請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98775完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周中哲 | zh_TW |
| dc.contributor.advisor | Chung-Che Chou | en |
| dc.contributor.author | 楊家辰 | zh_TW |
| dc.contributor.author | Alvaro Jose Cordova Guirola | en |
| dc.date.accessioned | 2025-08-19T16:09:21Z | - |
| dc.date.available | 2025-08-20 | - |
| dc.date.copyright | 2025-08-19 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-12 | - |
| dc.identifier.citation | 1. AISC. (2022). Seismic provisions for structural steel buildings. ANSI/AISC 341-22. American Institute of Steel Construction, Chicago, Illinois.
2. American Concrete Institute. (2019). Building code requirements for structural concrete (ACI 318-19) and commentary. American Concrete Institute. 3. Anajafi, H., & Medina, R. A. (2018). Robust design of a multi-floor isolation system. Structural Control and Health Monitoring, 25(4), e2130. 4. ASCE. (2005). Minimum design loads and associated criteria for buildings and other structures. ASCE/SEI 7-05. American Society of Civil Engineers. 5. ASCE. (2016). Minimum design loads and associated criteria for buildings and other structures. ASCE/SEI 7-16. American Society of Civil Engineers. 6. ASCE. (2022). Minimum design loads and associated criteria for buildings and other structures. ASCE/SEI 7-22. American Society of Civil Engineers. 7. Casagrande, L., Villa, E., Nespoli, A., Occhiuzzi, A., Bonati, A., & Auricchio, F. (2019). Innovative dampers as floor isolation systems for seismically-retrofit multi-storey critical facilities. Engineering Structures, 201, 109772. 8. Chen, K., Tsampras, G., Chou, C. C., Lin, H. Z., Wu, C. J., Córdova, A., Uang, C. M., Chao, S. H. (2025). Low-cost friction-based force-limiting connection with reduced sensitivity to machining tolerances and accelerated repairability, Earthquake Engineering Structural Dynamics. (Under Review) 9. Chen, M., et al. (2015). Full-scale structural and nonstructural building system performance during earthquakes, Part I: Specimen description, test protocol and structural response. Earthquake Spectra, 32(2), 737–770. https://doi.org/10.1193/012414eqs016m. 10. Choi, H., Erochko, J., Christopoulos, C., & Tremblay, R. (2008). Comparison of the seismic response of steel buildings incorporating self-centering energy-dissipative braces, buckling restrained braces and moment-resisting frames. Research Rep. 05-2008. Toronto: University of Toronto. 11. Chopra, A. K. (2020). Dynamics of structures: Theory and applications to earthquake engineering (5th ed.). Pearson. 12. Chou, C. C., Huang, L. Y. (2024b). Mechanics and validation tests of a post-tensioned self-centering brace with adjusted stiffness and deformation capacities using disc springs. Thin-Walled Structures, 195, 111430. 13. Chou, C. C., Lin, H. Z., Córdova, A., Chen, J. M., Chou, Y. H., Chao, S. H., Chao, S. H., Tsampras, G., Uang, C. M., Chung, H. Y., Loh, C. H., & Hu, H. T. (2024a). Earthquake simulator testing of a three-story steel building for evaluating built-up box column performance and effect of sliding slab. Earthquake Engineering & Structural Dynamics. [https://doi.org/10.1002/eqe.4130]. 14. Chou, C. C., Liu, J. H., & Pham, D. H. (2012). Steel buckling-restrained braced frames with single and dual corner gusset connections: Seismic tests and analyses. Earthquake Engineering & Structural Dynamics, 41(7), 1137-1156. 15. Chou, C. C., Wu, C. J., Hwang, L. Y., Córdova, A., Lin, H. Z., Chao, S. H., Tsampras, G., Uang, C. M., Chao, S. H., Chung, H. Y. Shaking Table Tests of a Steel Three-Story ReCentering Braced Frame with Sliding Slab Connected to Energy Dissipation Devices (2025). Earthquake Engineering & Structural Dynamics (Under re-review). 16. Córdova, A., Chou, C. C., Wu, C. J., Tsampras, G., Chao, S. H., Uang, C. M., (2024). Modeling and response of a three-story steel building with sliding slabs in earthquake motions. Earthquake Engineering & Structural Dynamics. https://doi.org/10.1002/eqe.4300. 17. Cui, S., Bruneau, M., & Kasalanati, A. (2016). Seismic response case study of isolated floor system having special biaxial spring units. Journal of Structural Engineering, 142(12), 05016002. 18. Federal Emergency Management Agency. (2018). Seismic performance assessment of buildings, Volume 1 – Methodology (FEMA P-58-1, 2nd ed.). U.S. Department of Homeland Security. 19. Federal Emergency Management Agency. (2020). NEHRP recommended seismic provisions for new buildings and other structures (FEMA P-2082, Vols. 1 and 2). U.S. Department of Homeland Security. 20. Fleischman, R. B., Restrepo, J. I., Naito, C. J., Sause, R., Zhang, D., & Schoettler, M. (2013). Integrated analytical and experimental research to develop a new seismic design methodology for precast concrete diaphragms. Journal of Structural Engineering, 139(7), 1192–1204. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000734. 21. Huang, L. Y. (2024). Research on an adjusted-stiffness self-centering brace and a slab self-centering disc spring device [Master’s thesis, National Taiwan University]. (In Chinese) 22. Huang, Y. T., Chou, D. Y. H., Chou, C. C., & Loh, C. H. (2024). Data-driven structural health monitoring on shaking table tests of a 3-story steel building with sliding slabs. Structural Control and Health Monitoring, 2024(1), 3412305. 23. Kelly, J. M., Skinner, R. I., & Heine, A. J. (1972). Mechanisms of energy absorption in special devices for use in earthquake resistant structures. Bulletin of the New Zealand Society for Earthquake Engineering, 5(3), 63-88. 24. Krawinkler, H. (1978). Shear in beam-column joints in seismic design of steel frames. Engineering Journal, 15(3), 82-91. 25. Lin, B. Z., Chuang, M. C., & Tsai, K. C. (2009). Object-oriented development and application of a nonlinear structural analysis framework. Advances in Engineering Software, 40(1), 66-82. 26. Lin, C. M., Chang, Y. W., Chou, C. C., Jhuang, S. J., Lee, Z. K., Wu, C. L., Chao, S. H., Huang, J. Y., Yang, H. C., Chang, C. Y., Mosqueda, G., & Hung, C. C. (2023). Reconnaissance of the 2022 Guanshan and Chihshang Earthquakes in Eastern Taiwan. Earthquake Spectra. https://doi.org/10.1177/87552930231209102. 27. Liu, S., & Warn, G. P. (2012). Seismic performance and sensitivity of floor isolation systems in steel plate shear wall structures. Engineering Structures, 42, 115-126. 28. Newmark, N. M., & Hall, W. J. (1982). Earthquake spectra and design: EERI monograph series. Earthquake Engineering Research Institute. 29. Panagiotou, M., Restrepo, J. I., & Conte, J. P. (2011). Shake table test of a full-scale 7-story building slice. Phase I: Rectangular wall. Journal of Structural Engineering, 137(6), 691–704. [https://doi.org/10.1061/(ASCE)ST.1943-541X.0000332] https://doi.org/10.1061/%28ASCE%29ST.1943-541X.0000332. 30. Rodriguez, M. E., Restrepo, J. I., & Carr, A. J. (2002). Earthquake-induced floor horizontal accelerations in buildings. Earthquake Engineering & Structural Dynamics, 31(3), 693-718. 31. Skinner, R. I., Kelly, J. M., & Heine, A. J. (1974). Hysteretic dampers for earthquake-resistant structures. Earthquake Engineering & Structural Dynamics, 3(3), 287-296. 32. Taiwan Code. (2010). Design and technique specifications of steel structures for buildings. Construction and Planning Agency, Ministry of the Interior. 33. Tsampras, G. (2016). Force-limiting deformable connections for earthquake resistant buildings (Doctoral dissertation, Lehigh University). 