Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98807
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王泰典zh_TW
dc.contributor.advisorTai-Tien Wangen
dc.contributor.author蔡承翰zh_TW
dc.contributor.authorCheng-Han Tsaien
dc.date.accessioned2025-08-19T16:16:51Z-
dc.date.available2025-08-20-
dc.date.copyright2025-08-19-
dc.date.issued2025-
dc.date.submitted2025-08-07-
dc.identifier.citation1. An, J., Wang, Z., Pan, S., Qin, H., Luo, Q., Yan, D. (2024). An Integrated Resilience and Assessment Methodology Framework for Addressing Uncertainty in Highway Operation and Maintenance Systems. Journal of Construction Engineering and Management, 150(12), 04024174. https://doi.org/10.1061/JCEMD4.COENG-15123
2. Argyroudis, S. A., Mitoulis, S. A., Hofer, L., Zanini, M. A., Tubaldi, E., Frangopol, D. M. (2020). Resilience assessment framework for critical infrastructure in a multi-hazard environment: Case study on transport assets. Science of The Total Environment, 714, 136854. https://doi.org/10.1016/j.scitotenv.2020.136854
3. Argyroudis, S. A., Mitoulis, S. Α., Winter, M. G., Kaynia, A. M. (2019). Fragility of transport assets exposed to multiple hazards: State-of-the-art review toward infrastructural resilience. Reliability Engineering & System Safety, 191, 106567. https://doi.org/10.1016/j.ress.2019.106567
4. Asadollahpour, E., Rahmannejad, R., Asghari, A., Abdollahipour, A. (2014). Back analysis of closure parameters of Panet equation and Burger׳s model of Babolak water tunnel conveyance. International Journal of Rock Mechanics and Mining Sciences, 68, 159–166. https://doi.org/10.1016/j.ijrmms.2014.02.017
5. Aydin, N. Y., Duzgun, H. S., Heinimann, H. R., Wenzel, F., Gnyawali, K. R. (2018). Framework for improving the resilience and recovery of transportation networks under geohazard risks. International Journal of Disaster Risk Reduction, 31, 832–843. https://doi.org/10.1016/j.ijdrr.2018.07.022
6. Ayyub, B. M. (2014). Systems Resilience for Multihazard Environments: Definition, Metrics, and Valuation for Decision Making. Risk Analysis, 34(2), 340–355. https://doi.org/10.1111/risa.12093
7. Bérest, P., Antoine Blum, P., Pierre Charpentier, J., Gharbi, H., Valès, F. (2005). Very slow creep tests on rock samples. International Journal of Rock Mechanics and Mining Sciences, 42(4), 569–576. https://doi.org/10.1016/j.ijrmms.2005.02.003
8. Bergantino, A. S., Gardelli, A., Rotaris, L. (2024). Assessing transport network resilience: Empirical insights from real-world data studies. Transport Reviews, 44(4), 834–857. https://doi.org/10.1080/01441647.2024.2322434
9. Bhurtyal, S., Hernandez, S., Amankwah-Nkyi, K. (2025). Data-Driven Methods to Assess Transportation System Resilience: Case Study of the Arkansas Roadway Network. Journal of Transportation Engineering, Part A: Systems, 151(1), 05024005. https://doi.org/10.1061/JTEPBS.TEENG-8064
10. Bjureland, W., Spross, J., Johansson, F., Prästings, A., Larsson, S. (2017). Reliability aspects of rock tunnel design with the observational method. International Journal of Rock Mechanics and Mining Sciences, 98, 102–110. https://doi.org/10.1016/j.ijrmms.2017.07.004
11. Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O’Rourke, T. D., Reinhorn, A. M., Shinozuka, M., Tierney, K., Wallace, W. A., Von Winterfeldt, D. (2003). A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities. Earthquake Spectra, 19(4), 733–752. https://doi.org/10.1193/1.1623497
12. Cai, M., Kaiser, P. K., Tasaka, Y., Maejima, T., Morioka, H., Minami, M. (2004). Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations. International Journal of Rock Mechanics and Mining Sciences, 41(5), 833–847. https://doi.org/10.1016/j.ijrmms.2004.02.001
