請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98739完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王建凱 | zh_TW |
| dc.contributor.advisor | Chien-Kai Wang | en |
| dc.contributor.author | 黃唯哲 | zh_TW |
| dc.contributor.author | Wei-Che Huang | en |
| dc.date.accessioned | 2025-08-18T16:18:00Z | - |
| dc.date.available | 2025-08-19 | - |
| dc.date.copyright | 2025-08-18 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-06 | - |
| dc.identifier.citation | [1] Shampine, L. F. (2008). Vectorized adaptive quadrature in MATLAB. Journal of Computational and Applied Mathematics, 211(2), 131-140.
[2] Mach, A. J., & Di Carlo, D. (2010). Continuous scalable blood filtration device using inertial microfluidics. Biotechnology and Bioengineering, 107(2), 302-311. [3] Wang, S. H., Lee, L. P., & Lee, J. S. (2001). A linear relation between the compressibility and density of blood. The Journal of the Acoustical Society of America, 109(1), 390-396. [4] Kossa, A., & Horváth, A. L. (2021). Powerful calibration strategy for the two-layer viscoplastic model. Polymer Testing, 99, 107206. [5] Hur, S. C., Henderson-MacLennan, N. K., McCabe, E. R. , & Di Carlo, D. (2011). Deformability-based cell classification and enrichment using inertial microfluidics. Lab on a Chip, 11(5), 912-920. [6] Strohm, E. M., Hysi, E., & Kolios, M. C. (2012, October). Photoacoustic measurements of single red blood cells. In 2012 IEEE International Ultrasonics Symposium (pp. 1406-1409), IEEE. [7] Kumari, S., Mehendale, N., Roy, T., Sen, S., Mitra, D., & Paul, D. (2024). Measuring red blood cell deformability and its heterogeneity using a fast microfluidic device. Cell Reports Physical Science, 5(8). [8] Wolff, D. A., & Pertoft, H. (1972). Separation of HeLa cells by colloidal silica density gradient centrifugation. The Journal of Cell Biology, 55(3), 579-585. [9] Li, Y. J., Yang, Y. N., Zhang, H. J., Xue, C. D., Zeng, D. P., Cao, T., & Qin, K. R. (2019). A microfluidic micropipette aspiration device to study single-cell mechanics inspired by the principle of wheatstone bridge. Micromachines, 10(2), 131. [10] Geltmeier, A., Rinner, B., Bade, D., Meditz, K., Witt, R., Bicker, U., Bludszuweit-Philipp, C., & Maier, P. (2015). Characterization of dynamic behaviour of MCF7 and MCF10A cells in ultrasonic field using modal and harmonic analyses. Plos One, 10(8), e0134999. [11] Mirzaluo, M., Fereiduni, F., Taheri, M., & Modabberifar, M. (2023). Experimental extraction of Young’s modulus of MCF-7 tissue using atomic force microscopy and the spherical contact models. European Biophysics Journal, 52(1), 81-90. [12] Szymczyk, K., & Taraba, A. (2016). Aggregation behavior of Triton X-114 and Tween 80 at various temperatures and concentrations studied by density and viscosity measurements. Journal of Thermal Analysis and Calorimetry, 126(1), 315-326. [13] Singer, S. J., & Nicolson, G. L. (1972). The fluid mosaic model of the structure of cell membranes. Science, 175(4023), 720-731. [14] Rand, P. W., Lacombe, E., Hunt, H. E., & Austin, W. H. (1964). Viscosity of normal human blood under normothermic and hypothermic conditions. Journal of Applied Physiology, 19(1), 117-122. [15] Yeo, L. Y., Chang, H. C., Chan, P. P., & Friend, J. R. (2011). Microfluidic devices for bioapplications. Small, 7(1), 