Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98833
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡協澄zh_TW
dc.contributor.advisorHsieh-Chen Tsaien
dc.contributor.author劉哲維zh_TW
dc.contributor.authorChe-Wei Liuen
dc.date.accessioned2025-08-19T16:22:37Z-
dc.date.available2025-08-20-
dc.date.copyright2025-08-19-
dc.date.issued2025-
dc.date.submitted2025-08-11-
dc.identifier.citation[1] J. Chen, Y. Huang, C. Chen, H. Yu, and D. Gao. Review of active control of circular cylinder flow. Ocean Engineering, 258:111840, 2022.
[2] T. Sarpkaya. A critical review of the intrinsic nature of vortex-induced vibrations. Journal of Fluids and Structures, 19(4):389–447, 2004.
[3] C. H. K. Williamson and R. Govardhan. Vortex-induced vibrations. Annu. Rev. Fluid Mech., 36:413–455, 2004.
[4] G. Gómez-de Segura and R. García-Mayoral. Turbulent drag reduction by anisotropic permeable substrates – analysis and direct numerical simulations. Journal of Fluid Mechanics, 875:124–172, 2019.
[5] Qian Mao, Jiazhen Zhao, Yingzheng Liu, and Hyung Jin Sung. Drag reduction by a flexible hairy coating. Journal of Fluid Mechanics, 946:A5, 2022.
[6] Aditya G. Nair, Kunihiko Taira, Bingni W. Brunton, and Steven L. Brunton. Phase-based control of periodic flows. Journal of Fluid Mechanics, 927:A30, 2021.
[7] Reza Maryami and Yu Liu. Cylinder flow and noise control by active base blowing. Journal of Fluid Mechanics, 985:A10, 2024.
[8] J. Rabault, M. Kuchta, A. Jensen, U. Ræglade, and N. Cerardi. Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control. J. Fluid Mech., 865:281–302, 2019.
[9] Haokui Jiang and Shunxiang Cao. Reinforcement learning-based active flow control of oscillating cylinder for drag reduction. Physics of Fluids, 35:107140, 2023.
[10] A. Towne, O. T. Schmidt, and T. Colonius. Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. Journal of Fluid Mechanics, 847:821–867, 2018.
[11] E. A. Deem, L. N. Cattafesta, M. S. Hemati, H. Zhang, C. W. Rowley, and R. Mittal. Adaptive separation control of a laminar boundary layer using online dynamic mode decomposition. Journal of Fluid Mechanics, 903:A21, 2020.
[12] Ching-Te Lin and Hsieh-Chen Tsai. Feedback flow control on a plunging circular cylinder. Physics of Fluids, 36:047126, 2024.
[13] Beverley J. McKeon and Aniruddha S. Sharma. A critical-layer framework for turbulent pipe flow. Journal of Fluid Mechanics, 658:336–382, 2010.
[14] Chi-An Yeh and Kunihiko Taira. Resolvent-analysis-based design of airfoil separation control. Journal of Fluid Mechanics, 867:572–610, 2019.
[15] C. Leclercq, F. Demourant, C. Poussot-Vassal, and D. Sipp. Linear iterative method for closed-loop control of quasiperiodic flows. Journal of Fluid Mechanics, 868:26–65, 2019.
[16] Alessandro Padovan, Samuel E. Otto, and Clarence W. Rowley. Analysis of amplification mechanisms and cross-frequency interactions in nonlinear flows via the harmonic resolvent. Journal of Fluid Mechanics, 900:A14, 2020.
[17] Alessandro Padovan and Clarence W. Rowley. Analysis of the dynamics of subharmonic flow structures via the harmonic resolvent: Application to vortex pairing in an axisymmetric jet. Physical Review Fluids, 7(7):073903, 2022.
[18] C.-T. Lin, M.-L. Tsai, and H.-C. Tsai. Flow control of a plunging cylinder based on resolvent analysis. Journal of Fluid Mechanics, 967:A41, 2023.
[19] W. Yao and R. K. Jaiman. Feedback control of unstable flow and vortex-induced vibration using the eigensystem realization algorithm. Journal of Fluid Mechanics, 827:394–414, 2017.
[20] Feng Ren, Chenglei Wang, and Hui Tang. Active control of vortex-induced vibration of a circular cylinder using machine learning. Physics of Fluids, 31:093601, 2019.
[21] T. McQueen, J. Zhao, J. Sheridan, and M. C. Thompson. Feedback control of flow-induced vibration of a sphere. Journal of Fluid Mechanics, 889:A30, 2020.
[22] Tzu-Yuan Lin, Hsin-Yu Hsieh, and Hsieh-Chen Tsai. A target-fixed immersed-boundary formulation for rigid bodies interacting with fluid flow. Journal of Computational Physics, 429:110003, 2021.
[23] Kunihiko Taira and Tim Colonius. The immersed boundary method: a projection approach. Journal of Computational Physics, 225(2):2118–2137, 2007.
[24] Petros A. Ioannou and Baris Fidan. Adaptive Control Tutorial. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2006.
[25] Andres Goza, Sebastian Liska, Ben Morley, and Tim Colonius. Accurate computation of surface stresses and forces with immersed boundary methods. Journal of Computational Physics, 321:860–873, 2016.