34. Tsampras, G., Sause, R., Zhang, D., Fleischman, R. B., Restrepo, J. I., Mar, D., & Maffei, J. (2016). Development of deformable connection for earthquake-resistant buildings to reduce floor accelerations and force responses. Earthquake Engineering & Structural Dynamics, 45(9), 1473-1494. 35. Tsampras, G., Sause, R., Fleischman, R. B., & Restrepo, J. I. (2017). Experimental study of deformable connection consisting of buckling-restrained brace and rubber bearings to connect floor system to lateral force-resisting system Earthquake Engineering & Structural Dynamics, 46(8), 1287-1305. 36. Tsampras, G., Sause, R., Fleischman, R. B., & Restrepo, J. I. (2017). Experimental study of deformable connection consisting of friction device and rubber bearings to connect floor system to lateral force-resisting system. Earthquake Engineering & Structural Dynamics. [https://doi.org/10.1002/eqe.3004]. 37. Villaverde, R. (2002). Aseismic roof isolation system: Feasibility study with 13-story building. Journal of Structural Engineering, 128(2), 188-196. 38. Villaverde, R., Aguirre, M., & Hamilton, C. (2004). Aseismic roof isolation system built with steel oval dampers. 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada. 39. Xiang, Y., & Koetaka, Y. (2019). Structural feasibility of incorporating the LVEM-isolated floor in the first story of a two-story steel frame. Engineering Structures, 199, 109686. 40. Zhang, Z., Fleischman, R. B., Restrepo, J. I., Guerrini, G., Nema, A., Zhang, D., & Sause, R. (2018). Shake-table test performance of an inertial force-limiting floor anchorage system. Earthquake Engineering & Structural Dynamics, 47(10), 1987-2011. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98775 | - |
| dc.description.abstract | 本研究提出並驗證一套適用於鋼構雙重框架建築之滑動樓板系統的受力設計方法。該系統配置全鋼夾層抗彎屈撓束制器(H-SBRB)與自復位彈簧裝置,能在設計基準地震(DBE)層級下控制樓板滑移,以降低樓層加速度並提升整體耐震性能。研究透過三層鋼構雙重框架與自復位斜撐框架之實尺寸振動台試驗與非線性數值模型,精確模擬滑動樓板系統之非線性行為,包括鐵氟龍與鋼材之摩擦界面與水平耗能裝置。此模型進一步擴展至七層與十一層建築,並使用十一組地震波進行非線性歷時反應分析(NRHA),以評估系統在多層建築中的效能。
本研究探討了 ASCE 7-22 規範中兩種樓板設計受力方法:第 12.10.1 節(方法一)與第 12.10.3 節之改良版(方法二)。結果顯示,方法二能更準確預測傳統樓板建築中的樓層慣性力分佈,並作為本研究提出之修正設計法的基礎,透過調整樓板受力折減係數 Rs 來實現。第一階段設計(Rs1 = 1.5)可於 DBE 層級啟動所有 H-SBRB 的屈服,達成樓板均勻滑移,並相較傳統樓板建築降低樓層加速度達 28%,降低樓層側移達 9%。在最大考量地震(MCE)層級下也觀察到進一步的效益。第二階段設計(Rs1= 1.25)提升受力預測準確性,但降低了耗能能力。 綜合分析結果驗證滑動樓板系統在抑制高模態效應方面具高度效果,並提出一套可實務應用於中高層鋼構雙重框架建築之設計方法,以提升耐震表現。 | zh_TW |
| dc.description.abstract | This study presents the development and validation of a force-based design methodology for steel dual frames with sliding slabs equipped with horizontal all-steel sandwiched buckling-restrained braces and self-centering spring devices. The proposed system allows controlled slab sliding at the design-based earthquake (DBE) level to reduce floor accelerations and enhance seismic performance. Full-scale shake table testing and detailed nonlinear models of a three-story steel dual frame and recentering braced frame were used to accurately simulate the nonlinear behavior of the sliding slab components, such as the frictional interface between Teflon and steel, and horizontal devices. These models were extended to seven-story and eleven-story buildings to evaluate performance under eleven ground motions using nonlinear response history analysis. Two diaphragm design force procedures specified in ASCE 7 (2022), Sections 12.10.1 (Method 1) and an adaptation of Section 12.10.3 (Method 2), were explored. Method 2 proved more accurate in capturing floor inertial force distributions in buildings with conventional slabs, and served as the basis for a modified design approach using the diaphragm force reduction factor, Rs. The first design iteration (Rs1 = 1.5) activated full BRB yielding at the DBE level and produced uniform slab displacements, reducing floor accelerations by up to 28%, and frame drifts by up to 9%, compared to buildings with conventional slabs. At the maximum considered earthquake (MCE) level, additional reductions were observed. A second iteration (Rs2 = 1.25) improved force prediction but limited energy dissipation. The results confirm the sliding slab system’s effectiveness in suppressing higher-mode effects and provide a practical design methodology for enhanced performance in mid-rise to high-rise steel dual frames. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:09:21Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-19T16:09:21Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | ACNKOWLEDGEMENTS iii
摘要 iv ABSTRACT v TABLE OF CONTENTS vi LIST OF TABLES ix LIST OF FIGURES xi LIST OF PHOTOS xiv LIST OF SYMBOLS xv CHAPTER 1. INTRODUCTION 1 1.1 Background 1 1.2 Literature Review 2 1.3 Research Objectives 6 1.4 Research Methodology 6 1.5 Organization of Dissertation 8 CHAPTER 2. REVIEW AND IMPLEMENTATION OF DIAPHRAGM FORCE PROCEDURES 10 2.1 Introduction 10 2.2 Overview of Code-Based Diaphragm Force Procedures 10 2.2.1 Method 1 10 2.2.2 Method 2 11 2.3 Seismic Demands on Nonstructural Components 13 2.4 Summary 14 CHAPTER 3. MODELING AND VALIDATION OF FRAME BUILDINGS 15 3.1 Introduction 15 3.2 Three-Story Dual Frame and Recentering Braced Frame Specimens 15 3.3 Modeling of the Three-Story Dual Frame Specimen 17 3.3.1 GFRS Modeling 17 3.3.2 LFRS Modeling 19 3.3.3 Modeling of the Sliding Slab Mechanism 21 3.3.4 H-SBRB Modeling 23 3.3.5 Friction Force Modeling 25 3.3.6 Comparison Between Analysis and Test 31 3.4 Modeling of the Three-Story Recentering Braced Frame Specimen 32 3.4.1 LFRS Modeling 32 3.4.2 Modeling of the Sliding Slab Mechanism 35 3.4.3 Comparison Between Analysis and Test 37 3.5 Comparison of Floor Inertial Force Between Analytical Models and Test Results 37 3.6 Two Additional Dual Frame Models 38 3.7 Scaling of Ground Motions for Nonlinear Response History Analysis 40 CHAPTER 4. DEVELOPMENT OF A MODIFIED DESIGN PROCEDURE FOR SLIDING SLAB 41 4.1 Introduction 41 4.2 Code Comparison for Diaphragm Force Validation 42 4.3 Diaphragm Force Procedure Application 43 4.3.1 Method 1 43 4.3.2 Method 2 44 4.4 Diaphragm Force from Analytical Models with Conventional Slab 46 4.5 Diaphragm Force from Analytical Models with Sliding Slab 48 4.6 Diaphragm Force for Dual Frames with Sliding Slabs 50 4.7 Summary of the Final Design Procedure for Dual Frames with Sliding Slabs 56 4.8 Comparison of Collector Member Design Force Between Code and Analysis 57 CHAPTER 5. SUMMARY AND CONCLUSIONS 58 REFERENCES 60 APPENDIX A 95 | - |
| dc.language.iso | en | - |
| dc.subject | 滑動樓板 | zh_TW |
| dc.subject | 數值分析 | zh_TW |
| dc.subject | 振動台試驗 | zh_TW |
| dc.subject | 抗彎屈撓束制器 | zh_TW |
| dc.subject | Sliding slab | en |
| dc.subject | buckling-restrained brace | en |
| dc.subject | shake table test | en |
| dc.subject | numerical analysis | en |
| dc.title | 鋼斜撐構架含滑動樓板之樓板內力的振動台試驗與分析評估 | zh_TW |
| dc.title | Shaking Table Testing and Analytical Evaluation for Diaphragm Force in Steel Dual Frames with Sliding Slabs | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 蔡克銓;黃尹男;胡宣德;鍾興陽;許協隆 | zh_TW |
| dc.contributor.oralexamcommittee | Keh-Chyuan Tsai;Yin-Nan Huang;Hsuan-Teh Hu;Hsin-Yang Chung;Hsieh-Lung Hsu | en |
| dc.subject.keyword | 滑動樓板,數值分析,振動台試驗,抗彎屈撓束制器, | zh_TW |
| dc.subject.keyword | Sliding slab,numerical analysis,shake table test,buckling-restrained brace, | en |
| dc.relation.page | 97 | - |
| dc.identifier.doi | 10.6342/NTU202504173 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-14 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2025-08-20 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 8.79 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
