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摘要

本研究提出一種閉迴路反饋流動控制策略，旨在減緩渦旋引致振動並穩定受

流固耦合影響下的剛性圓柱擺動動態。該圓柱可因尾流中渦旋脫落而自由地進行

橫向（橫流方向）振盪。數值模擬採用沈浸邊界投影法，結合不可壓縮流的流固

耦合數值模型。以靜止圓柱周圍的時間平均流場作為基態，該流場波動微弱，並

在圓柱固定座標系中對不可壓縮納維–斯托克斯方程進行線性化。基於該線性系統

進行預解分析，構建用於模型參考自適應控制系統的參考模型。研究比較了法向

與切向制動兩種作用方式，結果顯示切向制動顯著優於法向制動，分別在升力波

動、橫向速度波動與阻力波動方面達到約 85%、84%與 93%的減幅。模型參考自

適應控制系統框架在適當的自適應學習率範圍內表現出穩定的控制效果，顯示其

在有效抑制流固耦合系統中的渦旋引致振動方面的潛力。

關鍵字：渦旋引致振動、流固耦合、流體控制、閉迴路控制、自適應控制

ii

http://dx.doi.org/10.6342/NTU202503926


doi:10.6342/NTU202503926

Abstract

This study proposes a closed-loop feedback control strategy tomitigate vortex–induced

vibrations and stabilize the plunging dynamics of a rigid circular cylinder undergoing

flow–structure interaction (FSI) in a uniform stream. The cylinder is free to oscillate

transversely (crossflow) due to vortex shedding in its wake. Numerical simulations are

conducted using the immersed boundary projection method, integrating a coupled fluid–

structure interaction formulation for incompressible flow. A time–averaged flow field

around a stationary cylinder, characterized by minimal fluctuations, serves as the base

state to linearize the incompressible Navier–Stokes equations in a cylinder–fixed frame.

Resolvent analysis of this linearized system is then employed to derive a reference model

for the model reference adaptive control (MRAC) scheme. Both normal and tangential

actuation configurations are examined. The results show that tangential actuation signifi-

cantly outperforms normal actuation, achieving reductions of up to 85% in lift fluctuations,

84% in transverse velocity fluctuations, and 93% in drag fluctuations, all with minimal in-

iii
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put power. The MRAC framework demonstrates robust and stable control effectiveness

across a suitable range of adaptive learning rates, highlighting its potential for effectively

suppressing flow-induced vibrations in fluid–structure interaction systems.

Keywords: Vortex-Induced Vibration, Flow-Structure Interaction, FlowControl, Closed-

loop Control, Adaptive Control
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Chapter 1 Introduction

1.1 The Challenge of Flow-Induced Vibration

Flow-induced vibration (FIV) arises from the resonant interaction between unsteady

fluid flow and flexible or movable structures, often leading to fatigue damage, perfor-

mance loss, or catastrophic failure. This phenomenon poses significant challenges in var-

ious engineering fields, including marine, civil, and aerospace applications [1]. A canon-

ical case for studying FIV is the flow past a circular cylinder, well known for its vortex

shedding that induces periodic forcing on the structure. Reviews by Sarpkaya [2] and

Williamson and Govardhan [3] classify the wake modes and amplitude responses, provid-

ing foundational insight into the complex nonlinear fluid–structure interactions. These

works underscore the key role of vortex shedding in sustaining structural oscillations and

the persistent challenge of modeling and controlling such nonlinear dynamics to mitigate

adverse effects and enhance stability.

1.2 Flow Control Methods

Flow control strategies are commonly categorized as passive or active. Passive con-

trol, the earliest class of methods, relies on fixed geometric modifications that require no

1

http://dx.doi.org/10.6342/NTU202503926


doi:10.6342/NTU202503926

external energy input. For example, Gómez-de-Segura and García-Mayoral [4] demon-

strated that anisotropic permeable substrates can reduce turbulent drag by altering near-

wall flow structures. Similarly, Mao et al. [5] showed that flexible hairy coatings attached

to bluff bodies reduce drag by stabilizing the wake through shape adaptation and delaying

vortex formation. While passive methods offer reliability and simplicity, their fixed ge-

ometry limits adaptability under varying flow conditions. Active flow control, on the other

hand, employs powered actuators—such as synthetic jets and base blowing or suction—

to dynamically reduce flow fluctuations. This adaptability enables improved performance

across a wide range of operating conditions and has driven extensive recent research. A

comprehensive review of thesemethods is provided byChen et al. [1]. For instance, Nair et

al. [6] developed a sensor-based, energy-efficient phase-control framework that actively

manipulates vortex shedding timing in periodic bluff-body flows using phase-reduction

analysis and optimal control inputs, enabling rapid and precise modulation of flow oscil-

lations to enhance aerodynamic performance. Furthermore, Maryami and Liu [7] applied

steady base blowing to suppress tonal noise and modify wake instabilities.

Modern active control techniques typically use feedback architectures, where sensor

measurements inform real-time actuation. These techniques can be broadly categorized

as data-driven or model-based control. Data-driven methods, particularly model-free ap-

proaches based on reinforcement learning (RL), have gained prominence for discovering

control policies without relying on explicit flow models. For example, Rabault et al.[8]

demonstrated that deep RL can autonomously learn effective jet-based actuation strate-

gies to stabilize the wake behind a circular cylinder. This flexibility extends to systems

with moving boundaries; Jiang and Cao[9] applied RL to control a transversely oscillating

cylinder, achieving an 8.4% drag reduction by adjusting the oscillation amplitude in real

2
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time.

Model-based control provides insights into complex, often high-dimensional flow

systems by reducing them to low-order approximations known as reduced-order models

(ROMs). These ROMs capture the dominant dynamics of the flow and are typically con-

structed using modal decomposition techniques. Towne et al.[10] demonstrated that Spec-

tral Proper Orthogonal Decomposition (SPOD) is theoretically equivalent to resolvent

analysis in the frequency domain and to online Dynamic Mode Decomposition (DMD)

in the time domain, offering a unified framework for analyzing input-output behavior in

turbulent flows. Adaptive variants such as online DMD have been developed to enable

real-time model updates for unsteady and time-varying systems. For example, Deem et

al.[11] applied online DMD to track the evolving dynamics of a separated boundary layer

and implemented a recursive feedback controller to maintain flow attachment. Similarly,

Lin and Tsai [12] combined resolvent-based modeling with adaptive and robust control

techniques to stabilize the flow around a periodically forced plunging cylinder, demon-

strating the benefits of adaptability in systems with moving boundaries.

1.3 Resolvent Analysis in Flow Control

Resolvent analysis provides a rigorous, physics-based framework for constructing

ROMs that are well suited to flow control applications. By linearizing the Navier–Stokes

equations around a steady or time-averaged base flow, the resolvent operator character-

izes a frequency-dependent input-output relationship between nonlinear forcing and flow

response [13]. This approach reveals the dominant amplification mechanisms within the

flow, offering key insights into how specific actuation strategies influence coherent flow

3
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structures [10]. For instance, Yeh and Taira [14] utilized classical resolvent analysis to

guide open-loop separation control over airfoils, while Leclercq et al. [15] developed it-

erative feedback controllers to stabilize quasiperiodic cavity flows. To extend this frame-

work to time-periodic base flows, Padovan et al.[16] introduced the harmonic resolvent

framework, which captures amplification mechanisms and cross-frequency interactions

in nonlinear, time-periodic flows. Building on this, Padovan and Rowley[17] applied the

method to subharmonic flow structures such as vortex pairing in jets, demonstrating its

ability to capture triadic frequency interactions. These advancements have broadened the

applicability of resolvent analysis in flow control design. More recently, Lin et al. [18] ex-

tended resolvent analysis to linear time-periodic systems by incorporating Floquet theory,

achieving a 25.7% reduction in lift fluctuations for a plunging cylinder.

1.4 Flow Control of Fluid-Structure Interaction Systems

The application of advanced feedback strategies to fluid-structure interaction (FSI)

systems has achieved significant success, primarily in the context of elastically mounted

or tethered bodies exhibiting vortex-induced vibration (VIV). A landmark example is the

work byYao and Jaiman [19], who used a ROMconstructedwith the EigensystemRealiza-

tion Algorithm (ERA) to design an active blowing and suction controller that successfully

stabilized VIV in an elastically mounted cylinder. Following this, Ren et al. [20] intro-

duced a machine-learning-based approach using genetic programming to develop feed-

back control laws, achieving over 94% suppression of VIV amplitude and robust control

performance. McQueen et al. [21] subsequently achieved near-complete suppression of a

sphere’s vibrations across various response regimes.

4
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However, a distinct class of FSI problems involves the VIV of unconstrained, freely

moving bodies. These systems present unique challenges, as they lack the structural restor-

ing forces and well-defined natural frequencies central to the dynamics of VIV. Conse-

quently, the development of feedback control for such unconstrained FSI systems remains

a less-explored area. Furthermore, the inherent time-varying and nonlinear dynamics of

these fully coupled systems suggest that an effective control strategy must also be adap-

tive. This motivates the search for a physically informed, adaptive framework suitable for

the unique challenges of unconstrained FSI problems.

1.5 Motivation and Thesis Structure

This study develops a feedback control strategy based on model reference adaptive

control (MRAC) for a rigid circular cylinder undergoing free plunging motion induced by

flow–structure interaction. The primary goal is to reduce unsteady fluctuations in the flow-

structure system, with particular focus on minimizing force fluctuations and suppressing

the amplitude of the cylinder’s oscillations. To achieve this, we construct an adaptive con-

trol framework that guides the system to track a desired reference behavior derived from

physical insight. This approach uniquely integrates a model reference adaptive control

architecture with a reference model informed by resolvent analysis, and applies it to the

vortex-induced motion of an unconstrained body in two-dimensional laminar flow. The

paper is structured as follows: §2 presents the problem formulation and control design; §3

details the numerical methods employed; §4 discusses the results and evaluates the control

performance; and §5 concludes with a summary and perspectives for future work.

5
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Chapter 2 Problem Setup and Control

Method

In this thesis, a canonical FSI system is examined as a representative unsteady flow

configuration. The system comprises a rigid circular cylinder immersed in an unbounded,

incompressible free stream. The cylinder is constrained from rotating but allowed to trans-

late in the cross-flow direction. Initially at rest, the cylinder begins to oscillate transversely

due to alternating vortex shedding in its wake. This vortex-induced motion, driven by the

interplay between unsteady fluid forces and structural dynamics, amplifies flow fluctua-

tions and sustains a periodic response. This configuration serves as a fundamental model

for investigating FSI behavior.

Flow control techniques have demonstrated strong potential in mitigating unsteady

flow phenomena and are therefore considered an effective strategy for managing FSI sys-

tems. The main objective of this study is to attenuate the coupled fluctuations in the fluid

and structural responses, specifically by reducing the unsteady lift forces acting on the

cylinder and minimizing the amplitude of its transverse motion. To accomplish this, it

is essential to first gain a comprehensive understanding of the underlying flow physics

before formulating and applying an appropriate control strategy.

This chapter presents the problem formulation and control method. Section 2.1 in-

6
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troduces the flow physics and configuration of the FSI system. Section 2.2 formulates the

governing equations for the fluid and structure, including flow-structure interaction. Sec-

tion 2.3 outlines the linearization of the flow equations for resolvent analysis and control

design. Finally, Section 2.4 introduces the MRAC strategy and discusses its integration

within the overall flow control framework.

2.1 Physical Problem Setup

Consider the flow past a rigid circular cylinder immersed in an incompressible, uni-

form free stream. The cylinder is fixed against rotation and streamwise translation but is

free to move in the transverse (cross-flow) direction. The flow around the cylinder be-

comes unstable, resulting in the formation of a periodic von Kármán vortex street in its

wake.

Figure 2.1: Circular cylinder immersed in a uniform flow.

Figure 2.1 demonstrates the configuration of a circular cylinder immersed in a uni-

form flow, which serves as the canonical setup for investigating vortex-induced motion.

The periodic shedding of vortices generates significant unsteady fluid forces on the cylin-

der, primarily in the transverse direction. The cylinder’s transverse motion influences the

timing and strength of vortex shedding, creating a coupled feedback loop between the
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fluid forces and structural response. This bidirectional interaction leads to resonance-like

behavior, causing large-amplitude, self-sustained plunging oscillations. Such dynamics

provide a canonical model for VIV, where the structure’s response is driven by inertia and

flow-induced forcing alone.

The fluid dynamics are governed by the two-dimensional, incompressible Navier–

Stokes equations, expressed in nondimensional form within an inertial (laboratory-fixed)

reference frame as:

∂u
∂t

+ (u ·∇)u = −∇p+
1

Re
∇2u, (2.1)

∇ · u = 0, (2.2)

u → U∞ as |x| → ∞, (2.3)

where u(x, t) denotes the velocity field, and p(x, t) represents the pressure. The right-

hand side of the momentum equation contains the viscous diffusion term, 1
Re∇

2u, which

accounts for the effect of viscosity in the flow. Here, the Reynolds number Re = U∞D
ν

characterizes the ratio of inertial to viscous forces, with ν denoting the kinematic viscos-

ity of the fluid. The continuity equation (2.2) enforces the incompressibility condition,

ensuring that the volume of any fluid element remains constant over time. The far-field

condition (2.3) specifies that the velocity approaches the uniform free-stream velocityU∞

at large distances from the body.

The presence of the cylinder introduces a moving solid boundary within the fluid

domain. The interaction between the flow and the solid structure occurs through surface

stresses, which include both pressure and viscous contributions acting along the cylinder＇

s surface. These forces determine the motion of the cylinder in the transverse direction
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and form the core of the FSI.

The transverse dynamics of the cylinder are described by Newton’s second law:

Mÿ(t) = Fy(t), (2.4)

whereM is the mass per unit length of the cylinder, and ÿ(t) is its transverse acceleration.

The net force Fy(t) results from the integration of pressure and viscous shear stresses over

the surface of the cylinder, obtained from the fluid solution.

To quantify the flow-induced forces, the fluid force is decomposed into two orthog-

onal components: the drag force Fx(t) in the streamwise direction and the lift force Fy(t)

in the transverse direction. These are nondimensionalized as follows:

CD(t) =
Fx(t)

1
2ρfU

2
∞D

, CL(t) =
Fy(t)

1
2ρfU

2
∞D

, (2.5)

where ρf is the fluid density. The lift and drag coefficients, CL and CD , provide stan-

dardized metrics for evaluating the unsteady forces acting on the cylinder and are critical

indicators of VIV behavior.

2.2 ImmersedBoundary Formulation for Flow-Structure

Interaction

Tomodel the FSI of a rigid body immersed in an incompressible, uniform free stream,

we adopt an immersed boundary projection method (IBPM). The formulation is based on

the target-fixed framework of Lin et al. [22], which extends the projection method of Taira

& Colonius [23] to solve FSI problems efficiently and non-iteratively. In this approach,
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the governing equations are solved in a non-inertial reference frame that is attached to the

body, whose surface is denoted by Γb.

Within this body-fixed frame, the fluid is described using Eulerian coordinates (x),

while the stationary body surface is represented by time-invariant Lagrangian coordinates

(χ(s)). A key advantage of this setup is that it allows surface forces to be applied at fixed

locations relative to the grid, thereby obviating the need for iterative interface tracking

and enhancing numerical stability.

The dimensionless governing equations are:

∂u
∂t

= −∇Π+ X(u− ub)ω +
1

Re
∇2u+

∫

Γb

f(χ(s), t)δ(χ(s)− x) ds, (2.6)

∇ · u = 0, (2.7)
∫

Ω

u(x, t)δ(x− χ(s)) dx = ub(t), (2.8)

Me
dub
dt

= −
∫

Γb

Pvf(χ(s), t) ds, (2.9)

with the following definitions:

Π = p+
1

2
|u− ub|2, (2.10)

ρe = ρb − ρf , (2.11)

Me = Mb − Vs. (2.12)

The governing equations are nondimensionalized using a characteristic length scale

Lc and a reference velocity U∞. The coordinates χ and χ1 are scaled by Lc, while the

velocities u and ub are scaled by U∞. The gradient operator∇, volume Vs, and time t are

scaled by 1/Lc, L3
c , and Lc/U∞, respectively. The vorticity ω is scaled by U∞/Lc, and
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both the pressure p and surface force f are scaled by ρfU2
∞.

All vector quantities in equations (2.6)–(2.12) are defined in the body-fixed frame.

The flow velocity u and vorticityω are nondimensional and described in the inertial frame,

while f denotes the nondimensional surface stress exerted by the body on the fluid. The

modified pressureΠ, defined in (2.10), combines the static pressure and the kinetic energy

associatedwith the relativemotion between the fluid and the body. Equation (2.7) enforces

the incompressibility condition, and equation (2.8) imposes the no-slip condition on the

body surface. Since the cylinder is constrained from rotating, only translational motion

is considered. The translational dynamics are governed by equation (2.9), in which the

operator Pv projects the surface stress f onto the cross-flow direction. This projection

accounts for the fact that the body is restricted to move only in the cross-flow direction.

As the Lagrangian points representing the rigid body are projected onto the Eulerian

fluid grid, the motion of the fluid enclosed within the body must be accounted for to main-

tain physical consistency. In this context, the effective density is defined as ρe = ρb/ρf−1,

where ρb and ρf are the nondimensional densities of the body and fluid, respectively. The

effective massMe, as defined in equation (2.12), incorporates this density difference and

represents the net mass contribution of the body relative to the surrounding fluid.

2.3 Linearized Flow System

For model-based control design, it is essential to derive a linear time-invariant (LTI)

approximation of the underlying nonlinear FSI dynamics. In this study, we construct such

a linear model through resolvent analysis, which characterizes the system dynamics from

an input–output perspective and identifies frequency-dependent amplification behaviors.
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The resulting LTI system provides a physically interpretable and analytically tractable

representation of the flow response, serving as the reference model for the MRAC strat-

egy presented in the following section. The steady base flow of a stationary cylinder,

characterized by minimal inherent fluctuations [18], is selected as the reference state for

linearization. This time-averaged flow provides a stable and physically meaningful foun-

dation for control-oriented modeling and enables the formulation of a linear operator.

The vorticity equation in the non-inertial, body-fixed frame is derived from the gov-

erning equations and forms the foundation for linearization. Incorporating the effects of

external forcing, it is expressed as

∂ωn

∂t
= ∇× [(un − ub)× ωn]−

1

Re
∇× (∇× ωn) +∇× f1, (2.13)

where ωn and un are the vorticity and velocity in the non-inertial (body-fixed) frame, ub

is the velocity of the body (which vanishes in the stationary base case), and f1 denotes

external forcing, which includes both actuation and FSI contributions.

To isolate the dynamics of fluctuations, Reynolds decomposition is applied to the

velocity and vorticity fields:

ωn = ωn + ω′
n, (2.14)

un = un + u′n, (2.15)

where ωn and un are the time-averaged vorticity and velocity fields, respectively, and ω′
n

and u′n represent the fluctuating terms.

Substituting these decompositions into the governing equation and retaining only
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terms linear in the fluctuations yields the linearized vorticity equation:

∂ω′
n

∂t
= ∇× (un × ω′

n + u′n × ωn)−
1

Re
∇× (∇× ω′

n)
︸ ︷︷ ︸

Lω′
n

+∇× [un × ωn + u′n × ω′
n]−

1

Re
∇× (∇× ωn) +∇× f1

︸ ︷︷ ︸
F

, (2.16)

whereLω′
n
denotes the linear operator governing the perturbation dynamics and F collects

the nonlinear residuals and external forcing.

Following spatial discretization, the system takes the form

dx
dt

= Ax+ F, (2.17)

where x is the discrete state vector corresponding to ω′
n, andA is the discrete linear oper-

ator.

To analyze the system’s frequency response, we assume harmonic forcing and re-

sponse:

x(t) = x̂e−iωt, F(t) = F̂e−iωt, (2.18)

yielding the frequency-domain relationship:

(−iωI−A)x̂ = F̂. (2.19)

Solving for the response gives

x̂ = (−iωI−A)−1F̂, (2.20)
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where

H(ω) = (−iωI−A)−1 (2.21)

is the resolvent operator. This operator describes the input–output behavior of the lin-

earized system and quantifies how external disturbances are filtered and amplified across

frequencies.

The resolvent operator constructed from the stationary base flow provides a reduced-

order, physically interpretable representation of the dominant input–output modes of the

system. It serves as the foundation for defining a stable referencemodel used in theMRAC

method.

2.4 Model Reference Adaptive Control

Model Reference Adaptive Control is a control method in which adaptive laws con-

tinuously adjust controller parameters to achieve the desired system performance. It is

based on the principles of Model Reference Control (MRC), where a LTI system, referred

to as the reference model, is prescribed to produce the desired output ym in response to

a reference input r. The output of this model defines the target trajectory that the plant

output should follow. The overall structure of the reference model and plant is illustrated

in Figure 2.2, following the classical MRAC formulation by Ioannou and Sun [24].

If the plant Gp were fully known, the control problem would reduce to a model-

matching problem. However, in practical scenarios, the plant dynamics are often unknown

or only partially available. For instance, the available information may be limited to the

relative degree of the system or the sign of its high-frequency gain.
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Figure 2.2: Schematic of the MRAC structure showing the reference model and the plant.

In this study, the plant Gp is treated as unknown, and the adaptive controller is de-

signed to minimize the tracking error e1 = yp − ym, where yp is the plant output and ym

is the output of the reference model. The reference model is constructed using resolvent

analysis based on the linearized base flow of a stationary cylinder, which characterizes

the desired system response. The primary control objective is to reduce fluctuations in

the FSI system, including both the lift force and the transverse velocity of the cylinder, by

ensuring that the plant output closely follows the reference model output.

A direct adaptive control approach is employed, in which the controller parameters

are updated through adaptive laws without requiring explicit identification of the plant

dynamics. The control input is defined as

up = c0(t)r + θ⊤1 (t)ω1 + θ⊤2 (t)ω2 + θ3(t)yp ≡ θ⊤
c ω, (2.22)
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where up is the control input, θ⊤
c = [c0(t), θ⊤1 (t), θ

⊤
2 (t), θ3(t)] is the adaptive gain vector,

and ω = [r, ω1, ω2, yp]⊤ is the regressor signal vector. The gains c0(t), θ1(t), θ2(t), and

θ3(t) correspond to feedback gains for the reference input, filtered control input, filtered

plant output, and unfiltered plant output, respectively.

The filtered signals ω1(t) and ω2(t) are obtained by passing up(t) and yp(t) through

a stable linear filter of the form α(s)
Λ(s) , where Λ(s) is a monic Hurwitz polynomial. In this

study, the filter is chosen as 1
s+1 for simplicity. These filtered signals satisfy the following

state-space realizations:

ω̇1 = Fω1 + gup, (2.23)

ω̇2 = Fω2 + gyp, (2.24)

where (F, g) is the state-space realization of the selected filter.

The controller parameters are updated using a normalized gradient method that min-

imizes a cost function J , following the MRAC framework proposed by Ioannou and

Sun [24]. The cost function penalizes the discrepancy between the actual and estimated

tracking errors and is scaled by a normalization factor to ensure robust adaptation:

J(ρ,θc) =
(e1 − ê1)2

2m2
s

, (2.25)

where e1 = yp − ym is the tracking error, and ê1 is the estimated error generated by an

internal model.
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The intermediate variables are defined as

φ = −Wm(s)ω, (2.26)

m2
s = 1 + φ⊤φ+ (Wm(s)up)

2, (2.27)

ê1 = ρ
(
θ⊤
c φ+Wm(s)up

)
, (2.28)

whereWm(s) is the transfer function of the reference model. The normalization termm2
s

bounds the adaptive update and improves robustness in real-time operation, particularly

when the regressor signal becomes large [24].

Applying the gradient descent method to minimize J , the normalized adaptive laws

are derived as

θ̇c = −Γ∇θcJ = Γϵφ sgn(ρ), (2.29)

ρ̇ = −γ∇ρJ = γϵ
(
θ⊤
c φ+Wm(s)up

)
, (2.30)

ϵ =
e1 − ê1
m2

s

, (2.31)

where Γ and γ are positive constants that determine the update rates of θc and ρ, respec-

tively.

To regulate the adaptation rate, the gradient ∇θcJ is pre-multiplied by a positive-

definite matrix. In this study, no preferential weighting is assigned to the elements of θc,

and a uniform scaling matrix ΓI is used, where Γ is a positive scalar and I is the identity

matrix. Similarly, the update law for ρ is scaled by a positive scalar γ.

The parameters Γ and γ must be carefully chosen to balance convergence speed and

stability. They can be tuned through numerical experiments or optimization procedures
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to improve control performance and are typically selected as positive scalars or diagonal

matrices before the adaptive process begins. In summary, the normalized adaptive laws

provide a systematic approach for real-time adjustment of the controller parameters, guid-

ing the plant output to closely follow the desired response defined by the reference model.

This direct adaptive control framework aims to minimize the difference between the actual

system behavior and the reference model.
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Chapter 3 Numerical and Flow

Control Setup

In this chapter, the numerical methods, simulation setup, and flow control configu-

rations are introduced in detail. First, the numerical approach for simulating FSI is pre-

sented, covering the spatial and temporal discretization schemes, the treatment of flow–

structure coupling, and the overall solution procedure in Section 3.1. The numerical setup

for the simulations, including the computational domain, boundary conditions, and pa-

rameter choices, is then described in Section 3.2. Finally, the setup for implementing the

flow control method is discussed in Section 3.3, with attention to actuator setting and the

specific control configurations adopted in this study.

3.1 Numerical Method for Flow Structure Interaction

3.1.1 Spatial Discretization and Stress Filtering

Following Section 2.2, the fluid domain is discretized in space to numerically solve

the governing equations, and a stress filtering technique is applied to ensure numerical

stability and accuracy. The method proposed by Taira and Colonius [23] is adopted to

discretize the fluid equations on a two-dimensional, unbounded, uniform staggered Carte-
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sian grid. The immersed boundary is represented by a uniformly spaced set of Lagrangian

points. All spatial intervals are chosen to be equal, so that∆x = ∆y = ∆s, where∆x and

∆y denote the grid spacings in the streamwise and transverse directions, respectively, and

∆s represents the spacing between neighboring Lagrangian points along the boundary Γ.

For matrix-based formulations, the cross product between two vectors can be conve-

niently represented using a skew-symmetric matrix:

a× b = X(a)b = X⊤(b)a, (3.1)

where a = (a1, a2, a3)⊤. The skew-symmetric matrix X(a) is defined as:

X(a) =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 −a3 a2

a3 0 −a1

−a2 a1 0

⎤

⎥⎥⎥⎥⎥⎥⎦
. (3.2)

Since the free-stream velocity U∞ is uniform along the streamwise direction, the

corresponding body translation in this direction is fixed. Therefore, only the cylinder’s

transverse motion is considered. To enforce this simplification, the projection matrix Pv

is defined to extract the vertical component of the body velocity within themodified frame-

work:

Pv =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 1 0

0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
. (3.3)
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The discretized rigid-body equation of motion is expressed as:

Me
dub
dt

= PvSWfb, (3.4)

where fb denotes the discretized surface stress on the immersed boundary, obtained from

the continuous form−f(χ(s), t). A straightforward discretization of the surface stress can

introduce spurious oscillations and numerical instability [22]. To mitigate this issue, a

stress filter W, proposed by Goza et al. [25], is applied to ensure a physically consistent

and numerically stable representation. The resulting filtered stress Wfb corresponds to

the following continuous expression:

∫

Ω

∫

Γ

(−f(χ(s))) δ(χ(s)− x)δ(x− χ(s)) ds dx
∫

Γ

δ(x− χ(s)) ds
. (3.5)

The numerical delta function used here follows the formulation by Roma [26]:

d(r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6∆r

[
5− 3 |r|

∆r −
√

−3
(
1− |r|

∆r

)2

+ 1

]
, for 0.5∆r ≤ |r| ≤ 1.5∆r,

1
3∆r

[
1 +

√
−3

(
r
∆r

)2
+ 1

]
, for |r| ≤ 0.5∆r,

0, otherwise,

(3.6)

where |r| is the distance from a Lagrangian point to the center of a nearby grid cell, and

∆r is the grid spacing.

The matrixW is diagonal and symmetric, satisfyingW⊤ = W. The linear operator S

discretizes the integral
∫
Γ(·) ds. DefiningM = diag(MeI3), where I3 is the 3× 3 identity
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matrix, λ = ub, and Q = PvSW, equation (3.4) becomes:

M
dλ

dt
= Qfb. (3.7)

The discretized fluid equations are written as:

dq

dt
= −GΠ+ N(q, qb) +

1

Re
Lq −Hfb, (3.8)

Dq = 0, (3.9)

Eq = W⊤S⊤ub = Q⊤λ+ (1−Q⊤)λ, (3.10)

where q and Π are the discretized velocity flux and pressure. The operators G, D,

and L represent the discrete gradient, divergence, and Laplacian, respectively. The non-

linear convection operator N(q, qb) approximates X(u − ub)ω. The regularization and

interpolation operators H and E correspond to integrals over the immersed boundary Γ.

For efficiency, these operators satisfy D = −G⊤ and H = E⊤. The appearance of Q⊤

in (3.10) is convenient for later use in control-related formulations.

Following Colonius and Taira [23], the discrete curl operator C is introduced such

that it lies in the null space of the divergence operator D and satisfies the vector identities

∇ ·(∇×v) = 0 and∇×(∇φ) = 0. This construction ensures thatDC = −(C⊤G)⊤ = 0.

By setting q = Cs and applyingC⊤ to equation (3.8), the incompressibility condition (3.9)

is automatically satisfied, and the pressure gradient term is eliminated. As a result, the

governing equation becomes:
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C⊤C
ds

dt
= C⊤N(q, qb) +

1

Re
C⊤LCs− C⊤E⊤fb, (3.11)

ECs = Q⊤λ+ (1−Q⊤)λ. (3.12)

3.1.2 Temporal Discretization

At each time step, the governing equations (3.4) and (3.11) are integrated over the

interval [tn, tn+1]. The nonlinear convective terms are advanced using the second-order

Adams–Bashforth scheme, while the diffusive terms in (3.11) are treated implicitly via

the Crank–Nicolson method. Since the operators E andW are defined in the body-fixed

frame and both C⊤ and S remain constant in time, the forcing terms Qfb and −C⊤E⊤fb

can be evaluated outside the temporal integration.

Accordingly, the average immersed-boundary surface stress over the time interval

is defined as f̄n+1
b ≡ 1

∆t

∫ tn+1

tn
fb dt, allowing us to solve directly for f̄n+1

b ∆t in equa-

tions (3.4) and (3.11). This treatment enables exact integration of the FSI force terms

without additional assumptions in body-fixed frame. The no-slip condition (3.12) is eval-

uated explicitly at tn+1 and expressed in a form convenient for the subsequent derivation.

The semi-discrete equations provides the following symmetric, fully discrete linear

system:

⎛

⎜⎜⎜⎜⎜⎜⎝

C⊤AC 0 C⊤E⊤

0 M −Q

EC −Q⊤ 0

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

sn+1

λn+1

f̄n+1
b ∆t

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

rn1

rn2

rn+1
3

⎞

⎟⎟⎟⎟⎟⎟⎠
, (3.13)
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where

A = I− ∆t

2Re
L, (3.14)

rn1 = C⊤
(
I+

∆t

2Re
L
)
Csn +

3∆t

2
C⊤N(qn, qnb )−

∆t

2
C⊤N(qn−1, qn−1

b ), (3.15)

rn2 = Mλn, (3.16)

rn+1
3 = (1−Q⊤)λn+1. (3.17)

The simplicity of the system (3.13) hinges on the assumptions of rigid-body dynamics

formulated in the body-fixed frame and the consideration of a single FSI body.

To solve the system efficiently, a block-LU decomposition is applied, leading to the

following sequential steps:

⎛

⎜⎜⎝
C⊤AC 0

0 M

⎞

⎟⎟⎠

⎛

⎜⎜⎝
s∗

λ∗

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝
rn1

rn2

⎞

⎟⎟⎠ , (3.18)

(Q⊤M−1Q+ EC(C⊤AC)−1C⊤E⊤)f̄n+1
b ∆t = ECs∗ −Q⊤λ∗ − rn+1

3 , (3.19)
⎛

⎜⎜⎝
sn+1

λn+1

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝
s∗

λ∗

⎞

⎟⎟⎠+

⎛

⎜⎜⎝
−(C⊤AC)−1C⊤E⊤f̄n+1

b ∆t

M−1Q f̄n+1
b ∆t

⎞

⎟⎟⎠ . (3.20)

The factorized steps (3.18)–(3.20) form a fractional-step procedure based on a body-

fixed formulation with filtered surface stress and time-averaged FSI forces. Physically,

the trial streamfunction and rigid-body velocity are first obtained by advancing the system

without enforcing the no-slip condition. The Poisson-like system (3.19) is then solved to

compute the immersed boundary stress required to satisfy this constraint. Finally, the trial

solutions are projected to enforce the no-slip condition.
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To solve the trial streamfunction in (3.18), a multi-domain setup is employed to ac-

curately impose far-field boundary conditions. The Poisson-like operator (C⊤AC)−1 is

inverted efficiently using discrete sine transforms, and the symmetric, time-invariant sys-

tem in (3.19) is precomputed and solved using Cholesky decomposition.

3.2 Numerical Setup

Consider a rigid circular cylinder immersed in an unbounded, incompressible free

stream, subject to flow–structure interaction (FSI). The flow is characterized by a low

Reynolds number set to 100, remaining laminar and approximately quasi-two-dimensional.

The cylinder＇s motion is analyzed in a body-fixed coordinate system, with the transverse

velocity denoted by Vb. The primary observation domain extends 6D in the streamwise

direction and 3D in the crossflow direction, with the cylinder centered vertically and po-

sitioned 1D downstream of the inlet. The actuator forces applied near the cylinder surface

are represented by red arrows and denoted as fa, while v′ represents the transverse veloc-

ity signal of the flow. Both fa and v′ will be detailed in subsequent sections. This domain

serves as the observation region for analyzing the FSI system and conducting the resolvent

analysis described in Section 2.3, as illustrated in Figure 3.2. A multi-domain approach is

adopted to balance accurate far-field boundary conditions with computational efficiency.

An example configuration of this setup is shown in Figure 3.1.

To simulate this FSI system, the immersed boundary projection method (IBPM), ex-

tended from Lin et al. [22], is employed. The surface of the cylinder is discretized using

uniformly spaced Lagrangian points, which are projected onto a fluid grid fixed in the

body-fixed frame to enforce the no-slip condition at the fluid–structure interface. To en-
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sure spatial consistency between the immersed boundary and the fluid grid, the spacing

is uniformly set such that ∆s = ∆x = ∆y = 0.03D. Following Lin et al. [22], the

grid Reynolds number, defined as Reg = U∞∆x/ν, is maintained below 5, which has

been shown to yield a spatial convergence rate of approximately 1.5. The time step ∆t is

chosen to keep the Courant-Friedrichs-Lewy (CFL) number, C = umax∆t
∆x , below 0.04 for

numerical stability, and is set to ∆t = 0.001 in this study.

The computational domain is designed using a six-level nested multi-domain config-

uration to accurately enforce far-field boundary conditions while ensuring computational

efficiency. The innermost domain, which has the finest grid, extends 6D in the streamwise

direction and 3D in the transverse direction. The cylinder is placed 1D downstream from

the inlet and 1.5D above the lower boundary within this finest region. This area captures

the key near-wake dynamics and also serves as the observation region for the resolvent

analysis.

Figure 3.1: Example of a 3-level multi-domain configuration.

Each surrounding domain is twice as large and has double the grid spacing compared

to the inner one, creating a hierarchical mesh that becomes progressively coarser toward
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the far field. This approach provides sufficient spatial resolution near the cylinder—where

unsteady flow features and vortex generation occur—while reducing computational cost

in less critical regions. A uniform free-stream velocity U∞ is applied at the boundary of

the largest domain to ensure inflow conditions.

(a) Normal actuation

(b) Tangential actuation

Figure 3.2: Observation domain of control flow system. This domain is used for resolvent
analysis with the finest grid. (a) Normal and (b) tangential actuation at the same position.
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3.3 Flow Control Setup

This section describes the formulation of a control-oriented flow system designed to

suppress the plunging motion of a rigid circular cylinder induced by FSI. The objective is

to develop a clear input–output representation of the fluid system, enabling the application

of active feedback control.

To implement active flow control, a pair of body forces, denoted by fa, is applied to

the fluid near the surface of the cylinder, mimicking the use of a dielectric barrier discharge

(DBD) actuator to force the fluid [14]. These forces are placed symmetrically above and

below the cylinder at polar coordinates (r, θa) = (0.6D, 110◦), measured from the cylin-

der center. The direction of actuation is categorized as either normal or tangential to the

cylinder surface, as shown in 3.2. For normal actuation, a pair of antisymmetric forces is

applied at the top and bottom of the cylinder, simulating the effect of zero-net-mass-flux

actuators. For tangential actuation, a pair of antisymmetric forces is applied along the

surface of the cylinder.

The actuators are mathematically represented as:

f(x, y) = B(x, y) fa, (3.21)

B(x, y) =

⎡

⎢⎢⎣
cos (g(σg, r, θa)− g(σg, r,−θa))

sin (g(σg, r, θa) + g(σg, r,−θa))

⎤

⎥⎥⎦ , (3.22)

where r is the radial distance from the center of the cylinder, and the two-dimensional

Gaussian function g(σg, r, θa) determines the location and spread of the actuator force:
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g(σg, r, θa) =
1

2πσ2
g

exp
(
−(x− r cos θa)2 + (y − r sin θa)2

2σ2
g

)
, (3.23)

with σg specifying the spatial spread of the forcing region. To provide a quantitative

measure of the control effort, the power coefficient CP is introduced. This coefficient

quantifies the input power required by the model reference adaptive control and is defined

as:

CP =

∫
faujet

1
2ρfU

2
∞D

, (3.24)

Next, the spatially discretized vorticity equation described in (2.17) is expressed in a

state-space form suitable for control analysis:

dx
dt

= Ax+ Bu+D, (3.25)

where x is the discretized fluctuation state (e.g., vorticity), A is the time-invariant

linear system operator, B maps the control input u to the flow domain, and D represents

the nonlinear disturbance, including contributions from flow–structure interaction.

To obtain a measurable output for feedback, a sensing operator C is introduced:

y = Cx, (3.26)

where y is the vertical velocity v′ of the fluid measured in the body-fixed frame at a fixed
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location x = 1.0D downstream of the cylinder. This signal reflects both the flow velocity

and the transverse motion of the cylinder. Since the state is represented in vorticity form,

the output matrix C is computed by solving a Poisson equation to recover the velocity at

the sensor location.

Transforming the system into the frequency domain yields the input–output relation:

ŷ = P (s)û+ d̂, (3.27)

where P (s) = C(sI−A)−1B represents the transfer function of the linearized system, and

d̂ accounts for the spectral effect of nonlinear disturbances on the output.

The resolvent operator H(ω) = (−iωI − A)−1, introduced in (2.21), characterizes

the system’s frequency response to harmonic forcing. It directly provides the basis for

constructing the reference model P (s) used in the flow control design, as detailed in Sec-

tion 2.3.

Since the full-order transfer function P (s) is typically ROM is constructed to facil-

itate practical control implementation. The frequency response of the original system is

computed using the MATLAB toolbox fidfrd, and a reduced-order model of order less

than ten is then identified. This ROM serves as the reference model for the flow control

setup, enabling efficient computation while preserving the essential dynamic characteris-

tics needed for effective control.
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Chapter 4 Results and Discussion

This chapter presents the results of numerical simulations conducted to evaluate the

effectiveness of the proposed model reference adaptive control strategy in mitigating the

plunging motion of a circular cylinder under FSI. The primary objective of this study is

to reduce both the lift fluctuations and the transverse oscillations of the cylinder, which

result from VIV in an unsteady laminar flow environment.

Section 4.1 discusses the baseline FSI dynamics of the uncontrolled cylinder, provid-

ing detailed insights into the flow behavior, lift forces, and structural response. This sec-

tion serves as a reference point for evaluating the effects of control. Section 4.2 presents

the results of applying MRAC, including a comparative analysis with the uncontrolled

case. The impact of the adaptive controller on lift fluctuations and flow structures is

systematically examined to demonstrate the performance and robustness of the proposed

method.

4.1 Circular Cylinder under Flow-Structure Interaction

In this section, the dynamics of a circular cylinder undergoing flow–structure inter-

action are investigated through numerical simulations. Initially, the cylinder is placed in

a uniform free-stream flow. After a brief transient period, it begins to oscillate in the
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Figure 4.1: Time histories of (a) the transverse velocity Vb and (b) the position yb of the
cylinder for ρe = 0.2.
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Figure 4.2: Lift coefficient CL and drag coefficient CD for ρe = 0.2.

transverse direction and eventually settles into a periodic plunging motion.

Figure 4.1 shows the evolution of the cylinder’s transverse velocity, Vb, and displace-

ment, yb. Starting from rest, the cylinder gradually develops oscillations in the crossflow

direction and soon settles into a stable periodic state. This steady plunging motion persists

for more than 10 oscillations. The Strouhal number is defined as Stp = fpD/U∞, where

fp denotes the plunging frequency of the cylinder under FSI. The oscillation period, T , is

given by T = 1/Stp. Time t∗ is nondimensionalized by D/U∞. The corresponding lift

coefficient, CL, and drag coefficient, CD, are shown in Figure 4.2. The drag coefficient

CD initially decreases and tends to converge near 1.08, but then quickly increases and be-

gins to oscillate with a mean value close to 1.3. The onset of the increase in CD coincides

with the start of oscillations in CL, and both eventually reach a stable oscillatory state.

Since the motion of the cylinder is strongly coupled with the flow, the effective den-

sity ρe significantly influences the dynamic response of the system. Figure 4.3 illustrates

how the plunging amplitude and frequency vary with ρe. As ρe increases, the frequency

Stp rises slightly from 0.15 to 0.16. For reference, Stvs = 0.16 denotes the natural vortex-
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Figure 4.3: Variation of plunging amplitude |yb| and frequency Stp with effective density
ρe. The FFT analysis uses a time step of ∆t = 0.001 and 105 sample points for spectral
resolution.
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shedding frequency of a stationary cylinder. The largest plunging amplitude, approxi-

mately |yb| = 0.65D, is observed at ρe = 0.2. Based on this observation, the effective

density is set to ρe = 0.2 for the following analysis, as this condition yields the largest

oscillation amplitude and serves as the basis for the controlled flow case.

4.2 Controlled Flow

Since the primary objective of flow control is to reduce the lift fluctuation of the

plunging cylinder, which is closely associated with vortex shedding intensity, a new vari-

able is introduced to quantify the control performance. The reduction rate Rx is defined

as

Rx =
Sb
x − Sc

x

Sb
x

, (4.1)

where Sb
x and Sc

x are the standard deviations of the time-series data for the baseline

(uncontrolled) and controlled cases, respectively. The standard deviation Sx is computed

as

Sx =

√√√√ 1

N − 1

N∑

i=1

(xi − x̄)2. (4.2)

Here, x̄ denotes the mean value of the time-series data, and N is the total number of

samples. To eliminate the effects of transient response, the time-series data are collected

over the final 10 oscillations of the control period, when the system has reached steady

behavior. The optimal control setting is determined by the case that provides the largest
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reduction rate in fluctuation.

The two parameters, Γ and γ, are hyperparameters that need to be specified before

applying control. These learning rates determine the adaptation speed of the adaptive

gain vector θc and the parameter ρ, respectively. Since Γ governs the adaptation of θc,

it has a direct impact on the convergence speed of the controller. While a larger value of

Γ can accelerate adaptation, it also increases the risk of instability. Therefore, selecting

an appropriate range for (Γ, γ) is essential to ensure both stability and robustness of the

control system.

4.2.1 Normal Actuation

-10 0 10 20 30 40
3p=2:

-1

-0.5

0

0.5

1

V
b
=
V

b0

baseline
controlled

Figure 4.4: Time history of Vb with (Γ, γ) = (4, 0.1).

For normal actuation, various hyperparameter pairs (Γ, γ) were tested, with (4, 0.1)

chosen for demonstration. The oscillation phase θp is defined as θp/2π = StcU∞/D,

where Stc denotes the Strouhal number of the cylinder under controlled flow. Figure 4.4

shows the time history of the transverse velocity Vb, with Vb0 representing the amplitude

of the uncontrolled cylinder. The controlled cylinder’s transverse velocity gradually de-

creases and settles into a steady oscillation with diminished amplitude after approximately
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θp/2π = 10. This reduced oscillation amplitude is maintained up to θp/2π = 40, indicat-

ing sustained suppression of transverse velocity fluctuations over more than 30 oscillation

cycles. The reduction rate, RVb
= 32.37%, reflects a noticeable decrease in cylinder mo-

tion fluctuations, effectively stabilizing the system.
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Figure 4.5: Time history of CD, CL and CP with (Γ, γ) = (4, 0.1).

Figure 4.5 displays trends consistent with those observed in Vb. The lift coefficient

CL follows a similar pattern to Vb, showing decreased oscillations with small amplitude.

The drag coefficient CD decreases smoothly and converges to approximately 1.23 with

minor oscillations after θp/2π = 10. The power coefficient Cp, representing control ef-

ficiency, remains consistently below 10−2 throughout the control period, indicating min-

imal energy consumption. Overall, the reductions achieved in lift and drag fluctuations

(RL = 34.22%, RD = 74.22%) highlight the effectiveness of normal actuation combined

with the proposed control strategy in attenuating force oscillations.

Figure 4.6 illustrates the evolution of the adaptive gains θc and the cost function J

during the control period. The adaptive gains change rapidly within the interval θp/2π ∈

37

http://dx.doi.org/10.6342/NTU202503926


doi:10.6342/NTU202503926

0 5 10 15 20 25 30 35 40
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40
3p=2:

0

0.005

0.01

0.015

0.02

0.025
cost function J

Figure 4.6: Time history of adaptive gain θc and cost function J with (Γ, γ) = (4, 0.1).
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[0, 5], then oscillate with small amplitude around a near-constant value. The cost func-

tion decreases rapidly as the control activates, exhibiting small residual oscillations. This

behavior corresponds closely with the trends observed in Vb and CL, indicating stable ac-

tuation accompanied by minor fluctuations in the adaptive gains. According to adaptive

control theory, the gains should converge to constant values in a linear system. However,

the FSI system during stable plunging retains nonlinear effects, resulting in slight residual

oscillations even after the system appears to have reached steady state.

Figure 4.7: Vorticity snapshots over three oscillation cycles for θp/2π ∈ [1, 4]. From top
to bottom, snapshots are taken at intervals of∆(θp/2π) = 0.2, illustrating the evolution of
the wake vorticity. The vorticity remains nearly consistent with that of the baseline case
under FSI.
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Figure 4.8: Vorticity snapshots over the final oscillation, θp/2π ∈ [39, 40], comparing (a)
the baseline and (b) the controlled flow.
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(a)

baseline

(b)

controlled

Figure 4.9: Comparison of the time-averaged vorticity fields for the baseline (a) and con-
trolled (b) cases, computed over the interval θp/2π ∈ [30, 40].

Figure 4.7 shows vorticity snapshots at θp/2π ∈ [1, 4]. The wake structure behind the

cylinder remains consistent with that of the baseline case under flow–structure interaction

(FSI). The actuation primarily influences the cylinder dynamics, while the intensity of

vortex shedding remains nearly unchanged. This observation is supported by the vorticity

over the final 10 oscillations, as shown in Figure 4.8. Figure 4.9 displays the time-averaged

vorticity over θp/2π ∈ [30, 40], revealing a slight downstream elongation of the wake.

This elongation is attributed to a modest shift in the plunging frequency of the cylinder

under controlled flow compared to the baseline case.
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Figure 4.10: FFT spectra of (a) the transverse velocity Vb for the baseline and controlled
flow cases, and (b) the control input up alongside the lift coefficient CL. The amplitude
of the FFT spectra is normalized by the maximum amplitude. The spectra of up and CL

exhibit strong lock-in. The lift coefficient CL shows the same dominant frequency as
Vb. The FFT analysis uses a time step of ∆t = 0.001 and 105 sample points for spectral
resolution.

Figure 4.10 presents the FFT analysis of the plunging motion and the control input.
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The spectra of the control input up and the plunging motion exhibit strong lock-in, indi-

cating synchronization between the actuation and the fluid response. The two dominant

peaks in the spectrum occur at frequencies close to 0.15, reflecting consistent oscillatory

behavior. This corresponds to a reduction in oscillation amplitude under control.

The control is activated at different phases of the plunging motion to verify that ef-

fective performance is achieved regardless of the timing of engagement. Additionally, the

control is switched on and off multiple times to demonstrate its long-term consistency. In

these simulations, the controller operates with the same parameter pair (Γ, γ) = (4, 0.1).
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Figure 4.11: Time histories of Vb under optimal learning rates (Γ, γ) = (4, 0.1) for con-
trol activated at different phases θp/2π: (a) 0.2, (b) 0.4, (c) 0.6, and (d) 0.8. Each case
demonstrates consistent fluctuation reduction regardless of activation phase.

Figure 4.11 comparesVb responseswhen control is activated at different phases θp/2π.The

long‑term reduction in fluctuation remains the same. After 10 oscillations, the flow fluc-

tuations converge to a consistent, stable level regardless of the phase at which control was

applied.
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Figure 4.12: Time histories of the cylinder’s transverse velocity Vb over three cycles of
control activation and deactivation. Time is referenced from the start of the second control
period. Each control phase is followed by a 10-oscillation interval with the control off,
during which Vb returns to the baseline behavior under FSI. Upon reactivation, the con-
trol consistently achieves effective suppression of Vb fluctuations, with similar transient
responses observed across all cycles.

Figure 4.12 presents the results of three cycles of control turn on and off. Between

each controlled period, the control is switched off, allowing the system to evolve freely for

at least 5 oscillations. During these off intervals, the amplitude of the cylinder’s transverse

velocity Vb increases and returns to levels observed in the baseline case. When the control

is reactivated, the reduction in Vb during each control period remains nearly consistent.

The first period corresponds to the previously reported results, shown as the plot of the

final 10 oscillations, while the second and third periods achieve almost identical reduction

rates. The repeated control intervals with the same settings exhibit consistent effectiveness

in suppressing fluctuations, demonstrating the robustness of the adaptive control strategy.

Figure 4.13 illustrates the moderate ranges for the adaptive parameters (Γ, γ). Within

the tested domain (Γ, γ) ∈ [0.01, 8]× [0.0001, 0.1], the model reference adaptive control

achieves notable reductions in both the lift coefficient CL and the transverse velocity Vb.

The optimal parameter pair (Γ, γ) = (4, 0.1) provides the greatest suppression of fluc-

tuations, with maximum reductions of RL = 34.22% in lift coefficient fluctuation and

RVb
= 32.37% in transverse velocity fluctuation. The reduction in drag coefficient is
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Figure 4.13: Reduction rates of (a) drag fluctuation RD, (b) lift fluctuation RL, and (c)
transverse velocity fluctuation RVb

across the (Γ, γ) parameter space Γ ∈ [0.01, 10], γ ∈
[10−2, 102] .
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RD = 74.22%. Control performance is primarily influenced by Γ, which governs the

adaptation rate of the adaptive gains θc, while γ mainly affects the transient response,

with smaller values potentially causing instability. Overall, the adaptive control demon-

strates robust and effective performance across a broad range of these parameters.

4.2.2 Tangential Actuation
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Figure 4.14: Time history of Vb with (Γ, γ) = (0.76, 100).

A range of hyperparameter pairs (Γ, γ) was tested, and the pair (Γ, γ) = (0.76, 100)

was chosen for demonstration. Figure 4.14 shows the time history of Vb, where Vb0 denotes

the amplitude of the transverse velocity of the uncontrolled cylinder. During the initial

10 oscillations, (θp/2π ∈ [0, 10]), the amplitude of Vb decreases rapidly with unstable

fluctuations, although these remain smaller than the baseline. After θp/2π = 10, the

amplitude stabilizes and remains steady up to θp/2π = 40, indicating that the reduction in

Vb is sustained for more than 30 oscillations. The reduction rateRVb
= 84.36% represents

a significant decrease in fluctuations of the cylinder motion, effectively stabilizing the

cylinder.

Figure 4.15 presents the time histories of force and power coefficients during control.
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Figure 4.15: Time history of CD, CL and CP with (Γ, γ) = (0.76, 100).

The lift coefficient CL stabilizes rapidly after θp/2π = 10, exhibiting a substantial reduc-

tion in fluctuations. Concurrently, the drag coefficient CD initially decreases smoothly,

experiences a minor rebound to approximately 1.2 at θp/2π = 10, and subsequently con-

verges steadily to around 1.18—representing a significant 10% decrease in its average

magnitude. Both the mean value and fluctuation amplitude of CD are markedly dimin-

ished. The total power coefficient Cp of the two actuators remains consistently below

10−3 throughout the control interval and decreases further after θp/2π = 10. The re-

ductions in lift and drag fluctuations (RL = 84.96%, RD = 92.67%) demonstrate the

effectiveness of the proposed control strategy in diminishing force oscillations.

Figure 4.16 illustrates the evolution of the adaptive gains θc during the control pe-

riod. The gains adjust rapidly at the onset of control and subsequently oscillate around

nearly constant values. The cost function decreases rapidly upon activation of the control,

eventually approaching zero, indicating that the fluid system closely tracks the reference

model and effectively reduces fluctuations. This trend aligns closely with the behaviors
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Figure 4.16: Time history of adaptive gain θc and cost function J with (Γ, γ) =
(0.76, 100).
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observed in Vb andCL, demonstrating stable actuation accompanied by minor fluctuations

in the adaptive gains. According to adaptive control theory, the gains should converge to

constant values in a linear system. However, the FSI system under stable plunging re-

tains nonlinear interactions, resulting in small residual oscillations even after the system

appears to reach steady state.

Figure 4.17: Vorticity snapshots over three oscillation cycles for θp/2π ∈ [1, 4]. From top
to bottom, snapshots are taken at intervals of ∆(θp/2π) = 0.2, illustrating the evolution
of the wake vorticity. The activation of control alters vortex shedding behind the cylinder.

Figure 4.17 presents vorticity snapshots at the start of the control period. Under

actuation, the wake vortices behind the cylinder break down into smaller-scale structures,
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reducing vorticity intensity in the near wake. This transition coincides with the interval

of peak actuation observed in the plot of CP in Figure 4.15. The control input thus alters

the vortex pattern in the wake, attenuating flow‑induced fluctuations on the cylinder and

quickly stabilizing the flow.

