro‐inflammatory triterpenoid. Molecular Nutrition & Food Research 2008, 52, 26-42. Jäger, S.; Winkler, K.; Pfüller, U.; Scheffler, A. Solubility studies of oleanolic acid and betulinic acid in aqueous solutions and plant extracts of Viscum album L. Planta Medica 2007, 73, 157-162. Janeway Jr, C. A.; Medzhitov, R. Innate immune recognition. Annual Review of Immunology 2002, 20, 197-216. Ji, X.; Hou, C.; Gao, Y.; Xue, Y.; Yan, Y.; Guo, X. Metagenomic analysis of gut microbiota modulatory effects of jujube (Ziziphus jujuba Mill.) polysaccharides in a colorectal cancer mouse model. Food & Function 2020, 11, 163-173. Ji, X.; Hou, C.; Zhang, X.; Han, L.; Yin, S.; Peng, Q.; Wang, M. Microbiome-metabolomic analysis of the impact of Zizyphus jujuba cv. Muzao polysaccharides consumption on colorectal cancer mice fecal microbiota and metabolites. International Journal of Biological Macromolecules 2019, 131, 1067-1076. Ji, X.; Peng, Q.; Li, H.; Liu, F.; Wang, M. Chemical Characterization and anti-inflammatory activity of polysaccharides from Zizyphus jujube cv. Muzao. International Journal of Food Engineering 2017,13, 20160381. Jiang, T.; He, F.; Han, S.; Chen, C.; Zhang, Y.; Che, H. Characterization of cAMP as an anti-allergic functional factor in Chinese jujube (Ziziphus jujuba Mill.). Journal of Functional Foods 2019, 60, 103414. Kaliner, M. Human lung tissue and anaphylaxis: Evidence that cyclic nucleotides modulate the immunologic release of mediators through effects on microtubular assembly. The Journal of Clinical Investigation 1977, 60, 951-959. Kao, T. H.; Chen, B. H. Functional components in zizyphus with emphasis on polysaccharides. Polysaccharides: Bioactivity and Biotechnology 2015, 795-827. Kawai, T.; Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature Immunology 2010, 11, 373-384. Klick, S.; Herrmann, K. Glucosides and glucose esters of hydroxybenzoic acids in plants. Phytochemistry 1988, 27, 2177-2180. Kuo, H.-Y.; Chen, S.-H.; Yeh, A.-I. Preparation and physicochemical properties of whole-bean soymilk. Journal of Agricultural and Food Chemistry 2014, 62, 742-749. Lacy, P. Secretion of cytokines and chemokines by innate immune cells. Frontiers in Immunology 2015, 6, 190. Lam, T.; Kadoya, K.; Iiyama, K. Bonding of hydroxycinnamic acids to lignin: ferulic and p-coumaric acids are predominantly linked at the benzyl position of lignin, not the β-position, in grass cell walls. Phytochemistry 2001, 57, 987-992. Lee, S.-M.; Park, J.-G.; Lee, Y.-H.; Lee, C.-G.; Min, B.-S.; Kim, J.-H.; Lee, H.-K. Anti-complementary activity of triterpenoides from fruits of Zizyphus jujuba. Biological and Pharmaceutical Bulletin 2004, 27, 1883-1886. Levine, B.; Mizushima, N.; Virgin, H. W. Autophagy in immunity and inflammation. Nature 2011, 469, 323. Lhaglham, P.; Jiramonai, L.; Jia, Y.; Huang, B.; Huang, Y.; Gao, X.; Zhang, J.; Liang, X.-J.; Zhu, M. Drug nanocrystals: Surface engineering and its applications in targeted delivery. iScience 2024, 27, 85. Li, J.W.; Ding, S.D.; Ding, X.L. Comparison of antioxidant capacities of extracts from five cultivars of Chinese jujube. Process Biochemistry 2005, 40, 3607-3613. Li, J.-W.; Fan, L.-P.; Ding, S.-D.; Ding, X.-L. Nutritional composition of five cultivars of Chinese jujube. Food Chemistry 2007, 103, 454-460. Li, M.; Alvarez, P.; Orbe, P.; Bilgili, E. Multi-faceted characterization of wet-milled griseofulvin nanosuspensions for elucidation of aggregation state and stabilization mechanisms. Aaps Pharmscitech 2018, 19, 1789-1801. Li, M.; Azad, M.; Davé, R.; Bilgili, E. Nanomilling of drugs for bioavailability enhancement: a holistic formulation-process perspective. Pharmaceutics 2016, 8, 17. Li, M.; Yaragudi, N.; Afolabi, A.; Dave, R.; Bilgili, E. Sub-100 nm drug particle suspensions prepared via wet milling with low bead contamination through novel process intensification. Chemical Engineering Science 2015, 130, 207-220. Li, T.; Jiang, T.; Liu, N.; Wu, C.; Xu, H.; Lei, H. Biotransformation of phenolic profiles and improvement of antioxidant capacities in jujube juice by select lactic acid bacteria. Food Chemistry 2021, 339, 127859. Lim, T., Ziziphus jujuba. In Edible medicinal and non-medicinal plants, Springer: 2013; pp 578-604. Lim, T. K., Edible medicinal and non-medicinal plants. Springer: 2012; Vol. 1. Lin, N.C.; Lin, J.C.; Chen, S.H.; Ho, C.T.; Yeh, A.I. Effect of goji (Lycium barbarum) on expression of genes related to cell survival. Journal of Agricultural and Food Chemistry 2011, 59, 10088-10096. Lin, S.; Zhang, X.; Wang, J.; Li, T.; Wang, L. Effect of lactic acid bacteria fermentation on bioactive components of black rice bran (Oryza sativa L.) with different milling fractions. Food Bioscience 2024, 58, 103684. Lin, W. S.; Lai, Y. J.; Kalyanam, N.; Ho, C. T.; Pan, M. H. S‐Allylcysteine inhibits PhIP/DSS‐induced colon carcinogenesis through mitigating inflammation, targeting Keap1, and modulating microbiota composition in mice. Molecular Nutrition & Food Research 2020, 64, 2000576. Liu, J. Pharmacology of oleanolic acid and ursolic acid. Journal of Ethnopharmacology 1995, 49, 57-68. Liu, M.; Wang, J.; Wang, L.; Liu, P.; Zhao, J.; Zhao, Z.; Yao, S.; Stănică, F.; Liu, Z.; Wang, L. The historical and current research progress on jujube–a superfruit for the future. Horticulture Research 2020, 7, s41438-020-00346-5. Lu, X.; Xiao, J.; Huang, Q. Pickering emulsions stabilized by media-milled starch particles. Food Research International 2018, 105, 140-149. Lu, Y.; Bao, T.; Mo, J.; Ni, J.; Chen, W. Research advances in bioactive components and health benefits of jujube (Ziziphus jujuba Mill.) fruit. Journal of Zhejiang University-SCIENCE B 2021, 22, 431-449. Lucarini, M.; Pedulli, G. F.; Guerra, M. A Critical evaluation of the factors determining the effect of intramolecular hydrogen bonding on the O-H bond dissociation enthalpy of catechol and of flavonoid antioxidants. Chemistry-A European Journal 2004, 10, 933-939. Manning, T. S.; Gibson, G. R. Prebiotics. Best Practice & Research Clinical Gastroenterology 2004, 18, 287-298. Mao, J.; Sun, H.; Cao, L.; Deng, K.; Xu, J.; Fu, J.; Chen, Y.; Xie, H. Comparative analysis of the quality characteristics of high-moisture jujube with different degrees of dehydration. LWT-Food Science and Technology 2024, 198, 116026. McKnight, G. S. Cyclic AMP second messenger systems. Current Opinion in Cell Biology 1991, 3, 213-217. McNeil, S. E., Characterization of nanoparticles intended for drug delivery. Springer: 2011; Vol. 697. Nindo, C.; Tang, J.; Powers, J.; Takhar, P. Rheological properties of blueberry puree for processing applications. LWT-Food Science and Technology 2007, 40, 292-299. Odgerel, U.; Islam, M. Z.; Kitamura, Y.; Kokawa, M.; Odbayar, T. O. Effect of micro wet milling process on particle sizes, antioxidants, organic acids, and specific phenolic compounds of whole sea buckthorn (Hippophae rhamnoides L.) juices. Journal of Food Processing and Preservation 2021, 45, e15474. Opal, S. M.; Depalo, V. A. Anti-inflammatory cytokines. Chest 2000, 117, 1162-1172. Oyaizu, M. Studies on products of browning reaction: antioxidative activity of products of browning reaction. The Japanese Journal of Nutrition and Dietetics 1986, 44, 307-315. Pan, M.H.; Maresz, K.; Lee, P.