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摘要 

    本論文探討複雜微流道內之流固耦合現象，利用計算流體力學 (Computational 

fluid dynamics) 結合沉浸有限元素法 (Immersed finite element method)，建構了一

套高效且準確的數值模擬平台。首先，採用 Navier-Stokes 方程式與連續方程式描

述流體行為，透過有限差分法 (Finite difference method) 以及交錯網格進行數值離

散，並透過虛擬網格以及邊界條件提高模擬的穩定性與精確度。此外，沉浸有限元

素法之應用使固體自由移動於流體網格中，並透過形狀函數以及高斯積分等有限

元素技術，精確計算固液交互作用產生的耦合力。 

    本研究更進一步應用直接強制法處理微流道中的複雜幾何邊界問題，並採用

自適應積分法以提升模擬精度與效率。為了驗證模擬平台之正確性，本研究透過與

商用軟體 SimLab 的結果進行比對，確認其模擬準確性與穩定性。在應用層面上，

本研究設計並模擬多種具代表性的微流道幾何，包含十字、漸擴、曲線與螺旋流道，

且針對紅血球、細菌與癌細胞等不同生物粒子，分析其運動軌跡、變形行為與耦合

力的變化。透過與實驗文獻數據比較，成功驗證了此方法之準確性，並進一步提出

依據細胞尺寸與彈性差異的無標記式 (Label-free) 分離策略，顯示此數值方法對於

生醫診斷與細胞篩選等應用具有高度的潛力。 
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Abstract 

     This thesis investigates fluid-structure interaction (FSI) phenomena within 

complex microfluidic channels by developing an efficient and accurate numerical 

simulation platform based on computational fluid dynamics (CFD) and the immersed 

finite element method (IFEM). The fluid behavior is described using the Navier-Stokes 

equations and the continuity equation, which are discretized via the finite difference 

method (FDM) on a staggered grid. Virtual grids and boundary conditions are further 

applied to enhance the stability and accuracy of the simulation. The application of IFEM 

allows solid structures to move freely within the fluid mesh, and the interaction forces 

between fluid and solid are accurately computed using finite element techniques such as 

shape functions and Gaussian quadrature. 

    Moreover, the study employs the direct forcing method to handle complex geometric 

boundaries in microchannels and adopts an adaptive integration scheme to improve 

simulation precision and efficiency. To validate the correctness of the simulation platform, 

results are compared with those obtained from the commercial software SimLab, 

confirming its accuracy and stability. On the application level, several representative 

microchannel geometries, including cross, expansion, curved, and spiral channels, are 

designed and simulated. The behavior of various biological particles such as red blood 

cells, bacteria, and cancer cells is analyzed in terms of motion trajectory, deformation, 

and interaction forces. By comparing the results with experimental data from the literature, 

the proposed method is shown to be accurate. Furthermore, a label-free separation 

strategy based on differences in cell size and elasticity is proposed, demonstrating the 

high potential of this numerical method in biomedical diagnostics and cell sorting 

applications. 
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第一章 緒論 

1.1 研究動機 

    自 2019 年末 COVID-19 疫情爆發以來，病毒對人類健康與全球經濟造成巨大

衝擊，也改變了人們對疾病診斷、治療以及預防措施的認識與重視程度 [31]。

COVID-19 病毒透過感染人體細胞而擴散，其感染機制與細胞尺度的生物物理現象

息息相關。這一背景促使科學界重新思考細胞尺度的研究對於醫學和公共衛生的

重要性，尤其是如何精準且快速地檢測並分析病毒或病理相關之細胞。 

隨著全球醫療檢測需求的增加，傳統實驗室檢測技術面臨效率與成本的巨大

挑戰。因此，高精度、高效率及低成本的檢測技術需求大增。微流體技術便是因應

這種需求而快速崛起的技術之一，其微尺度特性使其具有低耗材、快速反應、便於

攜帶及操作方便等優勢，廣泛應用於生醫檢測與微流控晶片 (Lab-on-a-chip, LOC) 

等新興領域。 

然而，在微流體元件的設計與應用中，常會面臨複雜幾何構型所引起的流體與

可變形固體結構的交互作用問題，即流固耦合 (Fluid-structure interaction, FSI) 問

題。流固耦合現象不僅影響微流道中的流場分布，亦影響固體結構的性能與穩定性，

因此深入理解流固耦合的機制與建構高精度的數值模擬方法，已成為微流體研究

的重要課題。 

沉浸式有限元素法 (Immersed finite element method, IFEM) 的提出與發展為流

固耦合的研究提供了新的計算方法。相較於傳統數值方法，IFEM 在處理複雜邊界

條件下的流固界面問題具有顯著的優勢，尤其在微尺度下的流固耦合計算中，能有

效降低網格重劃的需求，大幅提升模擬的精確性與效率。 

因此，本研究期望透過沉浸式有限元素法系統性地分析微流體元件內複雜幾
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何構型的流固耦合問題，並針對流固交互作用機制、數值模擬精確性及效率等方面

進行深入的探討，進而提供微尺度醫療元件設計的重要參考依據。 

1.2 研究背景 

    微流體技術自 1990 年代以來經歷迅速發展，目前已被廣泛應用於醫療診斷、

細胞篩選、生物分子分析和環境監測等諸多領域 [32]。微流體技術通過微尺度下

流體特性與微結構的巧妙設計，實現了微量檢測、高精度操作以及快速反應等功能，

成為現代醫療技術中不可或缺的一環 ([15]、[25])。 

    微流道 (Microchannel) 作為微流體系統的核心結構之一，具備極為特殊的流

體動力學特性，透過不同幾何設計可精準操控流體流動與細胞運動，例如在循環腫

瘤細胞 (Circulating tumor cell, CTC) 篩選中已有諸多應用案例 ([33]、[34])。此外，

針對病毒檢測如 COVID-19 病毒快篩，微流道的迅速分離及濃縮病毒樣本的能力

也得到了明顯的驗證 [35]。然而，微流體元件中的流固耦合現象，因其固液界面處

交互作用複雜且難以準確模擬，一直是元件設計和應用中的關鍵難題。傳統的數值

方法如任意拉格朗日-歐拉法 (Arbitrary Lagrangain Eulerian, ALE) [36] 和有限體

積法 (Finite volume method, FVM) [37] 雖已廣泛應用，但在處理大變形問題時，

因須頻繁重新建構網格，導致消耗極大計算資源。 

沉浸邊界法 (Immersed boundary method, IBM) 雖然在計算複雜幾何邊界時有

較佳的適用性，但只能計算固體邊界與流體之交互作用。IFEM 方法的提出則有效

結合了有限元素法的精確性和 IBM方法的靈活性，並克服了網格劃分的計算瓶頸，

為微尺度複雜幾何微流體元件的設計和分析提供了強大的數值工具。 

本研究即針對 IFEM 方法的應用進行深入的探討，期望透過系統性的理論分

析與數值模擬，提供有效的流固耦合分析策略。 
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1.3 文獻回顧 

1.3.1 沉浸邊界法 

    Peskin 提出了沉浸邊界法的完整理論架構及數值實現方法，用以解決涉及複

雜固液交界面的流固耦合問題 [22]。Peskin 透過將固體邊界視為由具有彈性的纖

維構成，將流體與結構的交互作用轉換為固定的歐拉網格上的外力項，利用狄拉克

函數建立起固體邊界與周圍流體間的聯繫。研究過程中，Peskin 採用有限差分法 

(Finite difference method, FDM) 求解流場方程式，並透過模擬多種生物學問題，如

心臟瓣膜運動和血流動力學等 [38]，驗證 IBM 的適用性，此方法為處理複雜邊界

提供了初步的解決方案。 

1.3.2 沉浸有限元素法 

    為了解決沉浸邊界法在模擬流固耦合問題時的限制，Zhang 等人提出了沉浸式

有限元素法 [39]。此方法結合了沉浸邊界法的靈活性與有限元素法的精確性，有

效地處理了複雜的流固交界面問題，尤其適用於處理具大變形的柔性固體。 

    IFEM 方法中，固體採用拉格朗日網格，流體則採用歐拉網格。相較於 IBM 中

使用的一維纖維結構，IFEM 更真實且準確地描述了固體結構的應力與變形特性。

此外，Zhang 等人透過模擬剛性與柔性球體的運動行為，驗證了 IFEM 方法在描述

固體在流體中大變形的可靠性與準確性，並且成功地與實驗數據進行了良好的比

較與驗證。由此證明，IFEM 為流固耦合模擬領域提供了一種重要且高效的數值分

析工具。 
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1.3.3 細胞分選與分析 

    傳統的細胞分選通常為標記式 (Label-based) 分選，即透過螢光染劑、抗體或

是磁性粒子等標記物來識別目標細胞，可專一性地與細胞表面的抗原或是特定的

分子結合，進而達到細胞分選的效果 ([40]、[41])，然而，此過程花費成本較高，

且細胞在此標記過程中常常會受到不可逆的損害，導致細胞功能下降，因此發展出

了無標記式 (Label-free) 的分選方法，像是透過微流體裝置、聲學或是離心等方式

進行分選。 

    微流道內細胞分選可透過細胞尺寸與彈性差異來進行，如 Di Carlo 等研究指

出，微流道內的慣性升力與管壁效應能有效分離不同尺寸的細胞 [2]。此外，Hur

等人透過細胞變形性分析，成功區分癌細胞與正常細胞，顯示微流體技術在細胞分

選中的重要性 [5]。本研究即希望延續上述研究成果，將 IFEM 方法應用於具複雜

幾何的微流體元件之流固耦合問題，並探討其數值模擬的精確性與穩定性，進而為

未來相關研究提供更全面且深入的理論與技術支持。 

1.4 研究架構 

    本論文旨在進行 MATLAB 的程式設計與開發，透過固體力學和流體力學之理

論與演算法，進行具複雜幾何微流體元件之固液耦合模擬。為了模擬複雜幾何之微

流道，管壁將視為阻流體，並採用單向耦合求解，即固體提供其邊界條件給予流體

計算，固體本身則不受流體影響，透過直接強制法施加流場的邊界條件，而流道內

可變形之固體則透過雙向耦合求解，透過沉浸有限元素法進行耦合，流體會受到固

體的影響，固體也會受到流體的影響，藉此達到固液耦合之模擬。 
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    本論文架構如下：首先，本研究將介紹流場的基本理論與數值計算方法，包括

Navier-Stokes 方程式及相關之數值模擬技術。接著，進入 IFEM 之理論背景與數值

實現，詳細探討有限元素法之基本概念以及 IFEM 處理流固耦合問題之數值方法，

並透過經典文獻之模擬結果進行驗證與比對。再者，本研究將深入應用 IFEM 模擬

分析複雜幾何微流體元件之流固耦合現象，並探討不同幾何設計與操作條件下的

固液耦合現象。最後，本論文將於結論部分總結研究之主要發現與成果，並提出未

來進一步研究的可能方向與展望，促進此領域後續的研究與應用發展。 
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第二章 流場之數值與模擬方法 

    計算流體力學 (Computational fluid dynamics, CFD) 是一門結合流體力學基礎

理論與數值計算方法的科學技術，旨在利用電腦進行流體流動行為的模擬與分析，

並進一步協助工程問題的設計與優化。CFD 技術隨著近年來計算能力與數值演算

法的不斷進步，已經廣泛地應用於航空、汽車、能源、生醫、環境工程等多個領域，

能夠有效處理各類複雜流動問題，尤其是在涉及流固耦合現象、微尺度流體流動及

湍流等議題中發揮重要的價值。 

    本研究透過 CFD 方法探討微流體元件內複雜流固耦合問題，其中關鍵的數值

模擬步驟包括控制方程式的選擇與建立、數值離散化技術的應用、邊界條件設定，

以及系統化的程式架構與求解流程。流場的控制方程式為模擬計算之基礎，常用的

有動量方程式以及連續方程式，其中動量方程式描述流體質點受力後的加速度與

其動量變化之關係，而連續方程式則保障流場內質量的守恆性，兩者共同組成流體

運動模擬的核心。為了在電腦中求解上述方程式，須要將連續形式轉換為適合數值

處理的離散形式，本研究採用有限差分法 (Finite difference method, FDM) 作為數

值離散化之核心技術。透過交錯網格 (Staggered grid) 的佈局，能夠有效避免數值

模擬中的壓力與速度耦合問題，提升計算的穩定性與準確性。此外，本研究也採用

了虛擬網格 (Ghost cell) 技術，處理流體界面處的計算，進一步提高計算效率及網

格適應能力。 

    邊界條件的正確設定對數值模擬結果的準確性至關重要。本研究將探討兩種

常用的邊界條件：狄利克雷邊界條件 (Dirichlet boundary condition) 與諾伊曼邊界

條件 (Neumann boundary condition)。狄利克雷邊界條件用以描述邊界上物理量的

固定數值情形，而諾伊曼邊界條件則用於表示邊界處物理量的通量或梯度分佈。根

據研究問題之物理意義與需求，選擇適當的邊界條件以獲得準確的流場分佈。此外，

CFD 求解流程的設計將直接影響模擬效率與精確性。本研究透過建立系統性的流
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程來組織離散後的方程式，並詳細規劃求解的步驟。最後，本研究亦將透過與文獻

進行驗證，確保所提出之數值模型和方法的可靠性與準確性。 

    本章將依序詳細介紹上述各項流場數值計算技術，包含動量方程式與連續方

程式的推導及物理意涵、有限差分法的詳細說明、交錯與虛擬網格的應用方法、邊

界條件設定之原則與方式，以及透過程式架構實現的數值求解流程與驗證方法，為

後續流固耦合的深入探討奠定紮實的基礎。 

2.1 流體控制方程式 

    本節將說明用以描述不可壓縮流體運動行為的基礎控制方程式，包含動量方

程式與連續方程式，以建立準確描述流場變化之理論基礎。 

2.1.1 動量方程式 

    牛頓流體的動量守恆可以透過 Navier-Stokes 方程式來表達。此方程式主要反

映流體的速度場、壓力場與外在作用力之間的動態平衡關係，其中流體質點的動量

變化取決於流場中的壓力梯度、黏滯應力及外力作用。依據連續介質力學理論，可

將動量方程式表達如下： 

 
D𝒖

D𝑡
=

1

𝜌
∇ ∙ 𝝈 + 𝒇 (2- 1) 

其中𝜌為流體密度，𝒖為流體速度場，𝝈為應力張量，𝒇表示單位體積流體受到的外

力。對於不可壓縮流體，流體的應力張量可進一步分解為壓力和黏滯應力： 

 𝝈 = −𝑝𝐈 + 𝝉 = −𝑝𝐈 + 𝜇(∇𝒖 + (∇𝒖)T) (2- 2) 
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其中𝑝為流體壓力，𝝉為偏應力張量 (Deviatoric stress tensor)，𝜇為流體的動態黏度 

(Dynamic viscosity)。 

    式(2- 1)中左側為速度場之物質導數 (Material derivative)，此物質導數定義為

流體質點隨時間變化的速度微分，並以拉格朗日 (Lagrangian) 觀點描述。然而在

數值模擬中，通常採用歐拉 (Eulerian) 觀點，即觀察空間固定點之流場變化。因此，

物質導數可表示為： 

 
D

D𝑡
=

𝜕

𝜕𝑡
+ 𝒖 ∙ ∇ (2- 3) 

將式(2- 2)與式(2- 3)帶入式(2- 1)，即可得到以歐拉座標描述的 Navier-Stokes 方程

式： 

 
𝜕𝒖

𝜕𝑡
+ (𝒖 ∙ ∇) 𝒖 = −

1

𝜌
∇𝑝 + ∇ ∙ ( 𝜈∇𝒖 ) + 𝒇 (2- 4) 

其中𝜈為流體的運動黏度 (Kinematic viscosity)，定義為𝜈 = 𝜇 𝜌⁄ 。在式(2- 4)中，各

項之物理意涵由左至右分別為：慣性項、對流項、壓力梯度項、黏滯項以及外力項。

在求解不可壓縮流體的問題時，必須滿足此式。對於二維流場而言，求解之待定變

數包括 x 方向速度 u、y 方向速度 v 以及壓力場 p。 

    若使用笛卡爾座標系統進行描述，則二維流場的動量方程式可進一步寫為： 

 
𝜕𝑢

𝜕𝑡
+

𝜕(𝑢𝑢)

𝜕𝑥
+

𝜕(𝑢𝑣)

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜈 ( 

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
 ) +

1

𝜌
𝑓𝑥 (2- 5) 

 𝜕𝑣

𝜕𝑡
+

𝜕(𝑢𝑣)

𝜕𝑥
+

𝜕(𝑣𝑣)

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑦
+ 𝜈 ( 

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
 ) +

1

𝜌
𝑓𝑦 (2- 6) 

由於上述兩條方程式中含有三個求解之待定變數，因此須配合下一小節之連續方

程式進行求解。 
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2.1.2 連續方程式 

    在流體力學中，質量守恆是描述流體運動的基本原理之一。質量守恆原理指出，

在一個封閉系統內，質量不會隨時間改變。此原理可透過連續方程式 (Continuity 

equation) 來表達，以描述流體密度和速度場之間的關係。 

    對於任意控制體積 V 內的流體，其質量隨時間的變化率等於流入和流出該體

積的質量流率之差，可表示為： 

 
𝑑

𝑑𝑡
∫ 𝜌𝑑𝑉

𝑉

= − ∫ 𝜌𝒖 ∙ 𝒏𝑑𝐴
𝜕𝑉

 (2- 7) 

其中𝜌是流體密度，𝒖是速度場，𝒏是控制體積邊界𝜕𝑉上的單位法向量，𝑑𝐴是面積

元素。 

    透過高斯散度定理，將面積分轉換為體積分，即可得： 

 
𝑑

𝑑𝑡
∫ 𝜌𝑑𝑉

𝑉

= − ∫ ∇ ∙ (𝜌𝒖)𝑑𝑉
𝑉

 (2- 8) 

由於式(2- 8)對任意控制體積 V 都成立，因此可以得到微分形式的連續方程式： 

 
𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝒖) = 0 (2- 9) 

在處理不可壓縮流體時，假設流體密度𝜌為常數，則式(2- 9)可簡化為： 

 ∇ ∙ 𝒖 = 0 (2- 10) 
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即速度場的散度為零，也代表流體在空間中的體積保持不變，符合不可壓縮流體的

特性。在求解不可壓縮流體的問題時，必須滿足此式。對於二維流場而言，求解之

待定變數包括 x 方向速度 u、y 方向速度 v。 

    若使用笛卡爾座標系統進行描述，則二維流場的動量方程式可進一步寫為： 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 (2- 11) 

式(2- 11)配合式(2- 5)和式(2- 6)，即可求解 x 方向速度 u、y 方向速度 v 以及壓力場

p。 

2.2 數值離散化 

    在計算流體力學中，為了求解描述流體運動的控制方程式，通常須將連續的偏

微分方程轉換為離散的數值形式，使其適合電腦進行計算並求得近似解。離散化的

步驟扮演著連續理論模型與數值模擬之間的重要橋梁，本節將詳細探討用以實現

數值離散化的方法，包括有限差分法、網格配置及節點佈局等。 

2.2.1 有限差分法 

    有限差分法 (Finite difference method, FDM) 是數值分析中常見且有效的方法

之一，尤其在處理結構化網格 (Structured grid) 的問題時，其具備程式實作簡便、

計算效率高等優勢。此方法的核心概念為透過函數的泰勒級數展開 (Taylor 

expansion) 來近似計算函數的導數。 

    假設函數 f(x)在點 x = a 周圍為連續且可微分的函數，根據泰勒展開式，函數

f(x)在 x = a + h 位置附近可展開為： 
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 𝑓(𝑎 + ℎ) = 𝑓(𝑎) + 𝑓′(𝑎)ℎ +
𝑓′′(𝑎)

2
ℎ2 + ⋯ +

𝑓𝑛(𝑎)

𝑛!
ℎ𝑛 + ⋯ (2- 12) 

從上述泰勒展開式，可以推導出函數之一階導數 f'(a)的前向差分 (Forward scheme)： 

 𝑓′(𝑎) =
𝑓(𝑎 + ℎ) − 𝑓(𝑎)

ℎ
+ 𝛰(ℎ) (2- 13) 

同理，當考慮點 x = a + h 時，可獲得後向差分 (Backward scheme)： 

 𝑓′(𝑎) =
𝑓(𝑎) − 𝑓(𝑎 − ℎ)

ℎ
+ 𝛰(ℎ) (2- 14) 

將上述前向與後向差分取平均後，即可得到更高精度的中央差分 (Central scheme)： 

 𝑓′(𝑎) =
𝑓(𝑎 + ℎ) − 𝑓(𝑎 − ℎ)

2ℎ
+ 𝛰(ℎ2) (2- 15) 

此中央差分具有二階精度，較前向及後向差分的一階精度較為準確。此外，將前向

差分與後向差分相減，可推導出函數的二階導數： 

 𝑓′′(𝑎) =
𝑓(𝑎 + ℎ) − 2𝑓(𝑎) + 𝑓(𝑎 − ℎ)

ℎ2
+ 𝛰(ℎ2) (2- 16) 

以上的差分方法中，𝛰為截斷誤差 (Truncation error)，與網格間距 h 的次方成比例，

因此透過縮小網格間距可提高數值解的準確性。在實際應用中，尤其是求解流體力

學的偏微分方程式時，通常可利用中央差分的高精度特性，以有效降低截斷誤差並

獲得更為穩定且準確的數值解。 
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2.2.2 交錯網格 

    在計算流體力學的數值模擬過程中，為了改善數值穩定性並精確處理壓力與

速度之間的耦合問題，經常使用交錯網格 (Staggered grid) 進行空間離散。不同於

傳統的共位網格 (Collocated grid) 將所有的物理量定義於網格節點或單一位置上，

交錯網格則將向量與純量分別定義在網格的不同位置。一般而言，常將速度等向量

定義在網格的邊界或面中心，而壓力等純量則定義在網格中心。 

    對於二維流場問題，本研究採用均勻結構化交錯網格，其中 x 方向速度 U 定

義於每個網格的水平邊中點，y 方向速度 V 則定義於每個網格的垂直邊中點，壓力

場 P 則定義於網格的幾何中心位置。這樣的配置有效地避免了在使用傳統共位網

格時容易出現的數值震盪問題，尤其是在計算壓力梯度與速度散度時能提供更為

穩定的結果。交錯網格之配置圖如圖 2- 1 所示，箭頭代表向量場之方向。 

 

圖 2- 1  交錯網格配置圖 

    以一個矩形的計算區域 [0, 𝐿𝑥] × [0, 𝐿𝑦] 為例，假設其在 x 方向上離散為 nx 個

網格，在 y 方向上離散為 ny 個網格，則內部的速度與壓力節點位置可以表示成如

下形式： 

速度場 節點

速度場 節點

壓力場 節點
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 𝑈 = ( 𝑈1,1  𝑈2,1  … 𝑈1,2  𝑈2,2 … 𝑈nx−1,𝑛𝑦) (2- 17) 

 𝑉 = ( 𝑉1,1   𝑉2,1  …  𝑉1,2  𝑉2,2 …  𝑉nx,ny−1) (2- 18) 

 𝑃 = ( 𝑃1,1   𝑃2,1  … 𝑃1,2   𝑃2,2 …  𝑃nx,ny) (2- 19) 

值得注意的是，在式(2- 17)和式(2- 18)中的速度場的節點並不包含邊界上的節點，

因此 U 節點在 x 方向上只有 nx-1 個，同理 V 節點在 y 方向上也只有 ny-1 個，原因

為邊界上的節點並不會隨著每一個時間步進行更新，而是透過對應之邊界條件來

給予相應之值，將會在 2.3 節說明。 

    根據式(2- 11)可發現，求解時速度場之散度其實是定義在網格中心，所以𝑈𝑖,𝑗

和𝑉𝑖,𝑗的一階導數並不能用於此式，而是𝑈
𝑖+

1

2
,𝑗

 和𝑉
𝑖,𝑗+

1

2

 的一階導數才得以描述。因

此可將其表示為： 

 (𝑈𝑥)
𝑖+

1
2

,𝑗
≈

𝑈𝑖+1,𝑗 − 𝑈𝑖,𝑗

ℎ𝑥
 (2- 20) 

 (𝑉𝑦)
𝑖,𝑗+

1
2

≈
𝑉𝑖,𝑗+1 − 𝑉𝑖,𝑗

ℎ𝑦
 (2- 21) 

其中ℎ𝑥和ℎ𝑦為 x 方向和 y 方向單一網格之邊長。在式(2- 5)和式(2- 6)中，對於 U2、

V2和 UV 的一階導數，為了得以求解，也必須坐落在對應之交錯網格。因此，U2和

V2必須位在網格中心，才能使∂U2/∂x 和∂V2/∂y 分別位在 U 和 V 的交錯網格上；UV

則必須位在網格的角落，使∂UV/∂x 位在 V 的交錯網格上，∂UV/∂y 位在 U 的交錯

網格上，因此可將其表示為： 

 (𝑈2)
𝑖+

1
2

,𝑗
= (

𝑈𝑖,𝑗 + 𝑈𝑖+1,𝑗

2
)

2

 (2- 22) 
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(𝑉2)

𝑖,𝑗+
1
2

= (
𝑉𝑖,𝑗 + 𝑉𝑖,𝑗+1

2
)

2

 (2- 23) 

 
𝑈

𝑖,𝑗+
1
2

=
𝑈𝑖,𝑗 + 𝑈𝑖,𝑗+1

2
 (2- 24) 

 
𝑉

𝑖+
1
2

,𝑗
=

𝑉𝑖,𝑗 + 𝑉𝑖+1,𝑗

2
 (2- 25) 

 
𝑈𝑉𝑖𝑗 =

𝑈𝑖,𝑗 + 𝑈𝑖,𝑗+1

2
×

𝑉𝑖,𝑗 + 𝑉𝑖+1,𝑗

2
 (2- 26) 

其中𝑈𝑉𝑖𝑗坐落在編號為 ij 的網格的右上角資料點，如圖 2- 2 所示。 

    此外，在式(2- 5)和式(2- 6)中，對於 U 和 V 的二階導數，由於𝑈𝑖,𝑗和𝑉𝑖,𝑗的二階

導數即可坐落在對應之交錯網格，因此可直接透過二階的中央差分表示為： 

 ∆𝑈𝑖,𝑗 =
𝑈𝑖+1,𝑗 − 2𝑈𝑖,𝑗 + 𝑈𝑖−1,𝑗

ℎ𝑥
2 +

𝑈𝑖,𝑗+1 − 2𝑈𝑖,𝑗 + 𝑈𝑖,𝑗−1

ℎ𝑦
2  (2- 27) 

同理，也可將壓力場 P 的二階導數表示為： 

 ∆𝑃𝑖,𝑗 =
𝑃𝑖+1,𝑗 − 2𝑃𝑖,𝑗 + 𝑃𝑖−1,𝑗

ℎ𝑥
2 +

𝑃𝑖,𝑗+1 − 2𝑃𝑖,𝑗 + 𝑃𝑖,𝑗−1

ℎ𝑦
2  (2- 28) 