12-48. [16] Zborowski, M., Ostera, G. R., Moore, L. R., Millron, S., Chalmers, J. J., & Schecter, A. N. (2003). Red blood cell magnetophoresis. Biophysical Journal, 84(4), 2638-2645. [17] Holenstein, C. N., Horvath, A., Schär, B., Schoenenberger, A. D., Bollhalder, M., Goedecke, N., Bartalena, G., Otto, O., Herbig, M., Guck, J., Müller, D. A., Snedeker, J. G., & Silvan, U. (2019). The relationship between metastatic potential and in vitro mechanical properties of osteosarcoma cells. Molecular Biology of the Cell, 30(7), 887-898. [18] Wu, T., & Feng, J. J. (2013). Simulation of malaria-infected red blood cells in microfluidic channels: Passage and blockage. Biomicrofluidics, 7(4). [19] Bento, D., Rodrigues, R. O., Faustino, V., Pinho, D., Fernandes, C. S., Pereira, A. I., Garcia, V., Miranda, J. M., & Lima, R. (2018). Deformation of red blood cells, air bubbles, and droplets in microfluidic devices: Flow visualizations and measurements. Micromachines, 9(4), 151. [20] Horobin, J. T., Sabapathy, S., & Simmonds, M. J. (2020). Red blood cell tolerance to shear stress above and below the subhemolytic threshold. Biomechanics and Modeling in Mechanobiology, 19(3), 851-860. [21] Liu, D., Sugiyama, K., & Gong, X. (2025). Buckling of red blood cell membrane in narrow capillaries induces excessive wall shear stress. Biophysical Journal, 124(8), 1313-1322. [22] Peskin, C. S. (2002). The immersed boundary method. Acta Numerica, 11, 479-517. [23] Faustino, V., Rodrigues, R. O., Pinho, D., Costa, E., Santos-Silva, A., Miranda, V., Amaral, J. S., & Lima, R. (2019). A microfluidic deformability assessment of pathological red blood cells flowing in a hyperbolic converging microchannel. Micromachines, 10(10), 645. [24] Deng, Y. X., Chang, H. Y., & Li, H. (2022). Recent advances in computational modeling of biomechanics and biorheology of red blood cells in diabetes. Biomimetics, 7(1), 15. [25] Niculescu, A. G., Chircov, C., Bîrcă, A. C., & Grumezescu, A. M. (2021). Fabrication and applications of microfluidic devices: A review. International Journal of Molecular Sciences, 22(4), 2011. [26] Poon, C. (2022). Measuring the density and viscosity of culture media for optimized computational fluid dynamics analysis of in vitro devices. Journal of the Mechanical Behavior of Biomedical Materials, 126, 105024. [27] Chen, Y., Norde, W., van der Mei, H. C., & Busscher, H. J. (2012). Bacterial cell surface deformation under external loading. mBio, 3(6), 10-1128. [28] Sun, J., Liu, C., Li, M., Wang, J., Xianyu, Y., Hu, G., & Jiang, X. (2013). Size-based hydrodynamic rare tumor cell separation in curved microfluidic channels. Biomicrofluidics, 7(1). [29] Ghia, U., Ghia, K. N., & Shin, C. T. (1982). High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics, 48(3), 387-411. [30] Wang, X., & Zhang, L. T. (2010). Interpolation functions in the immersed boundary and finite element methods. Computational Mechanics, 45(4), 321-334. [31] Shi, Y., Wang, G., Cai, X. P., Deng, J. W., Zheng, L., Zhu, H. H., Zheng, M., Yang, B., & Chen, Z. (2020). An overview of COVID-19. Journal of Zhejiang University-SCIENCE B, 21(5), 343-360. [32] Beebe, D. J., Mensing, G. A., & Walker, G. M. (2002). Physics and applications of microfluidics in biology. Annual Review of Biomedical Engineering, 4(1), 261-286. [33] Riahi, R., Gogoi, P., Sepehri, S., Zhou, Y., Handique, K., Godsey, J., & Wang, Y. (2014). A novel microchannel-based device to capture and analyze circulating tumor cells (CTCs) of breast cancer. International Journal of Oncology, 44(6), 1870-1878. [34] Shiriny, A., & Bayareh, M. (2021). Inertial focusing of CTCs in a novel spiral microchannel. Chemical Engineering Science, 229, 116102. [35] Muhsin, S. A., He, Y., Al-Amidie, M., Sergovia, K., Abdullah, A., Wang, Y., Alkorjia, O., Hulsey, R. A., Hunter, G. L., Erdal, Z. K., Pletka, R. J., George, H. S., Wan, X.-F., & Almasri, M. (2023). A microfluidic biosensor architecture for the rapid detection of COVID-19. Analytica Chimica Acta, 1275, 341378. [36] Souli, M., Ouahsine, A., & Lewin, L. (2000). ALE formulation for fluid-structure interaction problems. Computer Methods in Applied Mechanics and Engineering, 190(5-7), 659-675. [37] Acharya, S., Baliga, B. R., Karki, K., Murthy, J. Y., Prakash, C., & Vanka, S. P. (2007). Pressure-based finite-volume methods in computational fluid dynamics. Journal of Heat Transfer, 129(4), 407-424. [38] Peskin, C. S. (1977). Numerical analysis of blood flow in the heart. Journal of Computational Physics, 25(3), 220-252. [39] Zhang, L., Gerstenberger, A., Wang, X., & Liu, W. K. (2004). Immersed finite element method. Computer Methods in Applied Mechanics and Engineering, 193(21-22), 2051-2067. [40] Adams, J. D., Kim, U., & Soh, H. T. (2008). Multitarget magnetic activated cell sorter. Proceedings of the National Academy of Sciences, 105(47), 18165-18170. [41] Bonner, W. A., Hulett, H. R., Sweet, R. G., & Herzenberg, L. A. (1972). Fluorescence activated cell sorting. Review of Scientific Instruments, 43(3), 404-409. [42] Chorin, A. J. (1968). Numerical solution of the Navier-Stokes equations. Mathematics of Computation, 22(104), 745-762. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98739 | - |
| dc.description.abstract | 本論文探討複雜微流道內之流固耦合現象,利用計算流體力學 (Computational fluid dynamics) 結合沉浸有限元素法 (Immersed finite element method),建構了一套高效且準確的數值模擬平台。首先,採用Navier-Stokes方程式與連續方程式描述流體行為,透過有限差分法 (Finite difference method) 以及交錯網格進行數值離散,並透過虛擬網格以及邊界條件提高模擬的穩定性與精確度。此外,沉浸有限元素法之應用使固體自由移動於流體網格中,並透過形狀函數以及高斯積分等有限元素技術,精確計算固液交互作用產生的耦合力。
本研究更進一步應用直接強制法處理微流道中的複雜幾何邊界問題,並採用自適應積分法以提升模擬精度與效率。為了驗證模擬平台之正確性,本研究透過與商用軟體SimLab的結果進行比對,確認其模擬準確性與穩定性。在應用層面上,本研究設計並模擬多種具代表性的微流道幾何,包含十字、漸擴、曲線與螺旋流道,且針對紅血球、細菌與癌細胞等不同生物粒子,分析其運動軌跡、變形行為與耦合力的變化。透過與實驗文獻數據比較,成功驗證了此方法之準確性,並進一步提出依據細胞尺寸與彈性差異的無標記式 (Label-free) 分離策略,顯示此數值方法對於生醫診斷與細胞篩選等應用具有高度的潛力。 | zh_TW |
| dc.description.abstract | This thesis investigates fluid-structure interaction (FSI) phenomena within complex microfluidic channels by developing an efficient and accurate numerical simulation platform based on computational fluid dynamics (CFD) and the immersed finite element method (IFEM). The fluid behavior is described using the Navier-Stokes equations and the continuity equation, which are discretized via the finite difference method (FDM) on a staggered grid. Virtual grids and boundary conditions are further applied to enhance the stability and accuracy of the simulation. The application of IFEM allows solid structures to move freely within the fluid mesh, and the interaction forces between fluid and solid are accurately computed using finite element techniques such as shape functions and Gaussian quadrature.
Moreover, the study employs the direct forcing method to handle complex geometric boundaries in microchannels and adopts an adaptive integration scheme to improve simulation precision and efficiency. To validate the correctness of the simulation platform, results are compared with those obtained from the commercial software SimLab, confirming its accuracy and stability. On the application level, several representative microchannel geometries, including cross, expansion, curved, and spiral channels, are designed and simulated. The behavior of various biological particles such as red blood cells, bacteria, and cancer cells is analyzed in terms of motion trajectory, deformation, and interaction forces. By comparing the results with experimental data from the literature, the proposed method is shown to be accurate. Furthermore, a label-free separation strategy based on differences in cell size and elasticity is proposed, demonstrating the high potential of this numerical method in biomedical diagnostics and cell sorting applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T16:18:00Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T16:18:00Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目次 v 圖次 viii 表次 xv 第一章 緒論 1 1.1 研究動機 1 1.2 研究背景 2 1.3 文獻回顧 3 1.3.1 沉浸邊界法 3 1.3.2 沉浸有限元素法 3 1.3.3 細胞分選與分析 4 1.4 研究架構 4 第二章 流場之數值與模擬方法 6 2.1 流體控制方程式 7 2.1.1 動量方程式 7 2.1.2 連續方程式 9 2.2 數值離散化 10 2.2.1 有限差分法 10 2.2.2 交錯網格 12 2.2.3 虛擬網格 15 2.3 邊界條件設置 16 2.3.1 狄利克雷邊界條件 17 2.3.2 諾伊曼邊界條件 18 2.4 程式架構與求解流程 19 2.4.1 程式求解順序 20 2.4.2 文獻驗證 23 第三章 沉浸有限元素法 29 3.1 有限元素法理論 29 3.1.1 形狀函數 29 3.1.2 高斯積分 31 3.1.3 超彈性材料之方程式 32 3.2 沉浸有限元素法理論 33 3.2.1 座標描述 33 3.2.2 流體動力學 34 3.2.3 固體弱形式推導 36 3.3 流固耦合機制 38 3.3.1 插值函數 38 3.3.2 耦合流程 40 3.4 文獻實例研析 44 3.5 商用軟體驗證 51 第四章 複雜幾何微流體元件固液耦合之應用與模擬 59 4.1 複雜幾何流道之建構 59 4.1.1 直接強制法 59 4.1.2 單一網格積分比較 64 4.1.3 商用軟體驗證 67 4.2 細胞於十字流道之分析 69 4.3 細胞於等角度流道之分析 75 4.3.1 等角度漸擴流道 75 4.3.2 等角度漸縮流道 98 4.4 細胞於曲線流道之分析 116 4.4.1 曲線漸縮流道 116 4.4.2 曲線漸擴流道 126 4.5 細胞於螺旋流道之分析 140 第五章 結論與未來展望 163 5.1 結論 163 5.2 未來展望 163 參考文獻 165 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 固體力學 | zh_TW |
| dc.subject | 微流道 | zh_TW |
| dc.subject | 沉浸有限元素法 | zh_TW |
| dc.subject | 流固耦合 | zh_TW |
| dc.subject | 流體力學 | zh_TW |
| dc.subject | Fluid mechanics | en |
| dc.subject | Fluid-structure interaction | en |
| dc.subject | Immersed finite element method | en |
| dc.subject | Solid mechanics | en |
| dc.subject | Microfluidic channels | en |
| dc.title | 應用沉浸有限元素法於具複雜幾何微流體元件之固液耦合計算力學研究 | zh_TW |
| dc.title | Liquid-Solid Coupled Mechanical Analysis of Complex Geometry Microfluidic Devices Using the Immersed Finite Element Method | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉建豪;吳筱梅;陳壁彰;董奕鍾 | zh_TW |
| dc.contributor.oralexamcommittee | Chien-Hao Liu;Hsiao-Mei Wu;Bi-Chang Chen;Yi-Chung Tung | en |
| dc.subject.keyword | 微流道,固體力學,流體力學,流固耦合,沉浸有限元素法, | zh_TW |
| dc.subject.keyword | Microfluidic channels,Solid mechanics,Fluid mechanics,Fluid-structure interaction,Immersed finite element method, | en |
| dc.relation.page | 169 | - |
| dc.identifier.doi | 10.6342/NTU202503611 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2025-08-19 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 9.79 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
