請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98865完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 宋家驥 | zh_TW |
| dc.contributor.advisor | Chia-Chi Sung | en |
| dc.contributor.author | 卓政穎 | zh_TW |
| dc.contributor.author | Cheng-Ying Cho | en |
| dc.date.accessioned | 2025-08-20T16:04:40Z | - |
| dc.date.available | 2025-08-21 | - |
| dc.date.copyright | 2025-08-20 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-13 | - |
| dc.identifier.citation | Shirane, G., Sawaguchi, E., & Takagi, Y. (1951). Dielectric properties of lead zirconate. Physical Review, 84(3), 476.
Rupitsch, S. J. (2019). Piezoelectric sensors and actuators: Fundamentals and applications. Liu, X., Chen, X., Le, X., Wang, Y., Wu, C., & Xie, J. (2018). Reducing ring-down time of pMUTs with phase shift of driving waveform. Sensors and Actuators A: Physical, 281, 100-107. Kinsler, L. E., Frey, A. R., Coppens, A. B., & Sanders, J. V. (2000). Fundamentals of acoustics. John wiley & sons. Feeney, A., Kang, L., Rowlands, G., Zhou, L., & Dixon, S. (2019). Dynamic nonlinearity in piezoelectric flexural ultrasonic transducers. IEEE Sensors Journal, 19(15), 6056-6066. Leissa, A. W. (1969). Vibration of plates (Vol. 160). Scientific and Technical Information Division, National Aeronautics and Space Administration. Vorländer, M. (2008). Auralization: fundamentals of acoustics, modelling, simulation, algorithms and acoustic virtual reality. Berlin, Heidelberg: Springer Berlin Heidelberg. International Organization for Standardization. (1993). Acoustics – Attenuation of sound during propagation outdoors – Part 1: Calculation of the absorption of sound by the atmosphere (ISO Standard No. 9613 1:1993). Geneva, Switzerland: ISO. Kang, L., Feeney, A., & Dixon, S. (2020). The high frequency flexural ultrasonic transducer for transmitting and receiving ultrasound in air. IEEE Sensors Journal, 20(14), 7653-7660. Cobbold, R. S. (2006). Foundations of biomedical ultrasound. Oxford university press. Szabo, T. L. (2013). Diagnostic ultrasound imaging: inside out. Academic press. Teng, M., Yue, W., Peng, Y., Tsao, P. C., Deng, H., Xia, F., & Lin, L. (2024, January). PMUT Package Design Optimization via Machine Learning. In 2024 IEEE 37th International Conference on Micro Electro Mechanical Systems (MEMS) (pp. 971-974). IEEE. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98865 | - |
| dc.description.abstract | 本論文針對50kHz壓電超音波換能器(Piezoelectric Ultrasonic Transducer, PUT)進行研究,選用PZT壓電圓片作為核心元件,以有限元素模擬、理論方程式與實驗驗證,系統性探討PZT之阻抗頻譜、聲束指向性及軸向聲壓衰減特性。
本研究建立之阻抗頻譜模擬與實驗量測值平均誤差僅1.19%,建立之複合振動模態指向性模型相較活塞振動理論模型更能反映實際聲場分布,軸向聲壓衰減模型與理論衰減曲線擬合R2>0.99,顯示本研究之模型可準確描述聲波在空氣中的衰減行為。 此外,本研究亦對撓曲式超音波換能器(Flexural Ultrasonic Transducer, FUT)進行模擬分析,透過與文獻數據比對,成功驗證FUT模型在阻抗、振動模態與指向性上的準確性。基於此模型,本研究進一步進行FUT外殼尺寸變化參數研究,確定FUT之第一共振頻率主要由其外殼頂板半徑與厚度主導,為頻率設計提供明確的物理依據。 綜上所述,本論文成功整合多項物理特性模擬與驗證方法,為兩種空氣耦合超音波換能器提供精確且系統性的分析與預測架構,可有效縮短開發時程與實驗成本。 | zh_TW |
| dc.description.abstract | This study systematically investigates a 50 kHz piezoelectric ultrasonic transducer (PUT), using a PZT piezoelectric disk as the core element. Through finite element simulation, theoretical modeling, and experimental verification, the impedance spectrum, beam directivity, and axial sound pressure attenuation characteristics are thoroughly analyzed.
The simulation and experimental results of impedance spectra show excellent agreement, with an average error of only 1.19%. Additionally, the established compound vibration-mode directivity model demonstrates improved accuracy compared to the traditional piston vibration theory model. The axial sound pressure attenuation model fits exceptionally well with theoretical attenuation curves (R² > 0.99), confirming that the proposed model accurately represents ultrasonic attenuation in air. Furthermore, this research conducts a simulation-based study on flexural ultrasonic transducers (FUT). The accuracy of the FUT model in terms of impedance, vibration modes, and directivity is successfully verified against existing literature. Based on this validated model, a parametric study on FUT housing dimensions is conducted, indicating that the fundamental resonance frequency is primarily governed by the radius and thickness of its top plate, providing clear physical guidelines for frequency-oriented design. In summary, this thesis successfully integrates multiphysics simulation and experimental verification, offering precise and systematic analytical frameworks for both PUT and FUT. These results effectively reduce development time and experimental costs. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:04:40Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-20T16:04:40Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii Abstract iii 目次 iv 圖次 vi 表次 viii Chapter 1 緒論 1 1.1研究動機與目的 1 1.2論文架構 2 Chapter 2 背景理論與文獻回顧 3 2.1 壓電材料 3 2.1.1壓電效應 3 2.1.2阻抗頻譜與振動模態 5 2.2空氣耦合超音波換能器 7 2.2.1 壓電超音波換能器 (PUT) 7 2.2.2 撓曲式超音波換能器 (FUT) 13 2.3超音波衰減理論 15 Chapter 3 研究方法與架構 16 3.1 研究流程 16 3.1.1 PUT研究流程 17 3.1.2 FUT研究流程 17 3.2 有限元素模型建構 17 3.2.1 PZT元件模型設定 17 3.2.2 FUT參考模型設定 19 3.2.3 FUT 尺寸參數變化模型 20 3.3 PZT實驗量測架構與儀器 23 3.3.1 阻抗頻譜 23 3.3.2 軸向聲壓衰減 24 3.4 理論模型應用方法 26 3.4.1 活塞振動理論 26 3.4.2 聲波衰減理論 26 3.4.3 薄板振動理論 27 Chapter 4 PZT特性分析與模型驗證 27 4.1 阻抗頻譜與振動模態 27 4.2 聲束指向性 29 4.3 軸向聲壓衰減 31 Chapter 5 FUT模型與參數分析 34 5.1 FUT參考模型驗證與探討 34 5.1.1 阻抗頻譜模型驗證 34 5.1.2 振動模態模型驗證 35 5.1.3 聲場模型探討與驗證 36 5.2 尺寸變化參數模型 38 5.2.1 尺寸參數變動設計 38 5.2.2 第一共振頻率與尺寸變化關係 39 5.2.3 參數模型與薄板理論 41 Chapter 6 結論與未來展望 42 6.1 結論 42 6.2 未來展望 43 參考文獻 44 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 有限元素模擬 | zh_TW |
| dc.subject | 空氣耦合超音波換能器 | zh_TW |
| dc.subject | 聲束指向性 | zh_TW |
| dc.subject | 振動模態 | zh_TW |
| dc.subject | 阻抗頻譜 | zh_TW |
| dc.subject | 壓電材料 | zh_TW |
| dc.subject | Vibration mode | en |
| dc.subject | Piezoelectric material | en |
| dc.subject | Finite element simulation | en |
| dc.subject | Sound beam directivity | en |
| dc.subject | Impedance spectrum | en |
| dc.subject | Air-coupled ultrasonic transducer | en |
| dc.title | 空氣耦合超音波換能器開發 | zh_TW |
| dc.title | Development of Air-Coupled Ultrasonic Transducers | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王昭男;黃翊鈞 | zh_TW |
| dc.contributor.oralexamcommittee | Chao-Nan Wang;Yi-Jun Huang | en |
| dc.subject.keyword | 空氣耦合超音波換能器,壓電材料,有限元素模擬,阻抗頻譜,振動模態,聲束指向性, | zh_TW |
| dc.subject.keyword | Air-coupled ultrasonic transducer,Piezoelectric material,Finite element simulation,Impedance spectrum,Vibration mode,Sound beam directivity, | en |
| dc.relation.page | 45 | - |
| dc.identifier.doi | 10.6342/NTU202504302 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-15 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| dc.date.embargo-lift | 2025-08-21 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 3.85 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