-S.; Wu, J.C.; Ho, C.T.; Popko, J.; Mehta, D. S.; Stohs, S. J.; Badmaev, V. Inhibition of TNF-α, IL-1α, and IL-1β by pretreatment of human monocyte-derived macrophages with menaquinone-7 and cell activation with TLR agonists in vitro. Journal of Medicinal Food 2016, 19, 663-669. Pan, X.; Zhang, S.; Xu, X.; Lao, F.; Wu, J. Volatile and non-volatile profiles in jujube pulp co-fermented with lactic acid bacteria. LWT-Food Science and Technology 2022, 154, 112772. Pareek, S. Nutritional composition of jujube fruit. Emirates Journal of Food and Agriculture 2013, 25, 463. Patocka, J. Biologically active pentacyclic triterpenes and their current medicine signification. Journal of Applied Biomedicine 2003, 1, 7-12. Peltonen, L. Design space and QbD approach for production of drug nanocrystals by wet media milling techniques. Pharmaceutics 2018, 10, 104. Peltonen, L.; Hirvonen, J. Pharmaceutical nanocrystals by nanomilling: critical process parameters, particle fracturing and stabilization methods. Journal of Pharmacy and Pharmacology 2010, 62, 1569-1579. Periasamy, S.; Wu, W.-H.; Chien, S.-P.; Liu, C.-T.; Liu, M.-Y. Dietary Ziziphus jujuba fruit attenuates colitis-associated tumorigenesis: a pivotal role of the NF-κB/IL-6/JAK1/STAT3 pathway. Nutrition and Cancer 2020, 72, 120-132. Plumb, J.; Milroy, R.; Kaye, S. In Optimization of a chemosensitivity assay based on reduction of the tetrazolium Dye, Mtt, Anticancer Research, 1987; Int Inst Anticancer Research Editorial Office 1st Km Kapandntiou-Kalamou Rd Kapandriti, Pob 22, Athens 19014, Greece: 1987, 902-902. Plumb, J. A.; Milroy, R.; Kaye, S. Effects of the pH dependence of 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide-formazan absorption on chemosensitivity determined by a novel tetrazolium-based assay. Cancer Research 1989, 49, 4435-4440. Rajopadhye, A.; Upadhye, A. S. Estimation of bioactive compound, maslinic acid by HPTLC, and evaluation of hepatoprotective activity on fruit pulp of Ziziphus jujuba Mill. Cultivars in India. Evidence-Based Complementary and Alternative Medicine 2016, 2016, 4758734. Rana, A.; Samtiya, M.; Dhewa, T.; Mishra, V.; Aluko, R. E. Health benefits of polyphenols: A concise review. Journal of Food Biochemistry 2022, 46, e14264. Rashwan, A. K.; Karim, N.; Shishir, M. R. I.; Bao, T.; Lu, Y.; Chen, W. Jujube fruit: A potential nutritious fruit for the development of functional food products. Journal of Functional Foods 2020, 75, 104205. Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 1999, 26, 1231-1237. Redgrove, K. A.; McLaughlin, E. A. The role of the immune response in Chlamydia trachomatis infection of the male genital tract: a double-edged sword. Frontiers in Immunology 2014, 5, 534. Rodríguez Villanueva, J.; Rodríguez Villanueva, L. Experimental and Clinical Pharmacology of Ziziphus jujuba Mills. Phytotherapy Research 2017, 31, 347-365. Ruan, J.; Han, Y.; Kennedy, J. F.; Jiang, H.; Cao, H.; Zhang, Y.; Wang, T. A review on polysaccharides from jujube and their pharmacological activities. Carbohydrate Polymer Technologies and Applications 2022, 3, 100220. Ryu, S. Y.; Oak, M.-H.; Yoon, S.-K.; Cho, D.-I.; Yoo, G.-S.; Kim, T.-S.; Kim, K.-M. Anti-allergic and anti-inflammatory triterpenes from the herb of Prunella vulgaris. Planta Medica 2000, 66, 358-360. Sabzghabaee, A. M.; Khayam, I.; Kelishadi, R.; Ghannadi, A.; Soltani, R.; Badri, S.; Shirani, S. Effect of Zizyphus jujuba fruits on dyslipidemia in obese adolescents: a triple-masked randomized controlled clinical trial. Medical Archives 2013, 67, 156. Sahin, S.; Sumnu, G.; Altunakar, B. Effects of batters containing different gum types on the quality of deep‐fat fried chicken nuggets. Journal of the Science of Food and Agriculture 2005, 85, 2375-2379. Sarıtaş, S.; Portocarrero, A. C. M.; Miranda López, J. M.; Lombardo, M.; Koch, W.; Raposo, A.; El-Seedi, H. R.; de Brito Alves, J. L.; Esatbeyoglu, T.; Karav, S. The impact of fermentation on the antioxidant activity of food products. Molecules 2024, 29, 3941. Saxena, M.; Saxena, J.; Nema, R.; Singh, D.; Gupta, A. Phytochemistry of medicinal plants. Journal of Pharmacognosy and Phytochemistry 2013, 1, 168-182. Schwede, F.; Maronde, E.; Genieser, H.-G.; Jastorff, B. Cyclic nucleotide analogs as biochemical tools and prospective drugs. Pharmacology & Therapeutics 2000, 87, 199-226. Shahidi, F.; Naczk, M. An overview of the phenolics of canola and rapeseed: chemical, sensory and nutritional significance. Journal of the American Oil Chemists' Society 1992, 69, 917-924. Shahrajabian, M. H.; Sun, W.; Cheng, Q. Chinese jujube (Ziziphus jujuba Mill.)–a promising fruit from traditional chinese medicine. Annales Universitatis Paedagogicae Cracoviensis Studia Naturae 2020, 194-219. Shimada, K.; Fujikawa, K.; Yahara, K.; Nakamura, T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural and Food Chemistry 1992, 40, 945-948. Shinohara, K.; Golman, B.; Uchiyama, T.; Otani, M. Fine-grinding characteristics of hard materials by attrition mill. Powder Technology 1999, 103, 292-296. Singla, R. K.; Dubey, A. K.; Garg, A.; Sharma, R. K.; Fiorino, M.; Ameen, S. M.; Haddad, M. A.; Al-Hiary, M., Natural polyphenols: chemical classification, definition of classes, subcategories, and Structures. Journal of AOAC International 2019, 102, 1397-1400. Singleton, V. L.; Orthofer, R.; Lamuela-Raventós, R. M., [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology, Elsevier: 1999; Vol. 299, pp 152-178. Stalikas, C. D. Extraction, separation, and detection methods for phenolic acids and flavonoids. Journal of Separation Science 2007, 30, 3268-3295. Steffe, J. F., Rheological methods in food process engineering. Freeman press: 1996. Stockert, J. C.; Blázquez-Castro, A.; Cañete, M.; Horobin, R. W.; Villanueva, Á. MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets. Acta Histochemica 2012, 114, 785-796. Subbaramaiah, K.; Michaluart, P.; Sporn, M. B.; Dannenberg, A. J. Ursolic acid inhibits cyclooxygenase-2 transcription in human mammary epithelial cells. Cancer Research 2000, 60, 2399-2404. Suh, N.; Honda, T.; Finlay, H. J.; Barchowsky, A.; Williams, C.; Benoit, N. E.; Xie, Q.-w.; Nathan, C.; Gribble, G. W.; Sporn, M. B. Novel triterpenoids suppress inducible nitric oxide synthase (iNOS) and inducible cyclooxygenase (COX-2) in mouse macrophages. Cancer Research 1998, 58, 717-723. Sun, Y.-F.; Liang, Z.-S.; Shan, C.-J.; Viernstein, H.; Unger, F. Comprehensive evaluation of natural antioxidants and antioxidant potentials in Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex HF Chou fruits based on geographical origin by TOPSIS method. Food Chemistry 2011, 124, 1612-1619. Taga, M. S.; Miller, E.; Pratt, D. Chia seeds as a source of natural lipid antioxidants. Journal of the American Oil Chemists' Society 1984, 61, 928-931. Tahergorabi, Z.; Abedini, M. R.; Mitra, M.; Fard, M. H.; Beydokhti, H. “Ziziphus jujuba”: A red fruit with promising anticancer activities. Pharmacognosy Reviews 2015, 9, 99. Tanaka, T. Development of an inflammation-associated colorectal cancer model and its application for research on carcinogenesis and chemoprevention. International Journal of Inflammation 2012, 2012, 658786. Tanaka, Y.; Inkyo, M.; Yumoto, R.; Nagai, J.; Takano, M.; Nagata, S. Nanoparticulation of poorly water soluble drugs using a wet-mill process and physicochemical properties of the nanopowders. Chemical and Pharmaceutical Bulletin 2009, 57, 1050-1057. U.S. Department of Agriculture, Agricultural Research Service (USDA) (2018) USDA National nutrient database for standard reference, Release 1. Nutrient Data Laboratory Home Page. http://www.ars.usda.gov/ba/bhnrc/ndl. Vargas-Robles, H.; Castro-Ochoa, K. F.; Citalán-Madrid, A. F.; Schnoor, M. Beneficial effects of nutritional supplements on intestinal epithelial barrier functions in experimental colitis models in vivo. World Journal of Gastroenterology 2019, 25, 4181. Vidrih, R.; Ulrih, N.; Zlatić, E.; Hribar, J.; Prgomet, Z. The nutritional and physico-chemical properties of ripe (Ziziphus jujube) fruits grown in Istria. Acta Hort. 840, 2009, 525-528. Wang, C.; Gao, Y.; Zhang, Z.; Chen, C.; Chi, Q.; Xu, K.; Yang, L. Ursolic acid protects chondrocytes, exhibits anti-inflammatory properties via regulation of the NF-κB/NLRP3 inflammasome pathway and ameliorates osteoarthritis. Biomedicine & Pharmacotherapy 2020a, 130, 110568. Wang, L.; Jing, N.; Liu, X.; Jiang, G.; Liu, Z. Nurturing and modulating gut microbiota with jujube powder to enhance anti-PD-L1 efficiency against murine colon cancer. Journal of Functional Foods 2020b, 64, 103647. Wang, R.; Ding, S.; Zhao, D.; Wang, Z.; Wu, J.; Hu, X. Effect of dehydration methods on antioxidant activities, phenolic contents, cyclic nucleotides, and volatiles of jujube fruits. Food Science and Biotechnology 2016, 25, 137-143. Wongsagonsup, R.; Shobsngob, S.; Oonkhanond, B.; Varavinit, S. Zeta potential (ζ) and pasting properties of phosphorylated or crosslinked rice starches. Starch‐Stärke 2005, 57, 32-37. Xiao, S.; Wang, Q.; Si, L.; Shi, Y.; Wang, H.; Yu, F.; Zhang, Y.; Li, Y.; Zheng, Y.; Zhang, C. Synthesis and Anti‐HCV Entry Activity Studies of β‐Cyclodextrin–Pentacyclic Triterpene Conjugates. ChemMedChem 2014, 9, 1060-1070. Xing, Y.; Chen, M.; Wang, X. Enhancing water use efficiency and fruit quality in jujube cultivation: A review of advanced irrigation techniques and precision management strategies. Agricultural Water Management 2025, 307, 109243. Xu, B.; Chang, S. K. Total phenolics, phenolic acids, isoflavones, and anthocyanins and antioxidant properties of yellow and black soybeans as affected by thermal processing. Journal of Agricultural and Food Chemistry 2008, 56, 7165-7175. Yahia, E. M.; Carrillo-Lopez, A., Postharvest Physiology and Biochemistry of Fruits and Vegetables. Woodhead Publishing: 2018. Yang, P.; Wen, Q.; Wu, J.; Zhuang, W.; Zhang, Y.; Ying, H. Determination of solubility of cAMPNa in water+(ethanol, methanol, and acetone) within 293.15–313.15 K. Industrial & Engineering Chemistry Research 2014, 53, 10803-10809. Yeh, A.-I.; Huang, Y.-C.; Chen, S. H. Effect of particle size on the rate of enzymatic hydrolysis of cellulose. Carbohydrate Polymers 2010, 79, 192-199. Yilma, A. N.; Singh, S. R.; Fairley, S. J.; Taha, M. A.; Dennis, V. A. The anti-inflammatory cytokine, interleukin-10, inhibits inflammatory mediators in human epithelial cells and mouse macrophages exposed to live and UV-inactivated Chlamydia trachomatis. Mediators of Inflammation 2012, 2012. Yin, T.; Park, J. W.; Xiong, S. Physicochemical properties of nano fish bone prepared by wet media milling. LWT-Food Science and Technology 2015, 64, 367-373. You, H. J.; Choi, C. Y.; Kim, J. Y.; Park, S. J.; Hahm, K.-S.; Jeong, H. G. Ursolic acid enhances nitric oxide and tumor necrosis factor‐α production via nuclear factor‐κB activation in the resting macrophages. FEBS letters 2001, 509, 156-160. Yu, L.; Jiang, B.; Luo, D.; Shen, X.; Guo, S.; Duan, J.; Tang, Y. Bioactive components in the fruits of Ziziphus jujuba Mill. against the inflammatory irritant action of Euphorbia plants. Phytomedicine 2012, 19, 239-244. Yue, Y.; Wu, S.; Zhang, H.; Zhang, X.; Niu, Y.; Cao, X.; Huang, F.; Ding, H. Characterization and hepatoprotective effect of polysaccharides from Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex HF Chou sarcocarp. Food and Chemical Toxicology 2014, 74, 76-84. Zacchigna, M.; Cateni, F.; Faudale, M.; Sosa, S.; Della Loggia, R. Rapid HPLC analysis for quantitative determination of the two isomeric triterpenic acids, oleanolic acid and ursolic acid, in plantago major. Scientia Pharmaceutica 2008, 77, 79-86. Zhang, H.; Jiang, L.; Ye, S.; Ye, Y.; Ren, F. Systematic evaluation of antioxidant capacities of the ethanolic extract of different tissues of jujube (Ziziphus jujuba Mill.) from China. Food and Chemical Toxicology 2010, 48, 1461-1465. Zhang, M.; Ning, G.; Shou, C.; Lu, Y.; Hong, D.; Zheng, X. Inhibitory effect of jujuboside A on glutamate-mediated excitatory signal pathway in hippocampus. Planta Medica 2003, 69, 692-695. Zhang, Q.; Wang, L.; Wang, Z.; Liu, Z.; Zhao, Z.; Zhou, G.; Liu, M.; Liu, P. Variations of the nutritional composition of jujube fruit (Ziziphus jujuba Mill.) during maturation stages. International Journal of Food Properties 2020, 23, 1066-1081. Zhang, W.; Zhang, J.; Xia, W. The preparation of chitosan nanoparticles by wet media milling. International Journal of Food Science and Technology 2012, 47, 2266-2272. Zhang, Y.; Sun, X.; Vidyarthi, S. K.; Zhang, R. Active components and antioxidant activity of thirty-seven varieties of Chinese jujube fruits (Ziziphus jujuba Mill.). International Journal of Food Properties 2021, 24, 1479-1494. Zhao, H.-x.; Zhang, H.-s.; Yang, S.-f. Phenolic compounds and its antioxidant activities in ethanolic extracts from seven cultivars of Chinese jujube. Food Science and Human Wellness 2014, 3, 183-190. Zhao, J.; Li, S.; Yang, F.; Li, P.; Wang, Y. Simultaneous determination of saponins and fatty acids in Ziziphus jujuba (Suanzaoren) by high performance liquid chromatography-evaporative light scattering detection and pressurized liquid extraction. Journal of Chromatography A 2006a, 1108, 188-194. Zhao, Z.; Li, J.; Wu, X.; Dai, H.; Gao, X.; Liu, M.; Tu, P. Structures and immunological activities of two pectic polysaccharides from the fruits of Ziziphus jujuba Mill. cv. jinsixiaozao Hort. Food Research International 2006b, 39, 917-923. Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry 1999, 64, 555-559. Zhu, D.; Jiang, N.; Wang, N.; Zhao, Y.; Liu, X. A literature review of the pharmacological effects of jujube. Foods 2024, 13, 193. Zong, A.; Cao, H.; Wang, F. Anticancer polysaccharides from natural resources: A review of recent research. Carbohydrate Polymers 2012, 90, 1395-1410. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98870 | - |
| dc.description.abstract | 本研究系統性評估介質研磨技術應用於新鮮紅棗 (Ziziphus jujuba Mill.) 及紅棗干之加工,探討其對懸浮液之物理與化學性質、生物活性化合物含量及潛在功能應用的影響。實驗針對固形物含量與研磨時間進行最佳化分析,結果顯示理想製備參數為:紅棗原料濃度為 5% (固形物基準),其中新鮮果實需研磨 180 分鐘,紅棗干則以 120 分鐘研磨時間為佳。粒徑分析結果顯示,鮮棗懸浮液之體積平均粒徑由 229.0 ± 1.0 μm 顯著降至 25.0 ± 0.2 μm,數量平均粒徑由 7.2 ± 0.0 μm 降至 0.1 ± 0.0 μm;棗干懸浮液方面,其體積平均粒徑由 146.3 ± 1.5 μm 降至 29.4 ± 0.8 μm,數量平均粒徑亦由 11.3 ± 0.2 μm 降至 0.1 ± 0.0 μm,顯示介質研磨處理能顯著破壞紅棗樣品之結構並有效降低粒徑,達到粒子微細化的效果。此外,研磨處理亦改善懸浮液之 ζ 電位、黏度及分散穩定性,並對色澤與 pH 值造成顯著變化,顯示介質研磨技術對產品物理與化學性質具有多重影響。活性成分方面,新鮮果實經介質研磨後,可提升懸浮液水相中總類黃酮含量由 2.9 ± 0.1 增至 3.8 ± 0.0 mg 兒茶素當量/g 乾物重 (DW),總三萜類含量亦由 15.4 ± 1.2 提升至 28.0 ± 4.9 mg 齊墩果酸當量/g 乾物重 (DW)。原料類型方面,紅棗干經介質研磨與熱水萃取後所測得之活性成分含量皆優於攪碎處理。在抗氧化活性方面 (DPPH、FRAP、ABTS),研磨前後樣品變化不大,懸浮液皆具有良好的抗氧化效力。綜合上述結果,選擇鮮棗懸浮液作為後續乳酸菌發酵、細胞實驗與小鼠結腸炎模型試驗之研究樣品。經 Lactiplantibacillus plantarum 發酵後顯示,無論經攪碎或介質研磨處理,懸浮液皆為良好發酵基質,可有效被乳酸菌利用並產生乳酸。進一步以 RAW 264.7 巨噬細胞進行抗發炎試驗,結果顯示鮮棗懸浮液可抑制一氧化氮與促發炎細胞激素 IL-1β 的產生,具備調節發炎反應的潛力。然而,在 DSS 誘導性結腸炎小鼠模型中,儘管介質研磨鮮棗懸浮液顯示安全性,仍未觀察到顯著的保護作用。總結而言,介質研磨技術可有效提升紅棗懸浮液之物理穩定性與活性成分釋放效率,亦展現作為功能性食品或健康促進素材之應用潛力,未來可望進一步應用於營養補充品、保健飲品與疾病管理相關產品的開發與產業化推廣。 | zh_TW |
| dc.description.abstract | This study systematically evaluated media milling for processing fresh (Ziziphus jujuba Mill.) and dried jujube, and examined its effects on the physicochemical properties, bioactive compound content, and functional potential of the resulting suspensions. Optimization of solids content and milling time indicated that the ideal conditions were 5 % (w/w) total solids, with milling times of 180 min for fresh fruit and 120 min for dried fruit. Particle size analysis showed that the volume-weighted mean diameter of the fresh jujube suspension decreased markedly from 229.0 ± 1.0 µm to 25.0 ± 0.2 µm, while the number-weighted mean diameter fell from 7.2 ± 0.0 µm to 0.1 ± 0.0 µm. For the dried jujube suspension, the volume-weighted mean diameter was reduced from 146.3 ± 1.5 µm to 29.4 ± 0.8 µm and the number-weighted mean diameter from 11.3 ± 0.2 µm to 0.1 ± 0.0 µm. These results confirm that media milling effectively disrupts jujube structure and micronizes the particles. Concurrently, milling improved ζ-potential, viscosity, and dispersion stability, and significantly altered color and pH, indicating multiple impacts on product quality. Regarding bioactive constituents, milling fresh fruit increased the total flavonoid concentration in the aqueous phase from 2.9 ± 0.1 to 3.8 ± 0.0 mg catechin equivalents (CE)/g dry weight (DW) and the total triterpenoid content from 15.4 ± 1.2 to 28.0 ± 4.9 mg oleanolic acid equivalents (OAE)/g DW. For dried fruit, both media milling and hot water extraction yielded higher bioactive compound levels than blending. Antioxidant activities (DPPH, FRAP, and ABTS assays) showed only minor changes before and after milling, indicating that all suspensions retained strong antioxidant capacity. Based on these findings, the fresh jujube suspension was selected for further studies involving lactic acid bacteria fermentation, cell assays, and a dextran sodium sulfate (DSS)-induced colitis model. Fermentation with Lactiplantibacillus plantarum demonstrated that both blending and media milled suspensions served as excellent substrates, supporting bacterial growth and lactic acid production. In RAW 264.7 macrophages, the fresh jujube suspension suppressed nitric oxide production and the pro-inflammatory cytokine IL-1β, indicating anti-inflammatory potential. In a DSS-induced colitis model, the media milled suspension was safe but did not confer significant protection. In summary, media milling markedly enhances the physical stability and release of bioactive compounds in jujube suspensions, underscoring its promise as a platform for functional food or health promoting ingredients. The technology could be further leveraged to develop nutritional supplements, functional beverages, and products aimed at disease management and commercialization. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:06:03Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-20T16:06:03Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 摘要 IV Abstract V Graphical abstract VII 目次 VIII 圖次 XI 表次 XII 附圖次 XIII 附表次 XIV 縮寫表 XV 壹、文獻回顧 1 一、紅棗 1 (一) 紅棗之簡介 1 (二) 紅棗組成分 4 (三) 紅棗植化素 6 二、濕攪拌介質研磨 13 (一) 濕式攪拌介質研磨製程原理 13 (二) 濕式攪拌介質研磨的應用 15 三、免疫系統與發炎反應 15 (一) 免疫系統 (Immune system) 15 (二) 免疫細胞 (Immunocyte) 及細胞激素 (Cytokines) 17 (三) 發炎反應 (Inflammation) 20 四、研究腸道發炎之動物模式 21 貳、研究目的與架構 25 一、研究目的 25 二、實驗架構 26 參、材料與方法 27 一、原料藥品及儀器耗材 27 (一) 原料與藥品 27 (二) 儀器與耗材 27 二、紅棗懸浮液樣品製備 31 (一) 鮮棗粗碎 (Blending) 31 (二) 鮮棗介質研磨 (Media milling) 31 (三) 紅棗干粗碎 31 (四) 紅棗干介質研磨 32 (五) 紅棗干熱水萃取 (Hot water extraction) 32 三、分析方法 32 (一) 基本成分分析 32 (二) 粒徑分析 34 (三) 粒徑跨度 35 (四) 多分散指數 35 (五) 粒子粉碎率 35 (六) 型態觀察 35 (七) 酸鹼值 36 (八) 界面電位分析 (Zeta potential, ζ-potential) 36 (九) 懸浮液穩定性分析 36 (十) 懸浮液之濁度分析 37 (十一) 顏色分析 37 (十二) 黏度測量 38 (十三) 總多酚含量分析 (Total polyphenols content, TPC) 38 (十四) 總類黃酮含量分析 (Total flavonoid content, TFC) 39 (十五) 總三萜類含量分析 (Total Triterpenoid Content, TTC) 39 (十六) 三萜類萃取與分析 39 (十七) DPPH自由基清除能力 (DPPH free radical scavenging effect) 41 (十八) 還原能力 (Reducing power) 42 (十九) 總抗氧化能力 (Total antioxidant activity) 42 (二十) 鐵還原抗氧化能力 (Ferric reducing antioxidant power assay, FRAP) 43 (二十一) 細胞試驗 43 (二十二) 細胞產物之測定 45 (二十三) 乳酸菌發酵 46 (二十四) DSS 誘導結腸炎動物模式 46 (二十五) 數據統計分析 47 肆、結果與討論 48 一、紅棗基本成分與物化性質 48 (一) 基本成分 48 (二) 介質研磨鮮棗懸浮液粒徑特性 50 (三) 介質研磨鮮棗懸浮液物化性質與穩定性 54 (四) 介質研磨鮮棗活性化合物及抗氧化活性 61 (五) 介質研磨紅棗干懸浮液粒徑特性 66 (六) 介質研磨置換時間 69 (七) 介質研磨紅棗干懸浮液物化性質與穩定性 71 (八) 介質研磨紅棗干活性化合物及抗氧化活性 80 二、介質研磨鮮棗懸浮液乳酸菌發酵 82 三、介質研磨鮮棗懸浮液之抗發炎活性 85 四、介質研磨鮮棗懸浮液對 DSS 誘導性結腸炎小鼠模型之保護效應 88 伍、結論與展望 92 陸、參考文獻 94 柒、已發表之國際期刊論文 111 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 介質研磨 | zh_TW |
| dc.subject | 紅棗 | zh_TW |
| dc.subject | 發炎 | zh_TW |
| dc.subject | 發酵 | zh_TW |
| dc.subject | Ziziphus jujuba Mill. | en |
| dc.subject | media milling | en |
| dc.subject | inflammation | en |
| dc.subject | fermentation | en |
| dc.title | 介質研磨紅棗作為乳酸菌益生質及改善結腸發炎 | zh_TW |
| dc.title | Study on alleviative effect of lactic acid bacteria on intestinal inflammation by using media-milled jujube as prebiotic | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 葉安義 | zh_TW |
| dc.contributor.coadvisor | An-I Yeh | en |
| dc.contributor.oralexamcommittee | 羅翊禎;陳時欣;周志輝;龔瑞林;陳炳輝 | zh_TW |
| dc.contributor.oralexamcommittee | Yi-Chen Lo;Shih-Hsin Chen;Chi-Fai Chau;Zwe-Ling Kong;Bing-Huei Chen | en |
| dc.subject.keyword | 介質研磨,紅棗,發炎,發酵, | zh_TW |
| dc.subject.keyword | media milling,Ziziphus jujuba Mill.,inflammation,fermentation, | en |
| dc.relation.page | 111 | - |
| dc.identifier.doi | 10.6342/NTU202504026 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-14 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 食品科技研究所 | - |
| dc.date.embargo-lift | 2025-08-21 | - |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 7.68 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