[26] Alexandre M. Roma, Charles S. Peskin, and Marsha J. Berger. An adaptive version of the immersed boundary method. Journal of Computational Physics, 153(2):509–534, 1999.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98833-
dc.description.abstract本研究提出一種閉迴路反饋流動控制策略,旨在減緩渦旋引致振動並穩定受流固耦合影響下的剛性圓柱擺動動態。該圓柱可因尾流中渦旋脫落而自由地進行橫向(橫流方向)振盪。數值模擬採用沈浸邊界投影法,結合不可壓縮流的流固耦合數值模型。以靜止圓柱周圍的時間平均流場作為基態,該流場波動微弱,並在圓柱固定座標系中對不可壓縮納維–斯托克斯方程進行線性化。基於該線性系統進行預解分析,構建用於模型參考自適應控制系統的參考模型。研究比較了法向與切向制動兩種作用方式,結果顯示切向制動顯著優於法向制動,分別在升力波動、橫向速度波動與阻力波動方面達到約 85%、84% 與 93% 的減幅。模型參考自適應控制系統框架在適當的自適應學習率範圍內表現出穩定的控制效果,顯示其在有效抑制流固耦合系統中的渦旋引致振動方面的潛力。zh_TW
dc.description.abstractThis study proposes a closed-loop feedback control strategy to mitigate vortex–induced vibrations and stabilize the plunging dynamics of a rigid circular cylinder undergoing flow–structure interaction (FSI) in a uniform stream. The cylinder is free to oscillate transversely (crossflow) due to vortex shedding in its wake. Numerical simulations are conducted using the immersed boundary projection method, integrating a coupled fluid–structure interaction formulation for incompressible flow. A time–averaged flow field around a stationary cylinder, characterized by minimal fluctuations, serves as the base state to linearize the incompressible Navier–Stokes equations in a cylinder–fixed frame. Resolvent analysis of this linearized system is then employed to derive a reference model for the model reference adaptive control (MRAC) scheme. Both normal and tangential actuation configurations are examined. The results show that tangential actuation significantly outperforms normal actuation, achieving reductions of up to 85% in lift fluctuations, 84% in transverse velocity fluctuations, and 93% in drag fluctuations, all with minimal input power. The MRAC framework demonstrates robust and stable control effectiveness across a suitable range of adaptive learning rates, highlighting its potential for effectively suppressing flow-induced vibrations in fluid–structure interaction systems.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:22:37Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-19T16:22:37Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
摘要ii
Abstract iii
Contents v
List of Figures vii
Denotation x
Chapter 1 Introduction 1
1.1 The Challenge of Flow-Induced Vibration . . . . . . . . . . . . . . . 1
1.2 Flow Control Methods . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Resolvent Analysis in Flow Control . . . . . . . . . . . . . . . . . . 3
1.4 Flow Control of Fluid-Structure Interaction Systems . . . . . . . . . 4
1.5 Motivation and Thesis Structure . . . . . . . . . . . . . . . . . . . . 5
Chapter 2 Problem Setup and Control Method 6
2.1 Physical Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Immersed Boundary Formulation for Flow-Structure Interaction . . . 9
2.3 Linearized Flow System . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Model Reference Adaptive Control . . . . . . . . . . . . . . . . . . 14
Chapter 3 Numerical and Flow Control Setup 19
3.1 Numerical Method for Flow Structure Interaction . . . . . . . . . . . 19
3.1.1 Spatial Discretization and Stress Filtering . . . . . . . . . . . . . . 19
3.1.2 Temporal Discretization . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Numerical Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Flow Control Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Chapter 4 Results and Discussion 31
4.1 Circular Cylinder under Flow-Structure Interaction . . . . . . . . . . 31
4.2 Controlled Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.1 Normal Actuation . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.2 Tangential Actuation . . . . . . . . . . . . . . . . . . . . . . . . . 45
Chapter 5 Conclusion and Remarks 55
References 57
-
dc.language.isoen-
dc.subject流固耦合zh_TW
dc.subject渦旋引致振動zh_TW
dc.subject自適應控制zh_TW
dc.subject閉迴路控制zh_TW
dc.subject流體控制zh_TW
dc.subjectFlow Controlen
dc.subjectClosed-loop Controlen
dc.subjectAdaptive Controlen
dc.subjectFlow-Structure Interactionen
dc.subjectVortex-Induced Vibrationen
dc.title流固耦合垂盪圓柱之自適應回饋控制zh_TW
dc.titleAdaptive feedback flow control of a circular cylinder plunging under flow-structure interactionen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee盧南佑;李宇修;蔡協孚zh_TW
dc.contributor.oralexamcommitteeNan-You Lu;Yu-Hsiu Lee;Hsieh-Fu Tsaien
dc.subject.keyword渦旋引致振動,流固耦合,流體控制,閉迴路控制,自適應控制,zh_TW
dc.subject.keywordVortex-Induced Vibration,Flow-Structure Interaction,Flow Control,Closed-loop Control,Adaptive Control,en
dc.relation.page60-
dc.identifier.doi10.6342/NTU202503926-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-14-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2025-08-20-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf7.85 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved