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Abstract

Tunnels are critical transportation infrastructure, and their service integrity is essential
to the safety and stability of modern society. Contemporary tunnel engineering design
theories are largely based on the assumption of stress-strain redistribution in
surrounding rock following excavation-induced disturbances, with the support system
subsequently re-establishing equilibrium. In tunnel mechanics, the lining is often
regarded as a safety reserve, theoretically bearing minimal internal stress from self-
weight alone. However, numerous operational tunnels have exhibited lining cracks,
indicating that the stress exerted has exceeded the concrete's tensile strength. This is
often attributable to unexpected external loads such as seismic activity, groundwater
pressure, time-dependent deformation of surrounding rock, or aging and deterioration
of the lining. Among these, cracks induced by time-dependent deformation of
surrounding rock are cumulative and progressive, continuing to worsen over time and
thereby undermining the tunnel’s service performance and the resilience of the
transportation network it supports. Therefore, the influence of surrounding rock time-
dependent deformation on tunnel lining stress and lifecycle resilience assessment
necessitates further investigation and reevaluation.

The West Tunnel of the Zhengwen Reservoir Inter-basin Water Diversion Project serves
as a representative case study of such issues. In most sections of the tunnel, rock
deformation stabilized promptly following initial excavation and installation of the
support system. However, the planned concrete lining works were delayed due to severe
rainfall and site damage caused by Typhoon Morakot. Subsequently, ongoing
deformation of the surrounding rock was observed in certain sections of the West
Tunnel, with partial damage to support components. Over 1,500 days of post-

excavation monitoring data, construction records, and support failure observations
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provide a rare dataset for studying long-term time-dependent deformation in
surrounding rock.

This study analyzes monitoring data from the West Tunnel, identifying that surrounding
rock deformation comprises elastic, plastic, and viscous components, with evident
retardation phenomena. To accurately describe the complete deformation process, an
innovative Modified Burgers Model is proposed, incorporating a stress threshold into
the Maxwell dashpot mechanism to simulate time-dependent deformation
characteristics at various stages. To ensure correlation with actual tunnel conditions,
model parameters were back-calculated using geological records and monitoring data.
Numerical simulations were then used to evaluate the impact of time-dependent
deformation on lining stress. Complementary creep tests were conducted to observe
rock deformation under various stress conditions, enabling estimation of reasonable
stress threshold ranges. Simulation results reveal that over time, consideration of time-
dependent deformation leads to significant increases in internal lining stress. Moreover,
the absence of an invert structure during excavation results in substantial stress
accumulation at the lining base over the long term, leading to pronounced uplift
deformation of the tunnel floor. This poses a tangible threat to the safety and durability
of the lining, underscoring the critical role of surrounding rock time-dependency in
resilience assessments.

Geological investigations and geotechnical evaluations during the planning and design
stages should identify whether surrounding rock exhibits time-dependent deformation
characteristics and incorporate such effects into support and lining design. This should
be supported by appropriate construction monitoring to confirm their influence. The
modified Burgers model proposed in this study, along with back-analysis of monitoring

data to derive relevant deformation parameters, offers a method for assessing long-term
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lining stress. This can serve as a reference for modern tunnel construction methods
encountering time-dependent ground behavior in site investigation, design,
construction monitoring, and maintenance management during operation.

Keywords: Mountain tunnel, Time-dependent deformation of surrounding rock,

Viscoelastic-plastic constitutive law, Stress threshold, Creep test
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g 352 > Cimellaro etal. (2010)%2 Ayyub (2014)4 %] - FEAAM
SRR U SN s X nh S S S K P S

Cimellaro etal. (2010) % Bruneau etal. (2003)#73% 11 ¢ T4R | ar [ A A# + >
M # it &4p ¢ 2 (Functionality Recovery Curve), Q(t) | iF % &7 3% chfr o » & =
5 i o0 T i 24y Bi(Resilience Index), R | 3 5 #03] o 3% HC3Bk U 2 3k0%
PR TEL - BME RS RGBSR EHTRI BRI KRGS
FAREL G- EF A RARY R T AT i A w TS TR R4 rr:;}ﬂ’fﬂ )
PR T

Qe de
Tt

(M

Q) 5 FFRAEFF % chrs s (R b v toa XTI F 2P vty APTHER
FRE g BARRT 10 A7 AR ARE A R ARE S Bl 2.1.2 5 #
wo PRAR O MR g e g o
Ayyub (2014) % Cimellaro etal. 2010) A # F » H Nip 475 2 KBV F 12
Kool i fqt > Fla - HIEE S 5 AR PEA(H 2.13) 0 i F e foa 4
(absorptive capacity) ~ +x 4R it # (recovery capability)? if & it # (adaptive capability) °
o omfoi d A H LT HOEEF LR RR N R AR IFLEL
dFd e PR o A 4 F PR BT R B 4 o e R R
AERFTBEE SR 2R P EA e TR EN- FLRRREL G T
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S A > Cimellaro etal. (2010)3 %7 dr {2 dp e chlic§ 3 B 4 0 F5 i
&2 ARG AR PR B OB (5 Ayyub (2014)RIAF ir 13 6§ Rk o 5
AR H AT P -

¥ Narmal i Lossof | Short-Term Lemg-Term
Performance : Function! Recovery Recovery

; /,_——
Disruptive
Event

Occurs

Re =¢ f i~ Q()lde

te Normal
! Operations
Resume

Performance, Q(7)
Performance
Loss,

Recovery Time, T

Time, ¢

Bl 2.1.2 7 & ffp @ 88 & 1240 o7 & Bl(Cimellaro et al., 2010)

Absorptive
Capacity

Recovery|
Capacity

Adaptive
Capacity

Bl 213 5 4 i 1m0 # A Bl(Ayyub, 2014)
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213 pPEFEREL L

BRGE S EAN R TR AHEG T HEEFRE T RE SR R
FHBLF O T PR R0OS LA IR R
K1 E T EERBRF IRE AR o TR iEX 1L & £ Cimellaro et
al. (2010)#72& = chw < ¥ 2 > dof] 2.1.4 #9755 o A BN F 4o i
(1) 2 % &~ {47(Hazard Analysis) : 788 g 2 RIRT V7 0 3 4 a5 o
(2) #7712 % 4 12(Physical Vulnerability): & i 7 I 58 & 5 T S A H g 2 5o
(3) +&x4R #-Al(Recovery Model) © 45 it % 16 7 ARk fE 1340 7 5 HIRAR PERY o
(4) # 144p %(Resilience Analysis): &% 8 # it 1 fh & QO # 3+ & & frip R

s v
» 1 &

Ly

PEPRRPRAFETEXTEF RS BRSO RER
AHFEHEHW X T RN DR BT E R e HIEREH LD AP
ML - BRI AKX T LARREET D22 S P TEN A -

B L 0 Argyroudis et al. (2020)#-% X &I FIF B » b HIERAEE - dp T
LERAHK ST E GRS AA T KR E T FIR S e R RB I3
AT E e AR R 2T AR RBHAY H S L TR
duyg it o MR S ERXTDRIFLIEFTIRVFIHEBRE L PP

# 4 >Freddietal. (2021)# Panetal. 2021)4p 1 X T L Fabik 2 L B 14
Teip ~ 3 B Sl A REFREE TRIFAMIAF > XA FE AR
#3% Monte Carlo Simulation = % » "F#¥ < £S5 $ 2 $ T 57 4834
Prab P 58 A0 AR ORI BRI R R T Lo

Huang et al. (2022) 2+ + i 32 3

-

FHBEX AT R PEFr L MR
PRRETTHNgEIR E2 e Z AT A PR FHETE KRR S
i B e E O B ERSRY AR R REFHARGEM o 2 {1
PR RE2F PRI BZRREL > Ea P i R &0 53 ity
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B dedo 1 STE 0 BB RN T T AR b R TS B
Wang et al. (2024) RJi&— # #ir (36 o * 04 38 ¢ i o Rl Ak
CEHED B Y PR SEAER RS CH RS AT R E 22T
BT REZ BRBAA DI B RE B - H U EBEF RS

HABRBM I HETREAS BAR PIHERS T R 2.1.5) £847 R EH A

4a

AR

Jir

BEx §FHLRREP FRLE 1.5 cracks/m¥year & fhe 45
@ FEIAREP LT 1%/year ¥ TH I B LR G H 0 B RAY g R
X

ABEIT R IFFFE B R R T FiE ¢ g BB B E PR Sy RS
FRAREr A R 2 7 A A s LR A Y I S B PR SRR T
2 R FERFEREREF AR Y A (PRI TR Bty g ot .
FEIAFTERRE pPETFrEhd H- (TR EI I RTIMES
FTR-HTERFE IR SR PFEE FEPRR Y T2 L ERER 3
Bl R EpgaersiRaptn 7t e A paird 27 LRDERTFE > 27T

Mgt L RALE 7R~ R TG AR
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(i) Hazard analysis

|

A

-

Annual probability
of exceedance

Intensity measure DY

Hazard curve and site effects
for representative hazard scenarios

B 2.14 &»MHFi

(ii) Physical vulnerability

1

¥
#

Parhability of damage

Intensity measure [

Fragility curves, eg. for different soil

comhiions, bursal depihs, aoss-sections, ageng ellecis

(iii) Recovery model

|

Funetisnality

1 1"

1
Time {days)
Restoralion curves, eg. considering
available resources, sequence of restoration tasks,
organizational barriers

(iv) Resilience analysis

. loss of resilience

[ 1,
Earthquake Recovery time

Resilience curve and index

1228 (Cimellaro et al., 2010)

# | i it & B4 (Cimellaro et al., 2010)

Definition of resilience grade.

100% :
-] ‘e
L I8
2 E | Restoration E
2 2|t time g
£ i | =

L Time

Grade Range Colour
High resilience 0.9<R<1.0
Moderate resilience 0.6 <R < 0.9
Low resilience R < 0.6 -
.54 s
..';\ 2 4
_E' 036 ——'——-.,_h\\ .g
5 \[Iigh ‘é Tﬁ 14
g 3=
k= 4 Med °'g
A " §E2
< Mone (o p
é low E
0 T T T T T - 19
1] 45 Ll 135 180 225 270
Deformation (mm)
I T T T T T 1 0 T T
1] l 2 3 4 5 [i] 2 15

Deformation/Tunnel radius (%)

B 215 48
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22 REIRRFHELHA

2.2.1 Jv-ﬁg%x_ﬁ ‘%

B R R A R B R Y PR R 2R F oA
& 3E % Sy (RMR ¥ Q-system)~ ] £ & # 4 i (Kirsch solution)~ # 48 & 3% 2% p| (Mohr-
Coulomb criteria ¥? Hoek-Brown criteria) £2 & 45 % *v(Convergence-Confinement
Method, CCM £ Fenner-Pacher curve) % & 38 4p B fm & e £ > A & - ¢ iRk 3
AR A o

AR ARG LR RER AP TR E LS DEL LS 2 S ERY
PBAEE EME TR ALY DA 2 ¢ 7 RMR & Q-system v A B33
Flede o PV IR LR R T L TR .

Bieniawski (1973)# 1! RMR (Rock Mass Rating )system > 1989 & i2 37 % P =
#?%§6ﬁ?¢ﬁ%¢%i’é%ﬁ@ﬁ&Umb%u@@Rmyag@ﬁ\

7 72

‘?\’
94
+M

B TR s G ERE R e MR 6 A RO
3100 A > Rfpp s B ERET A LT 5o
Barton etal. (1974)# 1 Q-system> 4 %] % & 6 78 4p #5341 5 F 45 #ic Q-value
¢ ZESEFRQD s e fc)n » &I e kR Jr~ &I RARR Ja~ 2 T kG
e Jw -~ g4 F]+ SRF - Q n*%@?&j{ 0.001 % 1,000 > g5 # 8 H A 5 = B o
iE Bz R 4 A F Kirsch (1898) 1138+ 4+ £ 324 KT A 42T i if
2 FE R AT R B RGBT R AR 2.2.1 0 B AR I 2T
(1) PR AR > B PRI g 22 5 a) ~ R EHGET ~ B2 i)
(2) ==L EMEHT .
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() AN El S BB d SIS AR O

Kirsch (1898)f#47 j# 2 5% 40 :

1 az a2 a4-
or =P, [(1 +k) <1 —r—2> +(1-K (1 —d+ 3r—4>coszel (2)
1 2 !
09=Epzl(1+k)<1+:—2>—(1—k)<1+3:_4>coszel 3)

1 a2 _a*\] .
Tro = 5Pz -(1-k <1+2r—2—3r—4>l sin 20 4)

Br=>5af jiw k? og = 1.0224p, » FlU ki B 167 B4 - FIAR
PR SRR

REERLTRRRA EAGT o B AIVEY AAE AW R A2

AR A B R R K PR EF LSRR RS ERIFI AR T

Menbfst s & o BB A BEF* cplR B R ¢ 35 Mohr-Coulomb &3k # | 22 Hoek-

Brown LR RS F o Bl R &3 R R R s VR F ER R

Mohr-Coulomb A3 P 2 S8 k@4 > BR B 2 TR &1 »

&4 E R % % 4 &% 3 B (Peak Strength) 2 7% 4253 & (Residual Strength) »

ET ER LS Y SRR YS T Ay P ¥ Sty

PR R T 5 o L ST TR Y LA TR 2 AR

B S Bk Ao T

fp = 01 — N¢p03 - ch(Nq)p)O's (5)

fr = 01 — N¢,r03 - 2Cr (Nq)r)O'S (6)
1 + sing, 1 + sing,

=T sme. N =T sner 9
P 1 — sing, 1 — sind,

Hoek-Brown #t 3 % B] & % ¢ Hoek-Brown (1980) 4 ** + £ = #h[F /R %% & %
B 1994 Berig o B AHG  TRG B e it BRMPEM G

Frumy~sEalfi R RSB KESEFT EMORRGTL 2 TR E
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FH o macat W g AT HA > B BUR S Bk ot AT

G3
01:G3+0c(mb0_+5)a (7

c

Mohr-Coulomb 3% B R 2 f§ 5 2 B % ena 225 g i 2 7 1 7 B8 41
6 AHS F 178 e 032 4 5 Hoek-Brown B 2 P 2L >0 S ficdp & = 0
EAMBRER (R FpP SRy P AMB AR R DR KRR
FAA P ~ 35 REBid > 28 TR R -

RE RSB R RTER D Jeac¥ A F A e T4 AL RIEER A
EobrH A FRE 4 2 T F & K L2 (Convergence-Confinement Method,
CCM)#Agfe= A B iV 5 To REPIE > SET PIUERE B Lt
B0 R0 LA R AR B RS B 2 A B AR P
Fenner (1938)#22 Pacher (1964)#% ! & 4 & J& & % (Ground Response Curve, GRC) >

RESEE R R AR R R0 %o 18 A2 Rabeewicz (1964)>t 37 8

1 ;% New Austrian Tunneling Method, NATM ¥ 53 33 ] £ 22 & 45 & s ek 2+
72 4 > Panet (1995)22 Hoek (1999)#% ! &£ 4% ficd’ 2 (Support Characteristic Curve,

SCC)» * MF A AL FRVER TG ENL R+ - £ 885 GRC

91 SCC 2| 2 ¢ 2 4 45 s Bt PI T o fl > 4o ) 222 997 > B td Bt R4 4
PR~ FRB R R RF P L LB IR GIEE 0 AR BER A

(1) AR ¢ B FHEAL (F7) R (FHZHEF B FE
A (Rl B4 B K=1) -

OEERETY X -JLE

() e FEPHEA FREEHA > LA TP EZREELH

(4) # %14 % i Hoek-Brown ¥ 7] -

(5) # #H#E G d s Al -

6) 2T BA A2 o Riopsb iAo T kio, pi ] A R? o0

(7) 2 ¥ pHfEpEgAE5 -
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FA IR LE R R B AR E WA H TR R A L
YRR R - F % Rl R & At o) IR SR E /L vl PRy
[BHERZ AL FE ) G TERPFR L R LR TRAAH -

Vertical applicd stress P,

Pttt L

(=4
~ o
& [-4 pt

6

L I

S B can S

s,

—— -
—

——

——— -

Horizontal applied stress " kpz

Bl 2.2.1 "kiE % B4 A F 2% [E5£F & 4R & 2(Kirsch, 1898)

PA (p; = po)

excavated
profile

. S
rmation

to limit

defor

pressure
required

tunnel profile

support pressure p;
_—support reaction

Radial support pressure, p;

- F,7 required support line
§ 5N for tunnel roof
v2 ~ H _ -
EE N R e &
= required support line
g g E \\\(ior u(x::mel side wall

—>

radial displacement, §;

xjr;

1.5

Bl 222 B EGRZEEBFE By RE L FFid 5 (Hoek and Brown, 1980)
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222 L giEw1

LG 1 TR B ks R AL 1 1 A R

Ne

A prl AR Y Y 12y s ¥ Rabeewicz (1964)#7# 2 TR 1 72
(New Austrian Tunneling Method, NATM) » I % & Peck, (1969) @ P 1 =

(Observational Method)z_ 32 4 » % iEfe s £ 35 s o~ TRIFI A %2, > b LN B

-QD
L

RIBREXF S8 UAEEGE R ERDE 2EEETM -

i R B 2T A G B AL4PF 2 (D and B Method) £ 8 45 B 4202 (¢ 45
57 45 4" 4% Roadheader £2 "% i 4045 1% TBM)» 487 2 F1H #rx * % ES L)
W EF > b1y _Q#LEFQ%]F\, t i e R IV UK _:: 1 PERY
SRR R FIRER C  FRERTRABANF AR - E
WRERENATMZ B 17 A L= 28 A6 5 2496 B2 (¢ 7 TBM
IZ2) cHAREIZERERBRREIZ SHARREI 2408 223 977 5 Rl

EPB I R dol] 224907 0 d A BERIRBLES £ T

\F‘b

EFHEPAURRLIZFZAFZ A8 (DREFRZ G p 2B Q%ERE
BBR Q)M FERE A B ATATHY 2 HER -
RELFSHER PR ERIMDER S A FHE R 7R
(Shotcrete) ~ 4 £ #(Steel Ribs)£r # >(Rock Bolts) % » 3+ Fif it £ BFC ¥ 35 A 45
FRELH 1 R R A AR 225 977 o LR R bR
FEBBEIA R IR R FF PRS0 REETRUID L 87
W RS ITEE R v A -

RE TR TEEIFETAE A RMI BT cRREEIFRE F P
ih

AT 2 2R 2 - YEEERELEIFGEL > BERTEN
|25 B FEHAREIE = TR 3 N8 T
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WA R EAMRE R I TR EREDE SRAIZEEEEP A
FIEEFOREERE T TRETH FHRS PR RERIF 50 £ 0Lk
BHHEY 4 RN S BR TRYy o TORUTH R B AoB 2.2.6 #7F o

W SRR BRI AR TR (T AT 2R

-&g: : é‘fwng-)i‘}xﬁ }\%l bﬁ%&l#’q—iﬁa_ﬂ'% F]gré—'i'ﬁ_,%9 n‘f,’:‘ ‘\‘L,éf’
B0 F B EYT AP S (Er 0 RS Y E Y R e A 2 R ()

22.7)0 Bt o AR £ L R TR R PR A TR R R AR

T d L T

\\\?{r

O BRI E ) & (LR R 1 AR R B
Ep) Rdpsl o BEATRI FRE BT RPN ERE 1 AR AR T R

K22 pxhzplte
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HFL(,',
€Y
\pd),
RRS
LTSRN S %
{5 - B s R AR
Cast concrete invert
B 2.2.5 i%",ﬁ‘i e ¥ o7 R B
(meiaingson Qmeaiosihi
i ‘
2a5) I
L=3m % 5m ,L=4m

..

Bl 2.2.7 F3E ¢ g Amer Al
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2.3 LE R SR IRFT R

R B LARLEE S E NI RFE 230 nFE g A
Moh 5 Gl EMF R > VAL P EB A R BT S TR

EPE AV R TR L REFRAE S ’%‘rﬂ%gﬂﬁﬁ“wé«zai\ﬁ‘é e S
A 2

\4-
-
-

JEPIRFE B - F o FIRE Y L BT S ARl

)

CRERSCAUED 2 LR Sy T L SR ALYk (- L S S L

TR RE S X 2 A A e P EEFLE LD F LR
TEEAMRERERE M R SRR ERESHEN IR SRR RT

\

Mo FE B AL SR R AR PTF op B VA MIL L MR T
TR A R RTE B TR R TR LR R BT B TR
Frsfif FERARPR O NERTEBI AT G e EFLR -
ARG REY LR R Y R R R R L g AR e S SN 2
B PR TG S R R KA A T R HORE g
R G E R PR 2 L RBE YD R R e X
VR AR R R Y SIER LS R 2

Zhu and Zhang (2025)3% 41— % %

=
232) 0 £ TR AHRGEFT 22 S BERRE T A4 0 KR A

?

RSB E Y VAR L BIEN AT - X R L R R R e

I

BFERE o E - EEFASES LT EEG AR e B s
H3 i R R 0 4B 233 97 0 BB R T R A BT G 4 R A g
AR oot R o g A P B thdndie RI> * 02 1 g 18 hiRiR B
4R > HUET S FLACO B S w A e Au| S EH T 2%
TAHAPETCEBARR A - 2V RS EN T RSB BA R TR
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Lt — x_@%g' A ﬁ_‘ﬂ!] °

PR T Rk xﬁkgﬂ ;;‘%g%”ﬁﬁm’ki\‘ eI

LSRR E AT T £ %#ﬂuwﬁfﬂ’”@ BAFH S B Rk
BRSSP e U #RRE SRR S AR 08
RS 4 2 B ML Tl AP RO B P E R R S P

HRE RS WS B U H R S o o B BRI & 0 5 R
bR R LRSS gk AL PR I BIE R R

SR 22 AW LN A R B FTERRE LA Y IT AR

SRR AR R S R L DARTEEG Y L MAE

Bl 230 i BHF s B RS
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spiezey a|dnjnm

f

M\

Lifecycle

Y
Qillencal
Initial i L
g% i
g o | ! Initial state
= i
= 1 F
5 3 B £
3 ; : g z
i : ' = |8 3
Robustness i Resilience index H = s
[ ut 1. 2
! o | £
[ 3
: T o
¥ 1 >
Advanced N Time
distance Tan Tar Tty Tresto

Restoration and resilience

Bl 232 g > 2 & & W ir 437 % $(Zhu and Zhang, 2025)

—> Deterioration

’——) Earthquake
*'T l > Blastinug
,,,,,,,,,,, + .

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, .
| Recovered
. Exponential . Lt
Initial state rp e
Sigmoid -
i pry P
: 3 s |8
i ~ LS
I S b
1 = R
! o
=]
g
=]
5]
g 1
= ¥
--------------------- A L
b 1 '
: P :D ] hs]
bl ]
1 Robustness | ! ;::’
| AT S
I 1 f
1 v [ i
T T
Advanced e : Time
distance Tan TanTa Ly Tresto Tan Tan

Bl 2.3.3 % # a0 {24 4 (Zhu and Zhang, 2025)
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241 HE A Bikprash it

B g AR AN B 2 RFFIE T R LT A R #F 5
PEMRL @R R aMRFRFT 2N R BRRE LR
Goodman (1989)4s it % AF £ 1 2 8 RSP F B4 % d MicB) 2.4.1 #57 »
PRI AETRA RS PR E AR - BLER A R A
AZETR A P PR R T T O RBUR -

fo it BT PR EET s L2 B AeR] 242 977 0 H P g,
% B PF SR R % (instantaneous elastic strain) #;1 EERT AL RS AR
Fendfc, R REmFal) Ge 4™ !

(1) % - FeE B %e, (t) Primarycreep : 7 fd- 8P B% - HL A 2 B REE >

R R PR A SRR o
2 Z FE B % e (t) Steady statecreep : 7R ALAE TR > F AP HERE L L

PHBEERESFRTEE S AELHMAEE
(B) % = FeEB%¥e, (t) Accelerating creep: 7= fitvif B < hL K4 1F% 7>

B SRR S R BN R R -

WP UNEER AR Pe b BERP R B FRF LT SR
HYGaBE2Z PR B NS IR 2 FF Bl L ~ 2 o™ !

(1) & iR i) > A4 BRM %5 0=G ¢
() PR MR ORI B R BRM S o=n-2
- Ay AR 0] ¢ 2 (a) Maxwell model ~ (b) Kelvin model ~ (c)

Generalized Maxwell model ~ (d) Generalized Kelvin model ~ () Burgers model » %

4 BN AN e 243 #9102 ¢ Burgers model ¥ 1 & I E i H 4 4o iE
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FF 2z meanEERA T AR A AAF A BRFHZ S EHRN RS HPER 2 Sk

4o SN

_SKy ¢ o

() = — +—(1—e ) + —xt (8)
Gm Gk Nm

Ao o RGEIRIEGH - ATR TR BEFL O ORESL S BRLe

FEUE R A RFRESFRR FIM 0 AT RRER BRI E S R

B H N IR B ERE S ZRRRERERFEREFE D HEE

FOIERI SR EAERREPEIEP RS T
7 .2 B

a, -

=

C——— —_—f

™~ Terminal locus
of long-term
creep tests

= €long

B 241 REEHAERERY F R4 ¥4 M (Goodman,1989)
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|
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|
|
I
I
I
i

Bl 2.4.2 # 7 HiR2 ka5 5 (Goodman,1989)
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E
_ 4 L1 {F z
(:ug "
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WU — o
(b) |
ff‘
E,
— WY o
(c)
A n.,
E, E, 4
N T e
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E, E
T —

-
&
R

TS

B 243 &4 FHN w4407 2 B(Goodman,1989)
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242 W FHERE @

Sulem et al. (1987)#% 1 "%if Bl £ ¥, 5% 25 » M EREh E R 6% 2
TR AN LR ERE G YN R B e ST R SO Et

TR X T|A A R R doR] 244 07 > A w E7 B AR B R

W
pual
N

ERBPE S £ A8 LT

Tondo B X 5 Mokt ke 1R B s fAn B354 0 L T i

~§2f§g’£ ¢ #Brﬁg 2}@:”}5 Coox é‘ﬁﬂé’:ﬂe’):’:@

PR RE P ik 58k T on FRSFE S8 m S E2FEF e @

-

PR T R b Tl B0 B R RS T B Sl R 7 R

AT e S
2

]g+n41—(j;fb ©)

B

x+ X
335 % (2002~2003) % 45 "RE R K Gl DR E R A R T %% 25
v EF A8 M0 fie & boo) T 2 % (Least Square Method) # % F B & F Rl B2 T 35
¥+:% 4 (average relative error) 7 | > M EE i ® ﬁp’? RSN P = Y P & '
WAL ETG R R REERAREE G SRR S R B A R L

B4 2B g MR AT K o 31*\ 2o Bk (2004) s * iS5k o 3N Y

74..
T5
.
4
e
-
=
pn
=
‘31
r%’:t
|
N
[reb
0
o
=
&

TER BT RER G LB T E R
RELXEKTFIERE -

R 0 2R PEF G d N S REY L AR RO
U EEG Y AL EE R 2 TR PG AT RZFEH R G i
FERERER AL VT ERE S 2R AREERERZ B F L
FHBAEL A TR A R R R R R TR R E Y

a

PR BT PR 2 b P E O PR £ IR i B R R (5

LIFEE P g e R K2 Ry o

27

doi:10.6342/NTU202503591



2

{a) Function 1- (TTT)
+ 0 |05 | 1 3 5

2

1-(25)° | o |os6 075 [0.94 |0.97

1.0 — e
o/-

05—
L L L |

0 1 3 5 &

Bl 2.4.4 i Fl A% 7 F %25(Sulem et al., 1987)

(b) Function 1—(

T JO.S

T+t
+ o [ 1+ [10 ] s0 |100] 200
1-(Z4)%*] o [o1s 051 | 069|075 080
1.0
-
.___,_,..---"'"—'_'_'____
0;5—/'
4
L 1
o 50 100 200
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243 B2 FH450

AT FLACY (R e R f %27 5 2 E i » il
A3t 5 "4 A % (Finite Difference Method, FDM) » #-#-A4 3dc it 2 5 B ~ % 32
PR HITLEY B TR G A H S P PR (timestep) @ A deskk
FIRELRE P EERY RAEF 2 FS TFERE T ES RN F AR T
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