Figure 4.18 shows vorticity snapshots for the base plunging and controlled cases

during the final oscillation (θp/2π ∈ [39, 40]). With actuation, the wake exhibits reduced

vorticity intensity and extends farther downstream compared to the baseline case. This

elongation reduces the wake’s direct influence on the cylinder, leading to smaller ampli-

tude fluctuations. The more diffuse wake indicates a broader vorticity distribution, reduc-

ing the intensity of individual vortices. Figure 4.19 presents the time-averaged vorticity

over the final 10 oscillations, further highlighting the stretched wake structure.

Figure 4.20 presents the FFT analysis of both the baseline case and the controlled

flow. The spectra of the control input up and the lift coefficient CL exhibit strong lock-

in, indicating synchronization between the actuation and the response of the fluid system.

The lift coefficientCL oscillates at the same dominant frequency as the transverse velocity

Vb. This behavior corresponds to a reduction in oscillation amplitude, demonstrating that

the fluid system transitions to a state with diminished fluctuations under control.

The control is switched on and off multiple times to demonstrate long-term consis-

tency. Additionally, it is activated at different phases of the plunging motion to verify that

effective performance is achieved regardless of the timing of engagement.

Figure 4.21 compares Vb responses when control is activated at different phases

θp/2π. Although the activation phase alters the transient response during the first ten os-

cillations (θp/2π ∈ [0, 10]), the long‑term reduction in fluctuation remains the same. After
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Figure 4.18: Vorticity snapshots over the final oscillation, θp/2π ∈ [39, 40], comparing
(a) the baseline and (b) the controlled case. The controlled wake shows reduced vorticity
intensity and elongated structures downstream, indicating suppression of vortex shedding.
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(a)

baseline

(b)

controlled

Figure 4.19: Comparison of the time-averaged vorticity fields for the baseline (a) and
controlled (b) cases, computed over the interval θp/2π ∈ [30, 40]. The controlled case
exhibits reduced vorticity intensity and a more elongated wake structure downstream, in-
dicating effective suppression of vortex shedding.
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Figure 4.20: FFT spectra of (a) the transverse velocity Vb for the baseline and controlled
flow cases, and (b) the control input up alongside the lift coefficient CL. The amplitude
of the FFT spectra is normalized by the maximum amplitude. The spectra of up and CL

exhibit strong lock-in. The lift coefficient CL shows the same dominant frequency as
Vb. The FFT analysis uses a time step of ∆t = 0.001 and 105 sample points for spectral
resolution.
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Figure 4.21: Time histories ofVb for control activated at different phases θp/2π: (a) 0.2, (b)
0.4, (c) 0.6, and (d) 0.8. Each case demonstrates consistent fluctuation reduction regardless
of activation phase.

10 oscillations, the flow fluctuations converge to a consistent, stable level regardless of

the phase at which control was applied.

Figure 4.22 shows the results for three cycles of control activation and deactivation.

Between each control period, the control is switched off, allowing the system to evolve

freely for at least 5 oscillations. During these off intervals, the amplitude of the cylinder’s

transverse velocity Vb increases and returns to the levels observed in the baseline case. The

control is then turned on again at the same phase of the plunging motion as the previous

activation. In each control period, the reduction in the cylinder’s transverse velocity Vb

remains highly consistent. The first period corresponds to the previously reported results,

while the second and third periods achieve nearly identical reduction rates. The reduction

in lift fluctuations is also nearly identical across all control intervals. Furthermore, the time

history of the adaptive gain demonstrates convergence toward the same values during each

control period, with only small residual oscillations.
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Figure 4.22: Time histories of the cylinder’s transverse velocity Vb over three cycles of
control activation and deactivation. Time is referenced from the start of the second control
period. Each control phase is followed by a 10-oscillation interval with the control off,
during which Vb returns to the baseline behavior under FSI. Upon reactivation, the con-
trol consistently achieves effective suppression of Vb fluctuations, with similar transient
responses observed across all cycles.

Figure 4.23 illustrates the moderate ranges for the adaptive parameters (Γ, γ). Within

the tested domain (Γ, γ) ∈ [0.01, 10] × [0.01, 100], the adaptive control with tangential

actuation achieves substantial reductions in both the lift coefficient CL and the transverse

velocity Vb. The optimal parameter pair (Γ, γ) = (0.76, 100) yields the greatest suppres-

sion of fluctuations, with maximum reductions of 84.96% in lift coefficient fluctuation

RL and 84.36% in transverse velocity fluctuationRVb
. The drag coefficient fluctuation is

also significantly reduced by RD = 92.67% at this optimal setting. Control performance

is primarily influenced by Γ, which governs the updating rate of the adaptive gains θc,

while γ affects the transient response, with smaller values potentially leading to instabil-

ity. Overall, the adaptive control demonstrates effective and robust performance across a

wide range of these parameters.
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Figure 4.23: Reduction rates of (a) drag fluctuation RD, (b) lift fluctuation RL, and (c)
transverse velocity fluctuation RVb

across the (Γ, γ) parameter space Γ ∈ [0.01, 10], γ ∈
[10−2, 102] .
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Chapter 5 Conclusion and Remarks

In this study, we developed a feedback flow control strategy aimed at mitigating

vortex-induced fluctuations and stabilizing the plunging dynamics of a circular cylinder

undergoing flow–structure interaction. The uncontrolled baseline plunging is character-

ized by pronounced fluctuations in both the lift force and transverse motion of the cylin-

der, driven primarily by periodic vortex shedding in the cylinder wake. To suppress these

fluctuations, we proposed a model reference adaptive control framework utilizing a lin-

ear reference model derived from resolvent analysis of the time-averaged flow around a

stationary cylinder—considered a base state with minimal fluctuations. The control law

includes two adaptive learning rates as hyperparameters, which govern the transient re-

sponse and convergence properties of the controller. Normal and tangential actuation

schemes were implemented and evaluated to assess their effectiveness in controlling the

coupled fluid–structure dynamics.

The adaptive learning rates provided stable and effective control across a suitable

range for both actuation schemes. For normal actuation, the adaptive controller achieved

maximum reductions of 34.22% in lift coefficient fluctuations, 32.37% in cylinder trans-

verse velocity fluctuations, and 74.22% in drag coefficient fluctuations. Normal actua-

tion directly influenced the cylinder’s motion, consequently enhancing nonlinear forcing

effects within the coupled system. In contrast, tangential actuation demonstrated substan-
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tially superior performance, achieving reductions of 84.96% in lift fluctuations, 84.36%

in cylinder transverse velocity fluctuations, and 92.67% in drag coefficient fluctuations.

During the transient period of control implementation, the system initially exhib-

ited notable fluctuations but rapidly stabilized, achieving substantially reduced oscilla-

tions for both actuation schemes. Under normal actuation, the vortex structure behind the

cylinder exhibited only minor modifications, indicating that control primarily influenced

the cylinder motion rather than directly altering wake structures. Conversely, tangential

actuation caused the rapid breakdown of near-wake vortex structures into smaller-scale

patterns during the early transient stage, a phenomenon not prominently observed under

normal actuation. After approximately ten oscillations, both actuation schemes attained

stable, sustained suppression of flow-induced fluctuations. Moreover, the control strat-

egy demonstrated robustness, effectively reducing fluctuations regardless of the activation

phase during oscillations and across multiple reactivation cycles.

In summary, the proposed adaptive control approach proved effective in mitigating

fluctuations within the fluid–structure system, significantly stabilizing both the force and

the cylinder dynamics. Tangential actuation exhibited particularly strong performance

by efficiently modifying wake structures downstream, thereby further enhancing cylinder

stability. Although minor fluctuations persisted in the controlled flow, future research

should explore methods to eliminate these residual fluctuations entirely and extend the

proposed adaptive control to more complex and nonlinear flow systems.
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