13. Chen, X., Shen, J., Bao, X., Wu, X., Tang, W., Cui, H. (2023). A review of seismic resilience of shield tunnels. Tunnelling and Underground Space Technology, 136, 105075. https://doi.org/10.1016/j.tust.2023.105075
14. Chu, Z., Wu, Z., Liu, Q., Liu, B., Sun, J. (2021). Analytical Solution for Lined Circular Tunnels in Deep Viscoelastic Burgers Rock Considering the Longitudinal Discontinuous Excavation and Sequential Installation of Liners. Journal of Engineering Mechanics, 147(4), 04021009. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001912
15. Cimellaro, G. P., Reinhorn, A. M., Bruneau, M. (2010). Framework for analytical quantification of disaster resilience. Engineering Structures, 32(11), 3639–3649. https://doi.org/10.1016/j.engstruct.2010.08.008
16. De La Fuente, M., Sulem, J., Taherzadeh, R., Subrin, D. (2020). Tunneling in Squeezing Ground: Effect of the Excavation Method. Rock Mechanics and Rock Engineering, 53(2), 601–623. https://doi.org/10.1007/s00603-019-01931-4
17. Fahimifar, A., Tehrani, F. M., Hedayat, A., Vakilzadeh, A. (2010). Analytical solution for the excavation of circular tunnels in a visco-elastic Burger’s material under hydrostatic stress field. Tunnelling and Underground Space Technology, 25(4), 297–304. https://doi.org/10.1016/j.tust.2010.01.002
18. Freddi, F., Galasso, C., Cremen, G., Dall’Asta, A., Di Sarno, L., Giaralis, A., Gutiérrez-Urzúa, F., Málaga-Chuquitaype, C., Mitoulis, S. A., Petrone, C., Sextos, A., Sousa, L., Tarbali, K., Tubaldi, E., Wardman, J., Woo, G. (2021). Innovations in earthquake risk reduction for resilience: Recent advances and challenges. International Journal of Disaster Risk Reduction, 60, 102267. https://doi.org/10.1016/j.ijdrr.2021.102267
19. Hao, H., Bi, K., Chen, W., Pham, T. M., Li, J. (2023). Towards next generation design of sustainable, durable, multi-hazard resistant, resilient, and smart civil engineering structures. Engineering Structures, 277, 115477. https://doi.org/10.1016/j.engstruct.2022.115477
20. Huang, H., Zhang, D. (2016). Resilience analysis of shield tunnel lining under extreme surcharge: Characterization and field application. Tunnelling and Underground Space Technology, 51, 301–312. https://doi.org/10.1016/j.tust.2015.10.044
21. Huang, Z., Zhang, D., Pitilakis, K., Tsinidis, G., Huang, H., Zhang, D., Argyroudis, S. (2022). Resilience assessment of tunnels: Framework and application for tunnels in alluvial deposits exposed to seismic hazard. Soil Dynamics and Earthquake Engineering, 162, 107456. https://doi.org/10.1016/j.soildyn.2022.107456
22. Kaplan, S., & Garrick, B. J. (1981). On The Quantitative Definition of Risk. Risk Analysis, 1(1), 11–27. https://doi.org/10.1111/j.1539-6924.1981.tb01350.x
23. Kilanitis, I., Sextos, A. (2019). Integrated seismic risk and resilience assessment of roadway networks in earthquake prone areas. Bulletin of Earthquake Engineering, 17(1), 181–210. https://doi.org/10.1007/s10518-018-0457-y
24. Maranini, E., Brignoli, M. (1999). Creep behaviour of a weak rock: Experimental characterization. International Journal of Rock Mechanics and Mining Sciences, 36(1), 127–138. https://doi.org/10.1016/S0148-9062(98)00171-5
25. Nipa, T. J., Kermanshachi, S., Pamidimukkala, A. (2023). Development of decision-making system measuring the resilience level of highway projects. Journal of Infrastructure Preservation and Resilience, 4(1), 16. https://doi.org/10.1186/s43065-023-00084-7
26. Serdar, M. Z., Koç, M., Al-Ghamdi, S. G. (2022). Urban Transportation Networks Resilience: Indicators, Disturbances, and Assessment Methods. Sustainable Cities and Society, 76, 103452. https://doi.org/10.1016/j.scs.2021.103452
27. Shimazaki, K., Ando, K. (2024). Analysis of shear creep properties of wood via modified Burger models and off-axis compression test method. Wood Science and Technology, 58(4), 1473–1490. https://doi.org/10.1007/s00226-024-01578-7
28. Sulem, J., Panet, M., Guenot, A. (1987). Closure analysis in deep tunnels. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 24(3), 145–154. https://doi.org/10.1016/0148-9062(87)90522-5
29. Sun, Y., Pardoen, B., Wong, H. K. K. (2023). Modelling the creep behaviour and induced failure of clay rock from microscale viscosity to large-scale time-dependant gallery convergences using a multiscale numerical approach. Computers and Geotechnics, 162, 105691. https://doi.org/10.1016/j.compgeo.2023.105691
30. Tian, N., Lan, H. (2023). The indispensable role of resilience in rational landslide risk management for social sustainability. Geography and Sustainability, 4(1), 70–83. https://doi.org/10.1016/j.geosus.2022.11.007
31. Wan, C., Yang, Z., Zhang, D., Yan, X., Fan, S. (2018). Resilience in transportation systems: A systematic review and future directions. Transport Reviews, 38(4), 479–498. https://doi.org/10.1080/01441647.2017.1383532
32. Wang, T.-T., Chiu, Y.-C., Li, K.-J. (2024). Index for assessing spalling in tunnel lining based on displacement monitoring and crack mapping. Tunnelling and Underground Space Technology, 153, 105975. https://doi.org/10.1016/j.tust.2024.105975
33. Wu, C., Chen, Q., Basack, S., Karekal, S. (2018). Laboratory investigation on rheological properties of greenschist considering anisotropy under multi-stage compressive creep condition. Journal of Structural Geology, 114, 111–120. https://doi.org/10.1016/j.jsg.2018.06.011
34. Yin, Z., Zhang, X., Li, X., Zhang, J., Zhang, Q. (2022). Modified Burgers model of creep behavior of grouting-reinforced body and its long-term effect on tunnel operation. Tunnelling and Underground Space Technology, 127, 104537. https://doi.org/10.1016/j.tust.2022.104537
35. Zhang, X.-P., Wong, L. N. Y., Wang, S.-J., Han, G.-Y. (2011). Engineering properties of quartz mica schist. Engineering Geology, 121(3–4), 135–149. https://doi.org/10.1016/j.enggeo.2011.04.020
36. Zhang, Z., Huang, M. (2014). Geotechnical influence on existing subway tunnels induced by multiline tunneling in Shanghai soft soil. Computers and Geotechnics, 56, 121–132. https://doi.org/10.1016/j.compgeo.2013.11.008
37. Zhu, Y., & Zhang, Q.-B. (2025). Modelling and assessing lifetime resilience of underground infrastructure to multiple hazards: Toward a unified approach. Tunnelling and Underground Space Technology, 156, 106212. https://doi.org/10.1016/j.tust.2024.106212
38. 朱晃葵(2009). 大地材料依時變形對隧道收斂特性之影響. 國立台灣大學,學位論文.
39. 劉彥杰(2023). 邊坡重力變形運動特性受地下水位變化及坡趾河道下切與加積影響之數值模擬. 國立台灣大學,學位論文.
40. 顧家豪 (2025). 岩石依時變形對坑道結構安全之影響. 國防大學理工學院環境資訊及工程學系軍事工程,碩士論文。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98807-
dc.description.abstract隧道為關鍵交通基礎設施,其服務對現代社會的安全穩定至關重要。當今隧道工程設計理論多基於施工開挖引致擾動後,圍岩應力-應變重分布與支撐系統再平衡的假設下,隧道力學中襯砌常被視為安全儲備,僅承受自重理論上內應力甚低。惟諸多營運中隧道案例出現襯砌裂縫現象,意即其所承受應力已超出混凝土開裂強度,源於超乎預期的外部載重,如地震、地下水壓、圍岩依時變形效應,或是襯砌老劣化等因素所引致。其中,圍岩依時變形引起的襯砌裂縫具有累積性與延續性,將隨時間持續惡化削弱隧道的服務性能,繼而衝擊隧道使運輸網絡的韌性下降。因此,圍岩依時變形對隧道襯砌受力與全生命週期韌性評估的影響,亟需深入探討與重新檢視。
曾文水庫越域引水工程的西隧道,提供了此類問題的典型案例。該隧道多數區段於初期開挖與支撐系統設置後,圍岩變形迅速收斂並趨穩,然而,原訂計畫混凝土襯砌的澆置工程,卻因莫拉克颱風帶來的強降雨重創工址與鄰近環境而遭延宕。此後,西隧道部分區段陸續觀察到圍岩變形現象,甚至造成支撐構件局部破壞,該隧道開挖後1500餘日的圍岩變形監測與相關施工記錄、支撐破壞現象,提供了罕見的長期圍岩依時變形議題研究資料。
本文研析西隧道相關監測資料,歸納圍岩變形包括彈性、塑性與黏性等部分,且顯露滯動現象,為合理描述完整變形歷程,本文提出一套創新修正型柏格模型(Modified Burgers Model),並將應力門檻引入馬克斯威爾阻尼(Maxwell Dashpot)機制,用以模擬岩體在不同階段之依時變形特性。為了滿足數值模擬與實例隧道相關性,本文依據現地地質紀錄與圍岩變形監測資料,反算所提模型所需參數,並透過數值模擬評估圍岩依時變形對襯砌應力的影響。另亦配合室內潛變試驗,觀察不同應力條件下岩體的變形曲線,據以推估合理的應力門檻範圍。模擬結果顯示相同時間下,考量依時變形特性會造成襯砌內部顯著的應力增量,以及開挖中若無施作仰拱結構,長期下襯砌底部將隨時間累積大量集中應力,使隧道路面產生無法忽視的隆起變形,對襯砌安全與耐久性具實質威脅,顯見圍岩依時特性的韌性評估中之關鍵性。
隧道規劃設計階段的地質調查與地工評估應釐清圍岩是否具依時變形特性,將其效應納入隧道支撐系統與襯砌設計考量,配合適當的施工監測確認其影響。本研究提出修正柏格模式與施工監測數據反算圍岩依時變形相關參數,進而評估襯砌長期受力的方法,則可提供現代化隧道工法遭遇具依時變形特性地盤調查、設計、施工監測以至於營運階段維護管理的參考。
zh_TW
dc.description.abstractTunnels are critical transportation infrastructure, and their service integrity is essential to the safety and stability of modern society. Contemporary tunnel engineering design theories are largely based on the assumption of stress-strain redistribution in surrounding rock following excavation-induced disturbances, with the support system subsequently re-establishing equilibrium. In tunnel mechanics, the lining is often regarded as a safety reserve, theoretically bearing minimal internal stress from self-weight alone. However, numerous operational tunnels have exhibited lining cracks, indicating that the stress exerted has exceeded the concrete's tensile strength. This is often attributable to unexpected external loads such as seismic activity, groundwater pressure, time-dependent deformation of surrounding rock, or aging and deterioration of the lining. Among these, cracks induced by time-dependent deformation of surrounding rock are cumulative and progressive, continuing to worsen over time and thereby undermining the tunnel’s service performance and the resilience of the transportation network it supports. Therefore, the influence of surrounding rock time-dependent deformation on tunnel lining stress and lifecycle resilience assessment necessitates further investigation and reevaluation.
The West Tunnel of the Zhengwen Reservoir Inter-basin Water Diversion Project serves as a representative case study of such issues. In most sections of the tunnel, rock deformation stabilized promptly following initial excavation and installation of the support system. However, the planned concrete lining works were delayed due to severe rainfall and site damage caused by Typhoon Morakot. Subsequently, ongoing deformation of the surrounding rock was observed in certain sections of the West Tunnel, with partial damage to support components. Over 1,500 days of post-excavation monitoring data, construction records, and support failure observations provide a rare dataset for studying long-term time-dependent deformation in surrounding rock.
This study analyzes monitoring data from the West Tunnel, identifying that surrounding rock deformation comprises elastic, plastic, and viscous components, with evident retardation phenomena. To accurately describe the complete deformation process, an innovative Modified Burgers Model is proposed, incorporating a stress threshold into the Maxwell dashpot mechanism to simulate time-dependent deformation characteristics at various stages. To ensure correlation with actual tunnel conditions, model parameters were back-calculated using geological records and monitoring data. Numerical simulations were then used to evaluate the impact of time-dependent deformation on lining stress. Complementary creep tests were conducted to observe rock deformation under various stress conditions, enabling estimation of reasonable stress threshold ranges. Simulation results reveal that over time, consideration of time-dependent deformation leads to significant increases in internal lining stress. Moreover, the absence of an invert structure during excavation results in substantial stress accumulation at the lining base over the long term, leading to pronounced uplift deformation of the tunnel floor. This poses a tangible threat to the safety and durability of the lining, underscoring the critical role of surrounding rock time-dependency in resilience assessments.
Geological investigations and geotechnical evaluations during the planning and design stages should identify whether surrounding rock exhibits time-dependent deformation characteristics and incorporate such effects into support and lining design. This should be supported by appropriate construction monitoring to confirm their influence. The modified Burgers model proposed in this study, along with back-analysis of monitoring data to derive relevant deformation parameters, offers a method for assessing long-term lining stress. This can serve as a reference for modern tunnel construction methods encountering time-dependent ground behavior in site investigation, design, construction monitoring, and maintenance management during operation.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:16:51Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-19T16:16:51Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝……………………………………………………………………………………i
摘要……………………………………………………………………………….......ii
Abstract…………………………………………………………………………........iv
目次………………………………………………………………………………...Ⅷ
圖次………………………………………………………………………………...ix
表次……………………………………………………………………………….xvi
第一章 緒論 1
1.1 研究背景與目的 1
1.2 研究方法與流程 3
1.3 論文架構與主要內容 5
第二章 文獻回顧 6
2.1 韌性評估(Resilience Assessment) 6
2.1.1 韌性概念發展 6
2.1.2 韌性評估方法 8
2.1.3 韌性評估於隧道工程之應用 10
2.2 隧道工程設計與施工簡介 13
2.2.1 山岳隧道設計理論 13
2.2.2 山岳隧道施工方法 17
2.3 山岳隧道結構穩定影響因素 21
2.4 圍岩依時變形特性 24
2.4.1 岩石力學依時變形描述 24
2.4.2 隧道力學圍岩變形描述 27
2.4.3 數值方法與力學模式 29
第三章 研究案例與研究方法 34
3.1 研究案例 34
3.1.1 圍岩變形曲線分類 38
3.2 研究方法 44
3.2.1 數值模擬 44
3.2.2 參數反算方法 50
3.2.3 潛變試驗方法 53
第四章 圍岩依時變形模擬結果 62
4.1 數值模擬驗證 62
4.2 圍岩依時變形模擬結果 65
4.2.1 高岩覆深度隧道 66
4.2.2 中岩覆深度隧道 67
4.2.3 低岩覆深度隧道 68
4.3 圍岩依時變形討論 76
4.3.1 依時變形與彈塑變形 76
4.3.2 依時變形與支撐應力 81
4.3.3 依時變形與支撐應力 82
第五章 圍岩依時變形應用 85
5.1 隧道襯砌受力特性 85
5.1.1 無仰拱襯砌受力分析結果 87
5.1.2 有仰拱襯砌受力分析結果 90
5.2 圍岩依時變形應用 93
第六章 結論與建議 96
6.1 結論 96
6.2 建議 97
參考文獻 98
口試問答紀錄表暨回復表 102
附錄一 彈性力學-極座標下微元素應力應變關係 106
附錄二 岩石室內潛變試驗 108
-
dc.language.isozh_TW-
dc.subject圍岩依時變形zh_TW
dc.subject山岳隧道zh_TW
dc.subject潛變試驗zh_TW
dc.subject應力門檻zh_TW
dc.subject黏彈塑組成律zh_TW
dc.subjectViscoelastic-plastic constitutive lawen
dc.subjectStress thresholden
dc.subjectCreep testen
dc.subjectTime-dependent deformation of surrounding rocken
dc.subjectMountain tunnelen
dc.title由山岳隧道圍岩依時變形案例探討襯砌受力特性zh_TW
dc.titleInvestigation of Lining Stress Characteristics Based on a Case Study of Time-Dependent Deformation in Surrounding Rock of a Mountain Tunnelen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃燦輝;李宏輝;李佳翰;黃文昭zh_TW
dc.contributor.oralexamcommitteeTsan-Hui Huang;Hung-Hui Li;Chia-Han Lee ;Wen-Chao Huangen
dc.subject.keyword山岳隧道,圍岩依時變形,黏彈塑組成律,應力門檻,潛變試驗,zh_TW
dc.subject.keywordMountain tunnel,Time-dependent deformation of surrounding rock,Viscoelastic-plastic constitutive law,Stress threshold,Creep test,en
dc.relation.page124-
dc.identifier.doi10.6342/NTU202503591-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-13-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2025-08-20-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf7.49 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved