請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98751完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅翊禎 | zh_TW |
| dc.contributor.advisor | Yi-Chen Lo | en |
| dc.contributor.author | 胡維心 | zh_TW |
| dc.contributor.author | Wei-Hsin Hu | en |
| dc.date.accessioned | 2025-08-18T16:20:56Z | - |
| dc.date.available | 2025-08-19 | - |
| dc.date.copyright | 2025-08-18 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-05 | - |
| dc.identifier.citation | 吳奕蓉。探討 Pantoea spp. 對截切香瓜品質影響。國立台灣大學,台北市,2021。
李奕慧。碳源對 Pantoea vagans M17 表面移行及生物膜形成的影響。國立台灣大學,台北市,2023。 李湘怡。Pantoea vagans M17 之群體感應調節對運動性及生物膜形成的影響。國立台灣大學,台北市,2024。 沈恩池。探討病原菌和分離自截切小黃瓜之菌株共培養後生物膜的形成。國立台灣大學,台北市,2024。 截切生鮮蔬果衛生操作參考手冊。衛福部食藥署編,台北市,2016。 鄧婷云。Pantoea vagans 表面移行及生物膜生成能力對截切香瓜之影響。國立台灣大學,台北市,2022。 Akbari, R., & Antonini, C. Contact angle measurements: from existing methods to an open-source tool. Adv. Colloid Interface Sci. 2021, 294, 102470. Al-kafaween, M. A., Mohd Hilmi, A. B., Jaffar, N., Al-Jamal, H. A. N., & Zahri, M. K. Determination of optimum incubation time for formation of Pseudomonas aeruginosa and Streptococcus pyogenes biofilms in microtiter plate. Bull. Natl. Res. Cent. 2019, 43 (1), 100. Alegbeleye, O., Odeyemi, O. A., Strateva, M., & Stratev, D. Microbial spoilage of vegetables, fruits and cereals. Appl. Food Res. 2022, 2 (1), 100122. Alhede, M., Kragh, K. N., Qvortrup, K., Allesen-Holm, M., van Gennip, M., Christensen, L. D., Jensen, P. Ø., Nielsen, A. K., Parsek, M., Wozniak, D., Molin, S., Tolker-Nielsen, T., Høiby, N., Givskov, M., & Bjarnsholt, T. Phenotypes of non-attached Pseudomonas aeruginosa aggregates resemble surface attached biofilm. PLoS One 2011, 6 (11), e27943. Ali, L., Khambaty, F., & Diachenko, G. Investigating the suitability of the Calgary biofilm device for assessing the antimicrobial efficacy of new agents. Bioresour. Technol. 2006, 97 (15), 1887-1893. Allison, D. G., Ruiz, B., SanJose, C., Jaspe, A., & Gilbert, P. Extracellular products as mediators of the formation and detachment of Pseudomonas fluorescens biofilms. FEMS Microbiol. Lett. 1998, 167 (2), 179-184. Ansari, F. A., & Ahmad, I. Isolation, functional characterization and efficacy of biofilm-forming rhizobacteria under abiotic stress conditions. Antonie van Leeuwenhoek 2019, 112 (12), 1827-1839. Ansari, F. A., Ahmad, I., Pichtel, J., & Husain, F. M. Pantoea agglomerans FAP10: A novel biofilm-producing PGPR strain improves wheat growth and soil resilience under salinity stress. Environ. Exp. Bot. 2024, 222, 105759. Armitano, J., Méjean, V., & Jourlin-Castelli, C. Gram-negative bacteria can also form pellicles. Environ. Microbiol. Rep. 2014, 6 (6), 534-544. Asadi, A., Razavi, S., Talebi, M., & Gholami, M. A review on anti-adhesion therapies of bacterial diseases. Infection 2019, 47 (1), 13-23. Bi, W. L., Wang, R., Yang, Y. Y., Wang, Y., Ma, Z. T., Wang, Q., & Zhang, D. F. Pantoea vagans strain BWL1 controls blue mold in mandarin fruit by inhibiting ergosterol biosynthesis in Penicillium expansum. Biol. Control 2021, 161. Bible, A. N., Fletcher, S. J., Pelletier, D. A., Schadt, C. W., Jawdy, S. S., Weston, D. J., Engle, N. L., Tschaplinski, T., Masyuko, R., Polisetti, S., Bohn, P. W., Coutinho, T. A., Doktycz, M. J., & Morrell-Falvey, J. L. A carotenoid-deficient mutant in Pantoea sp. YR343, a bacteria isolated from the rhizosphere of Populus deltoides, is defective in root colonization. Front. Microbiol. 2016, 7. Bonet, R., Simon-Pujol, M. D., & Congregado, F. Effects of nutrients on exopolysaccharide production and surface properties of Aeromonas salmonicida. Appl. Environ. Microbiol. 1993, 59 (8), 2437-2441. Brady, C. L., Cleenwerck, I., Venter, S. N., Engelbeen, K., De Vos, P., & Coutinho, T. A. Emended description of the genus Pantoea, description of four species from human clinical samples, Pantoea septica sp. nov., Pantoea eucrina sp. nov., Pantoea brenneri sp. nov. and Pantoea conspicua sp. nov., and transfer of Pectobacterium cypripedii (Hori 1911) Brenner et al. 1973 emend. Hauben et al. 1998 to the genus as Pantoea cypripedii comb. nov. Int. J. Syst. Evol. Microbiol. 2010, 60, 2430-2440. Brady, C. L., Venter, S. N., Cleenwerck, I., Vandemeulebroecke, K., De Vos, P., & Coutinho, T. A. Transfer of Pantoea citrea, Pantoea punctata and Pantoea terrea to the genus Tatumella emend. as Tatumella citrea comb. nov., Tatumella punctata comb. nov. and Tatumella terrea comb. nov. and description of Tatumella morbirosei sp. nov. Int. J. Syst. Evol. Microbiol. 2010, 60 (3), 484-494. Branda, S. S., Chu, F., Kearns, D. B., Losick, R., & Kolter, R. A major protein component of the Bacillus subtilis biofilm matrix. Mol. Microbiol. 2006, 59 (4), 1229-1238. Brouwer, A. F., Eisenberg, M. C., Remais, J. V., Collender, P. A., Meza, R., & Eisenberg, J. N. Modeling biphasic environmental decay of pathogens and implications for risk analysis. Environ. Sci. Technol. 2017, 51 (4), 2186-2196. Büyükcam, A., Tuncer, Ö., Gür, D., Sancak, B., Ceyhan, M., Cengiz, A. B., & Kara, A. Clinical and microbiological characteristics of Pantoea agglomerans infection in children. J. Infect. Public Health 2018, 11 (3), 304-309. Buzrul, S. The Weibull model for microbial inactivation. Food Eng. Rev. 2022, 14 (1), 45-61. Carniello, V., Harapanahalli, A. K., Busscher, H. J., & van der Mei, H. C. Adhesion force sensing and activation of a membrane-bound sensor to activate nisin efflux pumps in Staphylococcus aureus under mechanical and chemical stresses. J. Colloid Interface Sci. 2018, 512, 14-20. Carniello, V., Peterson, B. W., van der Mei, H. C., & Busscher, H. J. Physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growth. Adv. Colloid Interface Sci. 2018, 261, 1-14. Carvalho, D., Chitolina, G. Z., Wilsmann, D. E., Lucca, V., Dias de Emery, B., Borges, K. A., Furian, T. Q., Salle, C. T. P., Moraes, H. L. d. S., & do Nascimento, V. P. Adhesion capacity of Salmonella Enteritidis, Escherichia coli and Campylobacter jejuni on polystyrene, stainless steel, and polyethylene surfaces. Food Microbiol. 2023, 114, 104280. Chen, C., Xin, K., Liu, H., Cheng, J., Shen, X., Wang, Y., & Zhang, L. Pantoea alhagi, a novel endophytic bacterium with ability to improve growth and drought tolerance in wheat. Sci. Rep. 2017, 7 (1), 41564. Chen, J. What is skewness? right-skewed vs. left-skewed distribution. 2025. https://www.investopedia.com/terms/s/skewness.asp Chen, Y., Jackson, K. M., Chea, F. P., & Schaffner, D. W. Quantification and variability analysis of bacterial cross-contamination rates in common food service tasks. J. Food Prot. 2001, 64 (1), 72-80. Chia, T. W. R., Fegan, N., McMeekin, T. A., & Dykes, G. A. Salmonella Sofia differs from other poultry-associated Salmonella serovars with respect to cell surface hydrophobicity. J. Food Prot. 2008, 71 (12), 2421-2428. Chia, T. W. R., Goulter, R. M., McMeekin, T., Dykes, G. A., & Fegan, N. Attachment of different Salmonella serovars to materials commonly used in a poultry processing plant. Food Microbiol. 2009, 26 (8), 853-859. Chiang, S. L., Taylor, R. K., Koomey, M., & Mekalanos, J. J. Single amino acid substitutions in the N-terminus of Vibrio cholerae TcpA affect colonization, autoagglutination, and serum resistance. Mol. Microbiol. 1995, 17 (6), 1133-1142. Choi, N.-Y., Bae, Y.-M., & Lee, S.-Y. Cell surface properties and biofilm formation of pathogenic bacteria. Food Sci. Biotechnol. 2015, 24 (6), 2257-2264. Christensen, G. D., Simpson, W. A., Younger, J. J., Baddour, L. M., Barrett, F. F., Melton, D. M., & Beachey, E. H. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol. 1985, 22 (6), 996-1006. Coffey, B. M., & Anderson, G. G. Biofilm formation in the 96-well microtiter plate. Methods Mol. Biol. 2014, 1149, 631-641. Colling, L., Carter, R. N., Essmann, M., & Larsen, B. Evaluation of relative yeast cell surface hydrophobicity measured by flow cytometry. Infect. Dis. Obstet. Gynecol. 2005, 13 (1), 43-48. Cother, E. J., Reinke, R., McKenzie, C., Lanoiselet, V. M., & Noble, D. H. An unusual stem necrosis of rice caused by Pantoea ananas and the first record of this pathogen on rice in Australia. Australas. Plant Pathol. 2004, 33 (4), 495-503. da Rocha, H. S., Marques, P. A. A., de Camargo, A. P., Frizzone, J. A., & Saretta, E. Internal surface roughness of plastic pipes for irrigation. Rev. Bras. Eng. Agric. Ambient.2017, 21 (3), 143-149. De Maayer, P., Chan, W.-Y., Blom, J., Venter, S. N., Duffy, B., Smits, T. H. M., & Coutinho, T. A. The large universal Pantoea plasmid LPP-1 plays a major role in biological and ecological diversification. BMC Genomics 2012, 13 (1), 625. den Aantrekker, E. D., Boom, R. M., Zwietering, M. H., & van Schothorst, M. Quantifying recontamination through factory environments—a review. Int. J. Food Microbiol. 2003, 80 (2), 117-130. Di Ciccio, P., Vergara, A., Festino, A. R., Paludi, D., Zanardi, E., Ghidini, S., & Ianieri, A. Biofilm formation by Staphylococcus aureus on food contact surfaces: relationship with temperature and cell surface hydrophobicity. Food Control 2015, 50, 930-936. Duan, J., Yi, T., Lu, Z., Shen, D., & Feng, Y. Rice endophyte Pantoea agglomerans YS19 forms multicellular symplasmata via cell aggregation. FEMS Microbiol. Lett. 2007, 270 (2), 220-226. Eginton, P. J., Gibson, H., Holah, J., Handley, P. S., & Gilbert, P. Quantification of the ease of removal of bacteria from surfaces. J. Ind. Microbiol. 1995, 15 (4), 305-310. Enriquez, K. T., Plummer, W. D., Neufer, P. D., Chazin, W. J., Dupont, W. D., & Skaar, E. P. Temporal modelling of the biofilm lifecycle (TMBL) establishes kinetic analysis of plate-based bacterial biofilm dynamics. J. Microbiol. Methods. 2023, 212, 106808. Feng, Y., Shen, D., Dong, X., & Song, W. In vitro symplasmata formation in the rice diazotrophic endophyte Pantoea agglomerans YS19. Plant Soil 2003, 255 (2), 435-444. Flemming, H.-C., van Hullebusch, E. D., Neu, T. R., Nielsen, P. H., Seviour, T., Stoodley, P., Wingender, J., & Wuertz, S. The biofilm matrix: multitasking in a shared space. Nat. Rev. Microbiol. 2023, 21 (2), 70-86. Flemming, H.-C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A., & Kjelleberg, S. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 2016, 14 (9), 563-575. Franz, E., Semenov, A. V., Termorshuizen, A. J., De Vos, O. J., Bokhorst, J. G., & Van Bruggen, A. H. C. Manure-amended soil characteristics affecting the survival of E. coli O157:H7 in 36 Dutch soils. Environ. Microbiol. 2008, 10 (2), 313-327. Friedman, L., & Kolter, R. Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol. Microbiol. 2004, 51 (3), 675-690. Gadelmawla, E. S., Koura, M. M., Maksoud, T. M. A., Elewa, I. M., & Soliman, H. H. Roughness parameters. J. Mater. Process. Technol. 2002, 123 (1), 133-145. Garg, N., Churey, J. J., & Splittstoesser, D. F. Effect of Processing Conditions on the Microflora of Fresh-Cut Vegetables. J. Food Prot. 1990, 53 (8), 701-703. Garrett, E. H. Fresh-cut produce. In Principles and Applications of Modified Atmosphere Packaging of Foods, B. A. Blakistone Ed.; Springer US, 1999; pp 125-134. Gavini, F., Mergaert, J., Beji, A., Mielcarek, C., Izard, D., Kersters, K., & De Ley, J. Transfer of Enterobacter agglomerans (Beijerinck 1888) Ewing and Fife 1972 to Pantoea gen. nov. as Pantoea agglomerans comb, nov. and Description of Pantoea dispersa sp. nov. Int. J. Syst. Evol. Microbiol. 1989, 39 (3), 337-345. Gemba, M., Rosiak, E., Nowak-Życzyńska, Z., Kałęcka, P., Łodykowska, E., & Kołożyn-Krajewska, D. Factors influencing biofilm formation by Salmonella enterica sv. Typhimurium, E. cloacae, E. hormaechei, Pantoea spp., and Bacillus spp. Isolated from human milk determined by PCA analysis. Foods 2022, 11 (23). Gombas, D., Luo, Y., Brennan, J., Shergill, G., Petran, R., Walsh, R., Hau, H., Khurana, K., Zomorodi, B., Rosen, J., Varley, R., & Deng, K. Guidelines to validate control of cross-contamination during washing of fresh-cut leafy vegetables. J. Food Prot. 2017, 80 (2), 312-330. Gouch, A. (2006a). 2B, 2D and BA cold rolled finishes. Australian Stainless Magazine. https://www.assda.asn.au/stainless-steel/surface-finishes/2b-2d-and-ba-cold-rolled-finishes Gouch, A. (2006b). No 4: the workhorse finish. Australian Stainless magazine, (36). https://www.assda.asn.au/stainless-steel/surface-finishes/no-4-the-workhorse-finish Graça, A., Esteves, E., Nunes, C., Abadias, M., & Quintas, C. Microbiological quality and safety of minimally processed fruits in the marketplace of southern Portugal. Food Control 2017, 73, 775-783. GraphPad. Interpreting results: Skewness. GraphPad, 2025. https://www.graphpad.com/guides/prism/latest/statistics/stat_skewness_and_kurtosis.htm Gunduz, G. T., & Tuncel, G. Biofilm formation in an ice cream plant. Antonie van Leeuwenhoek 2006, 89 (3), 329-336. Guo, L., Wang, J., Gou, Y., Tan, L., Liu, H., Pan, Y., & Zhao, Y. Comparative proteomics reveals stress responses of Vibrio parahaemolyticus biofilm on different surfaces: internal adaptation and external adjustment. Sci. Total Environ. 2020, 731, 138386. Halsted, M. C., Bible, A. N., Morrell-Falvey, J. L., & Retterer, S. T. Quantifying biofilm propagation on chemically modified surfaces. Biofilm 2022, 4, 10. Han, Y., Linton, R. H., Nielsen, S. S., & Nelson, P. E. Inactivation of Escherichia coli O157:H7 on surface-uninjured and -injured green pepper (Capsicum annuum L.) by chlorine dioxide gases demonstrated by confocal laser scanning microscopy. Food Microbiol. 2000, 17 (6), 643-655. Haney, E. F., Trimble, M. J., & Hancock, R. E. W. Microtiter plate assays to assess antibiofilm activity against bacteria. Nat. Protoc. 2021, 16 (5), 2615-2632. Harapanahalli, A. K., Chen, Y., Li, J., Busscher, H. J., & Mei, H. C. v. d. Influence of adhesion force on icaA and cidA gene expression and production of matrix components in Staphylococcus aureus biofilms. Appl. Environ. Microbiol. 2015, 81 (10), 3369-3378. Health, N. I. o. Minutes of the National Advisory Dental and Craniofacial Research Council—153rd Meeting. Bethesda, MD 1997. Hermansson, M. The DLVO theory in microbial adhesion. Colloids Surf. B 1999, 14 (1), 105-119. Herrera, J. J. R., Cabo, M. L., González, A., Pazos, I., & Pastoriza, L. Adhesion and detachment kinetics of several strains of Staphylococcus aureus subsp. aureus under three different experimental conditions. Food Microbiol. 2007, 24 (6), 585-591. Hintze, J. L., & and Nelson, R. D. Violin plots: a box plot-density trace synergism. Am. Stat. 1998, 52 (2), 181-184. Houry, A., Briandet, R., Aymerich, S., & Gohar, M. Involvement of motility and flagella in Bacillus cereus biofilm formation. Microbiology 2010, 156 (4), 1009-1018. Hung, C., Zhou, Y., Pinkner, J. S., Dodson, K. W., Crowley, J. R., Heuser, J., Chapman, M. R., Hadjifrangiskou, M., Henderson, J. P., & Hultgren, S. J. Escherichia coli biofilms have an organized and complex extracellular matrix structure. mBio 2013, 4 (5), 10.1128/mbio.00645-00613. Islam, O. K., Islam, I., Saha, O., Rahaman, M. M., Sultana, M., Bockmühl, D. P., & Hossain, M. A. Genomic variability correlates with biofilm phenotypes in multidrug resistant clinical isolates of Pseudomonas aeruginosa. Sci. Rep. 2023, 13 (1), 7867. Jang, A. R., Han, A., Lee, S., Jo, S., Song, H., Kim, D., & Lee, S.-Y. Evaluation of microbiological quality and safety of fresh-cut fruit products at retail levels in Korea. Food Sci. Biotechnol. 2021, 30 (10), 1393-1401. Jensen, D. A., Friedrich, L. M., Harris, L. J., Danyluk, M. D., & Schaffner, D. W. Quantifying transfer rates of Salmonella and Escherichia coli O157:H7 between fresh-cut produce and common kitchen surfaces. J. Food Prot. 2013, 76 (9), 1530-1538. Jeon, H. R., Kwon, M. J., & Yoon, K. S. Control of Listeria innocua biofilms on food contact surfaces with slightly acidic electrolyzed water and the risk of biofilm cells transfer to duck meat. J. Food Prot. 2018, 81 (4), 582-592. Jha, P. K., Dallagi, H., Richard, E., Deleplace, M., Benezech, T., & Faille, C. Does the vertical vs horizontal positioning of surfaces affect either biofilm formation on different materials or their resistance to detachment? Food Control 2022, 133, 108646. Jin, S., Park, J. H., Yang, W.-S., Lee, J.-Y., & Hwang, C.-W. Anti-biofilm ability of garlic extract on Pantoea agglomerans and application to biosand filter. Desal. Water Treat. 2021, 228, 84-91. Johnston, L. M., Jaykus, L. A., Moll, D., Martinez, M. C., Anciso, J., Mora, B., & Moe, C. L. A field study of the microbiological quality of fresh produce. J. Food Prot. 2005, 68 (9), 1840-1847. Jones, G. W., & Isaacson, R. E. Proteinaceous bacterial adhesins and their receptors. Crit. Rev. Microbiol. 1983, 10 (3), 229-260. Kaczmarek, M., Avery, S. V., & Singleton, I. Chapter two - Microbes associated with fresh produce: sources, types and methods to reduce spoilage and contamination. In Advances in Applied Microbiology, G. M. Gadd & S. Sariaslani Eds.; Vol. 107; Academic Press, 2019; pp 29-82. Kang, M., Kim, S.-J., Yoon, S.-R., Lee, H.-W., Lee, J. Y., & Ha, J.-H. Determination of transfer patterns of Pectobacterium carotovorum subsp. carotovorum planktonic cells and biofilms during mechanical cutting of kimchi cabbage. J. Food Sci. 2019, 84 (9), 2603-2609. Karakurt, H., Recep, K., Rafet, A., Fatih, D., & and Karagöz, K. Inoculaltion effects of Pantoea agglomerans strains on growth and chemical composition of plum. J. Plant Nutr. 2010, 33 (13), 1998-2009. Keeratipibul, S., Laovittayanurak, T., Pornruangsarp, O., Chaturongkasumrit, Y., Takahashi, H., & Techaruvichit, P. Effect of swabbing techniques on the efficiency of bacterial recovery from food contact surfaces. Food Control 2017, 77, 139-144. Kessler, N. G., Delgado, D. M. C., Shah, N. K., Dickinson, J. A., & Moore, S. D. Exopolysaccharide anchoring creates an extreme resistance to sedimentation. J. Bacteriol. 2021, 203 (11), 10.1128/jb.00023-00021. Kido, K., Adachi, R., Hasegawa, M., Yano, K., Hikichi, Y., Takeuchi, S., Atsuchi, T., & Takikawa, Y. Internal fruit rot of netted melon caused by Pantoea ananatis (=Erwinia ananas) in Japan. J. Gen. Plant Pathol. 2008, 74 (4), 302-312. Kim, H., Moon, M. J., Kim, C. Y., & Ryu, K. Efficacy of chemical sanitizers against Bacillus cereus on food contact surfaces with scratch and biofilm. Food Sci. Biotechnol. 2019, 28 (2), 581-590. Kim, T., & Silva, J. L. Quantification of attachment strength of selected foodborne pathogens by the blot succession method. J. Rapid Methods Autom. Microbiol. 2005, 13 (2), 127-133. King, M. F., López-García, M., Atedoghu, K. P., Zhang, N., Wilson, A. M., Weterings, M., Hiwar, W., Dancer, S. J., Noakes, C. J., & Fletcher, L. A. Bacterial transfer to fingertips during sequential surface contacts with and without gloves. Indoor Air 2020, 30 (5), 993-1004. Klein-Gordon, J. M., Johnson, K. B., Loper, J. E., & Stockwell, V. O. Contribution of native plasmids of Pantoea vagans C9-1 to epiphytic fitness and fire blight management on apple and pear flowers and fruits. Phytopathology 2023, 113 (12), 2187-2196. Klemm, P., Vejborg, R. M., & Hancock, V. Prevention of bacterial adhesion. Appl. Microbiol. Biotechnol. 2010, 88 (2), 451-459. Knobben, B. A. S., van der Mei, H. C., van Horn, J. R., & Busscher, H. J. Transfer of bacteria between biomaterials surfaces in the operating room—an experimental study. J. Biomed. Mater. Res. A 2007, 80A (4), 790-799. Kobayashi, N., Bauer, T. W., Tuohy, M. J., Fujishiro, T., & Procop, G. W. Brief ultrasonication improves detection of biofilm-formative bacteria around a metal implant. Clin. Orthop. Relat. Res. 2007, 457, 210-213. Kragh, K. N., Alhede, M., Rybtke, M., Stavnsberg, C., Jensen, P. Ø., Tolker-Nielsen, T., Whiteley, M., & Bjarnsholt, T. The inoculation method could impact the outcome of microbiological experiments. Appl. Environ. Microbiol. 2018, 84 (5), e02264-02217. Kragh, K. N., Tolker-Nielsen, T., & Lichtenberg, M. The non-attached biofilm aggregate. Commun. Biol. 2023, 6 (1), 898. Kumar, S. V., Abraham, P. E., Hurst, G. B., Chourey, K., Bible, A. N., Hettich, R. L., Doktycz, M. J., & Morrell-Falvey, J. L. A carotenoid-deficient mutant of the plant-associated microbe Pantoea sp. YR343 displays an altered membrane proteome. Sci. Rep. 2020, 10 (1), 21. Kusumaningrum, H. D., Riboldi, G., Hazeleger, W. C., & Beumer, R. R. Survival of foodborne pathogens on stainless steel surfaces and cross-contamination to foods. Int. J. Food Microbiol. 2003, 85 (3), 227-236. Kwok, T.-y., Ma, Y., & Chua, S. L. Biofilm dispersal induced by mechanical cutting leads to heightened foodborne pathogen dissemination. Food Microbiol. 2022, 102, 103914. Lahesaare, A., Ainelo, H., Teppo, A., Kivisaar, M., Heipieper, H. J., & Teras, R. LapF and its regulation by Fis affect the cell surface hydrophobicity of Pseudomonas putida. PLoS One 2016, 11 (11), e0166078. Leclercq-Perlat, M. N., & Lalande, M. Cleanability in relation to surface chemical composition and surface finishing of some materials commonly used in food industries. J. Food Eng. 1994, 23 (4), 501-517. Lee, A. W. T., Ng, I. C. F., Wong, E. Y. K., Wong, I. T. F., Sze, R. P. P., Chan, K. Y., So, T. Y., Zhang, Z., Ka-Yee Fung, S., Choi-Ying Wong, S., Tam, W. Y., Lao, H. Y., Lee, L. K., Leung, J. S. L., Chan, C. T. M., Ng, T. T. L., Zhang, J., Chow, F. W. N., Leung, P. H. M., & Siu, G. K. H. Comprehensive identification of pathogenic microbes and antimicrobial resistance genes in food products using nanopore sequencing-based metagenomics. Food Microbiol. 2024, 121, 104493. Lee, J. S., Bae, Y. M., Lee, S. Y., & Lee, S. Y. Biofilm formation of Staphylococcus aureus on various surfaces and their resistance to chlorine sanitizer. J. Food Sci. 2015, 80 (10), M2279-M2286. Lee, Y., & Wang, C. Morphological change and decreasing transfer rate of biofilm-featured Listeria monocytogenes EGDe. J. Food Prot. 2017, 80 (3), 368-375. Leoney, A., Karthigeyan, S., Asharaf, A. S., & Felix, A. J. W. Detection and categorization of biofilm-forming Staphylococcus aureus, Viridans streptococcus, Klebsiella pneumoniae, and Escherichia coli isolated from complete denture patients and visualization using scanning electron microscopy. J. Int. Soc. Prev. Community Dent. 2020, 10 (5), 627-633. Lindsay, D., & von Holy, A. Evaluation of dislodging methods for laboratory-grown bacterial biofilms. Food Microbiol. 1997, 14 (4), 383-390. Liu, X., Yao, H., Zhao, X., & Ge, C. Biofilm formation and control of foodborne pathogenic bacteria. Molecules 2023, 28 (6). Loosdrecht, M. C. v., Lyklema, J., Norde, W., Schraa, G., & Zehnder, A. J. Electrophoretic mobility and hydrophobicity as a measured to predict the initial steps of bacterial adhesion. Appl. Environ. Microbiol. 1987, 53 (8), 1898-1901. Lopez, G. U., Gerba, C. P., Tamimi, A. H., Kitajima, M., Maxwell, S. L., & Rose, J. B. Transfer efficiency of bacteria and viruses from porous and nonporous fomites to fingers under different relative humidity conditions. Appl. Environ. Microbiol. 2013, 79 (18), 5728-5734. Mafart, P., Couvert, O., Gaillard, S., & Leguerinel, I. On calculating sterility in thermal preservation methods: application of the Weibull frequency distribution model. Int. J. Food Microbiol. 2002, 72 (1), 107-113. Mandakhalikar, K. D., Rahmat, J. N., Chiong, E., Neoh, K. G., Shen, L., & Tambyah, P. A. Extraction and quantification of biofilm bacteria: method optimized for urinary catheters. Sci. Rep. 2018, 8 (1), 8069. Martienssen, M., O., R., & U., K. Surface properties of bacteria from different wastewater treatment plants. Acta Biotechnol. 2001, 21 (3), 207-225. Masson, L., & Holbein, B. E. Influence of nutrient limitation and low pH on serogroup B Neisseria meningitidis capsular polysaccharide levels: correlation with virulence for mice. Infect. Immun. 1985, 47 (2), 465-471. Merritt, J. H., Kadouri, D. E., & O'Toole, G. A. Growing and analyzing static biofilms. Curr. Protoc. Microbiol. 2005, Chapter 1, Unit 1B.1. Midelet, G., & Carpentier, B. Transfer of microorganisms, including Listeria monocytogenes, from various materials to beef. Appl. Environ. Microbiol. 2002, 68 (8), 4015-4024. Midelet, G., Kobilinsky, A., & Carpentier, B. Construction and analysis of fractional multifactorial designs to study attachment strength and transfer of Listeria monocytogenes from pure or mixed biofilms after contact with a solid model food. Appl. Environ. Microbiol. 2006, 72 (4), 2313-2321. Motulsky, H., & Christopoulos, A. Fitting models to biological data using linear and nonlinear regression: a practical guide to curve fitting; Oxford University Press, 2004. DOI: 10.1093/oso/9780195171792.001.0001. Muñoz-Martinez, T. I., Rodríguez-Hernández, B., Rodríguez-Montaño, M., Alfau, J., Reyes, C., Fernandez, Y., Ramos, R. T., De Los Santos, E. F. F., & Maroto-Martín, L. O. Unlocking the hidden microbiome of food: the role of metagenomics in analyzing fresh produce, poultry, and meat. Appl. Microbiol. 2025, 5 (1), 26. Nguyen‐the, C., & Carlin, F. The microbiology of minimally processed fresh fruits and vegetables. Crit. Rev. Food Sci. Nutr. 1994, 34 (4), 371-401. Otto, K., Elwing, H., & Hermansson, M. The role of type 1 fimbriae in adhesion of Escherichia coli to hydrophilic and hydrophobic surfaces. Colloids Surf. B 1999, 15 (1), 99-111. Oyedele, O. A., Kuzamani, K. Y., Adetunji, M. C., Osopale, B. A., Makinde, O. M., Onyebuenyi, O. E., Ogunmola, O. M., Mozea, O. C., Ayeni, K. I., Ezeokoli, O. T., Oyinloye, A. M., Ngoma, L., Mwanza, M., & Ezekiel, C. N. Bacteriological assessment of tropical retail fresh-cut, ready-to-eat fruits in south-western Nigeria. Sci. Afr. 2020, 9, e00505. Pang, X., & Yuk, H.-G. Effects of the colonization sequence of Listeria monocytogenes and Pseudomonas fluorescens on survival of biofilm cells under food-related stresses and transfer to salmon. Food Microbiol. 2019, 82, 142-150. Parish, M. E., Beuchat, L. R., Suslow, T. V., Harris, L. J., Garrett, E. H., Farber, J. N., & Busta, F. F. Methods to reduce/eliminate pathogens from fresh and fresh-cut produce. Compr. Rev. Food Sci. Food Saf. 2003, 2 (s1), 161-173. Park, S. M., & Rhee, M. S. Novel hypothesis for infant methemoglobinemia: survival and metabolism of nitrite-producers from vegetables under gastrointestinal stress and intestinal adhesion. Food Res. Int. 2024, 190, 11. Pérez-Rodríguez, F., Valero, A., Carrasco, E., García, R. M., & Zurera, G. Understanding and modelling bacterial transfer to foods: a review. Trends Food Sci. Technol. 2008, 19 (3), 131-144. Pérez-Rodríguez, F., Valero, A., Todd, E. C. D., Carrasco, E., García-Gimeno, R. M., & Zurera, G. Modeling transfer of Escherichia coli O157:H7 and Staphylococcus aureus during slicing of a cooked meat product. Meat Sci. 2007, 76 (4), 692-699. U.S. Food and Drug Administration, Polystyrene and rubber-modified polystyrene., § 177.1640, 2024. Qadri, O. S., Basharat, Y., & and Srivastava, A. K. Fresh-cut fruits and vegetables: critical factors influencing microbiology and novel approaches to prevent microbial risks—a review. Cogent Food Agric. 2015, 1 (1), 1121606. Qi, Y., He, Y., Beuchat, L. R., Zhang, W., & Deng, X. Glove-mediated transfer of Listeria monocytogenes on fresh-cut cantaloupe. Food Microbiol. 2020, 88, 103396. Ravishankar, S., Zhu, L., & Jaroni, D. Assessing the cross contamination and transfer rates of Salmonella enterica from chicken to lettuce under different food-handling scenarios. Food Microbiol 2010, 27 (6), 791-794. Rodríguez, A., Autio, W. R., & McLandsborough, L. A. Effect of biofilm dryness on the transfer of Listeria monocytogenes biofilms grown on stainless steel to bologna and hard salami. J. Food Prot. 2007, 70 (11), 2480-2484. Rodríguez, A., & McLandsborough, L. A. Evaluation of the transfer of Listeria monocytogenes from stainless steel and high-density polyethylene to bologna and American cheese. J. Food Prot. 2007, 70 (3), 600-606. Roper, M. C. Pantoea stewartii subsp. stewartii: lessons learned from a xylem-dwelling pathogen of sweet corn. Mol. Plant Pathol. 2011, 12 (7), 628-637. Rumbaugh, K. P., & Sauer, K. Biofilm dispersion. Nat. Rev. Microbiol. 2020, 18 (10), 571-586. Rux, C., Wittmer, A., Stork, A., Vach, K., Hellwig, E., Cieplik, F., & Al-Ahmad, A. Optimizing the use of low-frequency ultrasound for bacterial detachment of in vivo biofilms in dental research-a methodological study. Clin. Oral Investig. 2023, 28 (1), 19. Salas-Tovar, J. A., Escobedo-García, S., Olivas, G. I., Acosta-Muñiz, C. H., Harte, F., & Sepulveda, D. R. Method-induced variation in the bacterial cell surface hydrophobicity MATH test. J. Microbiol. Methods 2021, 185, 106234. Sauer, K., Camper, A. K., Ehrlich, G. D., Costerton, J. W., & Davies, D. G. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 2002, 184 (4), 1140-1154. Sauer, K., Stoodley, P., Goeres, D. M., Hall-Stoodley, L., Burmølle, M., Stewart, P. S., & Bjarnsholt, T. The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat. Rev. Microbiol. 2022, 20 (10), 608-620. Schaffner, D. W. Models — what comes after the next generation? In Modeling Microbial Responses in Food, 1st ed.; R. C. McKellar & X. Lu Eds.; CRC press, Inc., 2003; pp 303-311. Schmidt, R., Erickson, D., Sims, S., & Wolff, P. Characteristics of food contact surface materials: stainless steel. Food Prot. Trends 2012, 32 (10), 574–584. Sharma, M., & Anand, S. K. Biofilms evaluation as an essential component of HACCP for food/dairy processing industry – a case. Food Control 2002, 13 (6), 469-477. She, X., Yu, L., Lan, G., Tang, Y., Deng, M., Li, Z., & He, Z. Pantoea agglomerans causing blight disease on pepino melon (Solanum muricatum) in China. Crop Prot. 2021, 139, 105385. Sheen, S. Modeling surface transfer of Listeria monocytogenes on salami during slicing. J. Food Sci. 2008, 73 (6), E304-E311. Sheen, S., & Hwang, C.-A. Mathematical modeling the cross-contamination of Escherichia coli O157:H7 on the surface of ready-to-eat meat product while slicing. Food Microbiol. 2010, 27 (1), 37-43. Shi, X., & Zhu, X. Biofilm formation and food safety in food industries. Trends Food Sci. Technol. 2009, 20 (9), 407-413. Silvi, S., Barghini, P., Aquilanti, A., Juarez-Jimenez, B., & Fenice, M. Physiologic and metabolic characterization of a new marine isolate (BM39) of Pantoea sp producing high levels of exopolysaccharide. Microb. Cell Fact. 2013, 12. Singh, A. K., Prakash, P., Achra, A., Singh, G. P., Das, A., & Singh, R. K. Standardization and classification of in vitro biofilm formation by clinical isolates of Staphylococcus aureus. J. Glob. Infect. Dis. 2017, 9 (3). Sjöberg, S., Stairs, C., Allard, B., Hallberg, R., Homa, F., Martin, T., Ettema, T. J. G., & Dupraz, C. Bubble biofilm: Bacterial colonization of air-air interface. Biofilm 2020, 2, 100030. Smits, T. H. M., Rezzonico, F., Kamber, T., Goesmann, A., Ishimaru, C. A., Stockwell, V. O., Frey, J. E., & Duffy, B. Genome sequence of the biocontrol agent Pantoea vagans strain C9-1. J. Bacteriol. 2010, 192 (24), 6486-6487. Srey, S., Jahid, I. K., & Ha, S.-D. Biofilm formation in food industries: a food safety concern. Food Control 2013, 31 (2), 572-585. Stepanović, S., Ćirković, I., Ranin, L., & S✓vabić-Vlahović, M. Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Lett. Appl. Microbiol. 2004, 38 (5), 428-432. Stepanović, S., Vuković, D., Dakić, I., Savić, B., & Švabić-Vlahović, M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J. Microbiol. Methods. 2000, 40 (2), 175-179. Stewart, P. S., & Franklin, M. J. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 2008, 6 (3), 199-210. Su, L.-M., Huang, R.-T., & Hsiao, H.-I. Biofilm formation comparison of Vibrio parahaemolyticus on stainless steel and polypropylene while minimizing environmental impacts and transfer to grouper fish fillets. Int. J. Food Microbiol. 2025, 426, 110913. Sun, L., Lei, P., Wang, Q., Ma, J., Zhan, Y., Jiang, K., Xu, Z., & Xu, H. The endophyte Pantoea alhagi NX-11 alleviates salt stress damage to rice seedlings by secreting exopolysaccharides. Front. Microbiol. 2019, 10. Tresse, O., Shannon, K., Pinon, A., Malle, P., Vialette, M., & Midelet-Bourdin, G. Variable adhesion of Listeria monocytogenes isolates from food-processing facilities and clinical cases to inert surfaces. J. Food Prot. 2007, 70 (7), 1569-1578. Truelstrup Hansen, L., & Vogel, B. F. Desiccation of adhering and biofilm Listeria monocytogenes on stainless steel: survival and transfer to salmon products. Int. J. Food Microbiol. 2011, 146 (1), 88-93. Trunk, T., Khalil, H. S., & Leo, J. C. Bacterial autoaggregation. AIMS Microbiol. 2018, 4 (1), 140-164. Tsavatopoulou, V. D., & Manariotis, I. D. Chlorococcum sp. and mixotrophic algal biofilm growth in horizontal and vertical–oriented surfaces using wastewater and synthetic substrate. Biomass Convers. Biorefin. 2024, 14 (4), 4743-4758. Ul Hassan, T., Rafiq, K., Hussain, M., Afzal, A., Naz, I., Azeem, M., & Ansari, L. Health recovery of soil polluted with marble effluents by the inoculation of Mn-tolerant bacteria. Environ. Eng. Res. 2023, 28 (5). Uzoma, P. C., Etim, I.-I. N., Okonkwo, B. O., Olanrele, O. S., Njoku, D. I., Kolawole, S. K., Emori, W., Ikeuba, A. I., Njoku, C. N., Ekerenam, O. O., Etim, I. P., Daniel, E. F., & Udoh, I. I. Recent design approaches, adhesion mechanisms, and applications of antibacterial surfaces. Chem. Eng. J. Adv. 2023, 16, 100563. van Loosdrecht, M. C., Lyklema, J., Norde, W., Schraa, G., & Zehnder, A. J. The role of bacterial cell wall hydrophobicity in adhesion. Appl. Environ. Microbiol. 1987, 53 (8), 1893-1897. van Oss, C. J. Energetics of cell-cell and cell-biopolymer interactions. Cell Biophys. 1989, 14 (1), 1-16. van Oss, C. J. Long-range and short-range mechanisms of hydrophobic attraction and hydrophilic repulsion in specific and aspecific interactions. J. Mol. Recognit. 2003, 16 (4), 177-190. Velázquez, N. D. R., Pérez, G. O. P., Arellano, G. V., de los Santos, P. E., Figueroa, J. S. M., & Chávez-Ramírez, B. Pantoea vagans causing soft rot disease in Agave angustifolia, in Mexico. J. Phytopathol. 2024, 172 (1). Vert, M., Doi, Y., Hellwich, K.-H., Hess, M., Hodge, P., Kubisa, P., Rinaudo, M., & Schué, F. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl. Chem. 2012, 84 (2), 377-410. Viravathana, P., Burbank, L. P., Jablonska, B., Sun, Q., & Roper, M. C. A membrane localized RTX-like protein mediates physiochemical properties of the Pantoea stewartii subsp. stewartii cell envelope that impact surface adhesion, cell surface hydrophobicity and plant colonization. BMC Microbiol. 2024, 24 (1), 369. Vorst, K. L., Todd, E. C. D., & Ryser, E. T. Transfer of Listeria monocytogenes during slicing of turkey breast, bologna, and salami with simulated kitchen knives. J. Food Prot. 2006, 69 (12), 2939-2946. Walterson, A. M., & Stavrinides, J. Pantoea: insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol. Rev. 2015, 39 (6), 968-984. Wang, C., Hou, J., Mei, H. C. v. d., Busscher, H. J., & Ren, Y. Emergent properties in Streptococcus mutans biofilms are controlled through adhesion force sensing by initial colonizers. mBio 2019, 10 (5), 10.1128/mbio.01908-01919. Wang, H., Zhang, X., Zhang, Q., Ye, K., Xu, X., & Zhou, G. Comparison of microbial transfer rates from Salmonella spp. biofilm growth on stainless steel to selected processed and raw meat. Food Control 2015, 50, 574-580. Wang, R., King, D. A., & Kalchayanand, N. Evaluation of Salmonella biofilm cell transfer from common food contact surfaces to beef products. J. Food Prot. 2022, 85 (4), 632-638. Wang, Z., Ma, Y., Li, Z., Wang, Y., Liu, Y., & Dong, Q. Characterization of Listeria monocytogenes biofilm formation kinetics and biofilm transfer to cantaloupe surfaces. Food Res. Int. 2022, 161, 111839. Webber, B., Canova, R., Esper, L. M. R., Perdoncini, G., Nascimento, V. P. d., Pilotto, F., Santos, L. R. d., & Rodrigues, L. B. The use of vortex and ultrasound techniques for the in vitro removal of Salmonella spp. biofilms. Acta Sci. Vet. 2015, 43, 1-5. White, J. S., & Walker, G. M. Influence of cell surface characteristics on adhesion of Saccharomyces cerevisiae to the biomaterial hydroxylapatite. Antonie van Leeuwenhoek 2011, 99 (2), 201-209. Wille, J., & Coenye, T. Biofilm dispersion: The key to biofilm eradication or opening Pandora’s box? Biofilm 2020, 2, 100027. Yang, K., Shi, J., Wang, L., Chen, Y., Liang, C., Yang, L., & Wang, L.-N. Bacterial anti-adhesion surface design: surface patterning, roughness and wettability: a review. J. Mater. Sci. Technol. 2022, 99, 82-100. Yang, Y., Hu, H. T., Zhou, C. L., Zhang, W. Y., Yu, Y., Liu, Q. Y., Lu, T. H., & Zhang, Q. F. Characteristics and accurate identification of Pantoea dispersa with a case of spontaneous rupture of hepatocellular carcinoma in China a case report. Medicine 2022, 101 (2). Yao, B., Huang, R., Zhang, Z. F., & Shi, S. L. Diverse virulence attributes of Pantoea alfalfae sp. nov. CQ10 responsible for bacterial leaf blight in alfalfa revealed by genomic analysis. Int. J. Mol. Sci. 2023, 24 (9). Yuan, H., Zhang, X., Jiang, Z., Chen, X., & Zhang, X. Quantitative criterion to predict cell adhesion by identifying dominant interaction between microorganisms and abiotic surfaces. Langmuir 2019, 35 (9), 3524-3533. Zhang, L., Li, M., Li, Q., Chen, C., Qu, M., Li, M., Wang, Y., & Shen, X. The catabolite repressor/activator Cra is a bridge connecting carbon metabolism and host colonization in the plant drought resistance-promoting bacterium Pantoea alhagi LTYR-11Z. Appl. Environ. Microbiol. 2018, 84 (13), e00054-00018. Zhang, X., Li, E., Xiong, X., Shen, D., & Feng, Y. Colonization of endophyte Pantoea agglomerans YS19 on host rice, with formation of multicellular symplasmata. World J. Microbiol. Biotechnol. 2010, 26 (9), 1667-1673. Zhao, M., Shin, G. Y., Stice, S., Bown, J. L., Coutinho, T., Metcalf, W. W., Gitaitis, R., Kvitko, B., & Dutta, B. A novel biosynthetic gene cluster across the Pantoea species complex is important for pathogenicity in onion. Mol. Plant-Microbe Interact. 2023, 36 (3), 176-188. Zhao, P., Chan, P.-T., Gao, Y., Lai, H.-W., Zhang, T., & Li, Y. Physical factors that affect microbial transfer during surface touch. Build. Environ. 2019, 158, 28-38. Zhao, P., & Li, Y. Modeling and experimental validation of microbial transfer via surface touch. Environ. Sci. Technol. 2021, 55 (7), 4148-4161. Zheng, S., Bawazir, M., Dhall, A., Kim, H.-E., He, L., Heo, J., & Hwang, G. Implication of surface properties, bacterial motility, and hydrodynamic conditions on bacterial surface sensing and their initial adhesion. Front. bioeng. biotechnol. 2021, 9. Zilelidou, E. A., Tsourou, V., Poimenidou, S., Loukou, A., & Skandamis, P. N. Modeling transfer of Escherichia coli O157:H7 and Listeria monocytogenes during preparation of fresh-cut salads: Impact of cutting and shredding practices. Food Microbiol. 2015, 45, 254-265. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98751 | - |
| dc.description.abstract | 細菌從污染源轉移至食品可能對食品安全及品質構成威脅,因其增加食源性疾病及食品腐敗的風險。本實驗室先前分別從香瓜及截切小黃瓜中分離出兩株具高度生物膜形成能力之 Pantoea 屬菌株,分別為 P. vagans M17 及 P. eucrina B1-6,其中 P. vagans M17 具導致香瓜腐敗之能力。本研究旨在探討上述兩株菌從受污染之食品接觸面轉移至香瓜之行為,並聚焦於不同接觸面材質及細菌生理狀態—浮游態和生物膜狀態—對轉移行為之影響。以微量孔盤法評估生物膜生成能力,結果顯示 P. eucrina B1-6之生物膜生成能力較 P. vagans M17 強。接著,本研究在不鏽鋼、玻璃及聚苯乙烯三種常見食品接觸面材質上進行生物膜培養,結果顯示表面材質對生物膜內菌數及生物膜生物量皆無顯著影響,且方片、菌株之表面特性及菌株自聚集能力,與生物膜生成之關聯性不明顯。在轉移行為的結果中,本研究應用數學模型擬合多次連續接觸轉移曲線,其中以對數線性模型擬合效果最佳。轉移率及轉移曲線下降速率參數皆顯示方片材質對 P. eucrina B1-6 轉移至香瓜具有一定程度的影響,不鏽鋼及玻璃表面的生物膜在初期轉移比例較高,而聚苯乙烯上的生物膜則展現持續性汙染的風險。另一方面,Pantoea 屬之浮游態細胞與生物膜細胞間轉移率存在顯著差異,然而不同菌株受生理狀態所影響的趨勢並不一致;觀察連續轉移曲線,皆以浮游態細胞能維持較穩定的轉移菌量,其中,浮游態 P. vagans M17 因其高轉移率及緩慢降低的連續轉移菌量,顯示出較高的微生物汙染潛力。本研究為不同加工情境下的細菌轉移行為提供初步且具價值之見解,期望能為未來制定有效污染管控策略提供相關科學依據,並促進截切蔬果加工廠衛生管理的優化。 | zh_TW |
| dc.description.abstract | Bacterial transfer from contamination sources to food poses significant safety and quality concerns, as it increases the risk of foodborne illnesses and spoilage. Previous studies from our lab have isolated two strong biofilm-forming Pantoea spp. strains, P. vagans M17 and P. eucrina B1-6, from melon and fresh-cut cucumber, respectively. Notably, P. vagans M17 has been associated with melon spoilage. This study aimed to investigate the transfer dynamics from contaminated coupons to melon of these two strains, focusing on the influence of different contact surface materials and the physiological state of bacteria, including planktonic and biofilm-associated forms. A 96-well plate biofilm formation assay revealed that P. eucrina B1-6 has a stronger biofilm formation ability than P. vagans M17. Subsequently, biofilms were cultivated on three common food-contact surface materials—stainless steel, glass, and polystyrene—and evaluated for biofilm cell counts and biomass. Results demonstrated that the surface materials did not significantly affect biofilm formation. Additionally, the surface characteristics of both the bacteria and the coupons, as well as the bacteria’s autoaggregation abilities, showed no clear relation to biofilm formation. Mathematical modeling was applied to fit the succession contact transfer data, with the Log-linear model providing the best fit. Both transfer rate and the decline-rate parameter (a-value) revealed that surface material influenced the transfer of P. eucrina B1-6 biofilms: biofilms on stainless steel and glass showed higher transfer rates, whereas those on polystyrene exhibited slower declines in transferred cell numbers during successive contacts, indicating potential for persistent contamination. Additionally, transfer rates differed significantly between Pantoea spp. planktonic and biofilm cells, and planktonic cells exhibited more stable transfer curves. In particular, planktonic P. vagans M17 showed high transfer rate and a stable curve, indicating greater potential for food contamination. This study may provide preliminary and valuable insights into bacterial transfer under different food processing scenarios, which could inform future strategies to control contamination and improve hygiene practices in fresh-cut produce processing. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T16:20:56Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T16:20:56Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract iv Graphic abstract vi 目次 vii 圖次 x 表次 xi 附錄次 xii 第一章、前言 1 第二章、文獻回顧 2 第一節、 截切蔬果中存在之微生物及其影響 2 一、 截切蔬果之微生物組成 2 二、 微生物之來源及其影響 3 三、 Pantoea 屬之來源與特性 4 第二節、 生物膜 7 一、 生物膜之形成 7 二、 細菌於表面之黏附機制 8 三、 影響生物膜形成的因子 10 四、 生物膜細菌之表型轉變 13 第三節、 食品微生物汙染 15 一、 食品汙染與細菌轉移 15 二、 細菌轉移之影響因子 16 三、 數學模型擬合 21 第三章、研究目的與實驗架構 24 第四章、材料與方法 26 第一節、 實驗材料 26 一、 實驗菌株 26 二、 香瓜品種及來源 26 三、 實驗器材 27 四、 藥品 27 五、 藥品溶液與培養基之配置 29 第二節、 儀器設備與套裝軟體 31 一、 儀器設備 31 二、 套裝軟體 32 第三節、 實驗方法 34 一、 細菌凍管保存與菌液活化 34 二、 方片之清洗及滅菌 34 三、 微量孔盤法之生物膜生物量測定 34 四、 建立方片系統之生物膜實驗方法 35 五、 方片上的生物膜培養與測定 37 六、 材質表面特性 38 七、 細菌之生物膜相關特性 39 八、 浮游態細菌之接種與附著菌量測定 40 九、 細菌轉移實驗 41 十、 數學模型擬合 44 第五章、結果與討論 46 第一節、 Pantoea 屬菌株的生物膜生成能力 46 第二節、 生物膜培養於方片系統之方法建立 51 一、 脫附方式不影響生物膜內菌數測量 51 二、 直立培養有利於 P. eucrina B1-6 生物膜生成 55 三、 菌膜殘留不影響生物膜內菌數之準確性 58 第三節、 探討不同材質表面之生物膜形成及浮游態細菌之附著 61 一、 三種材質具有不同表面特性 61 二、 材質表面不影響菌株生物膜生成 67 三、 菌株疏水性與自聚集能力與生物膜生成無明顯關聯性 72 四、 浮游態 Pantoea 屬細菌於方片上的附著菌量 78 第四節、 細菌於不同條件下之轉移行為 82 一、 細菌轉移率受生理狀態及表面材質影響 82 二、 連續轉移菌量隨接觸次數增加而下降 89 三、 轉移曲線適用之擬合模型評估 93 四、 浮游態 P. vagans M17 造成截切香瓜汙染的風險最高 106 第六章、結論與展望 109 第七章、參考文獻 111 第八章、附錄 133 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | Pantoea spp. | zh_TW |
| dc.subject | 細菌轉移 | zh_TW |
| dc.subject | 食品接觸面 | zh_TW |
| dc.subject | 浮游態 | zh_TW |
| dc.subject | 生物膜 | zh_TW |
| dc.subject | 模型擬合 | zh_TW |
| dc.subject | food contact surface | en |
| dc.subject | Pantoea spp. | en |
| dc.subject | model fitting | en |
| dc.subject | biofilm | en |
| dc.subject | planktonic | en |
| dc.subject | bacteria transfer | en |
| dc.title | 表面材質及生理狀態對 Pantoea spp. 轉移至香瓜之行為影響 | zh_TW |
| dc.title | Influence of surface materials and physiological state on the transfer dynamics of Pantoea spp. to fresh-cut melon | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林旭陽;林泓廷;王如邦;李月嘉 | zh_TW |
| dc.contributor.oralexamcommittee | Hsu-Yang Lin;Hong-Ting Lin;Reu-Ben Wang;Yue-Jia Lee | en |
| dc.subject.keyword | Pantoea spp.,細菌轉移,食品接觸面,浮游態,生物膜,模型擬合, | zh_TW |
| dc.subject.keyword | Pantoea spp.,bacteria transfer,food contact surface,planktonic,biofilm,model fitting, | en |
| dc.relation.page | 185 | - |
| dc.identifier.doi | 10.6342/NTU202503819 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-11 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 食品科技研究所 | - |
| dc.date.embargo-lift | 2025-08-19 | - |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 7.74 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