其中∆為拉普拉斯運算子 (Laplace operator)。 
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圖 2- 2  非線性項節點配置圖 

2.2.3 虛擬網格 

    有限差分法在處理結構化網格之邊界處的數值離散問題時，常常會面臨因邊

界節點鄰近區域資訊不足而無法差分的問題。以二階中央差分為例，在邊界上的節

點計算導數時，必須同時使用其內部和外部節點的數值，然而邊界外並無節點可供

計算。為了克服此問題，本研究採用虛擬網格和虛擬節點的技術，在計算場域外設

置不直接參與求解的節點，以提供必要的資訊，並藉此有效輔助邊界處節點的數值

計算。虛擬網格節點之配置圖如圖 2- 3 所示，其中黑色為內部節點，灰色為邊界

節點，藍色則為虛擬節點。虛擬網格上之虛擬節點並不具實際物理意義，也不會納

入求解的未知變數中，但其數值會根據所施加的邊界條件而進行適當的設定。透過

虛擬節點，可以讓邊界上的節點得以和內部的節點都使用有限差分法進行求解，有

助於整體的計算效率和數值穩定性。 

 1 1 1 1  2 1
 2 1

 1 1  2 1

  1 0

  1 1     1
  0 1

  1 2
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    由於本研究採用的是交錯網格的配置，速度和壓力場分別定義於不同位置的

交錯網格上，因此邊界外的虛擬節點位置也必須配合交錯網格的配置，讓邊界區域

的數值計算也能保持一致性，進一步提升流場數值模擬的準確度和可靠性。 

 

圖 2- 3  虛擬網格節點配置圖 

2.3 邊界條件設置 

    在計算流體力學的數值模擬過程中，給予適當的邊界條件對於求解的準確性

和穩定性有決定性的影響。透過設置邊界條件，可以明確地指定計算場域邊界上物

理量的數值或是其變化特性，進而模擬真實的物理情境。本研究透過結構化的交錯

網格來求解流場問題，因此在設定邊界條件時，必須根據不同的節點位置做相應的

處理。 

 1 1 1 1

 1 1

 1 0

 0 1 0 1

   1

 0 2

   2

 1 0 1 0
 2 0 2 0

黑色：內部節點

灰色：邊界節點

藍色：虛擬節點
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    本研究所涉及的邊界條件主要可以區分為兩種類型：第一種為指定邊界上數

值的狄利克雷邊界條件 (Dirichlet boundary condition)，第二種則為指定邊界上法向

導數值的諾伊曼邊界條件 (Neumann boundary condition)。以下將針對這兩類邊界

條件分別描述其在交錯網格上的數值實作方式。 

2.3.1 狄利克雷邊界條件 

    狄利克雷邊界條件用於指定邊界上物理量之明確數值，像是邊界之無滑移條

件 (No-slip condition)，即速度值固定為零。由於本研究採用交錯網格，會導致節

點分別位於邊界或邊界內部位置，因此必須依據不同的方向和位置採用不同的設

定方式。 

    以水平方向速度 U 為例，若節點正好位於左側或右側的邊界上，則可以直接

將已知邊界條件的數值𝑈𝑘𝑛𝑜𝑤𝑛給予該節點，以左邊界為例： 

 𝑈0,𝑗 = 𝑈𝑘𝑛𝑜𝑤𝑛, 𝑗 = 1, … , 𝑛𝑦 (2- 29) 

    對於垂直方向速度 V，若節點正好位於上方或下方的邊界上，則可以直接將已

知邊界條件的數值𝑉𝑘𝑛𝑜𝑤𝑛給予該節點，以下邊界為例： 

 𝑉𝑖,0 = 𝑉𝑘𝑛𝑜𝑤𝑛, 𝑖 = 1, … , 𝑛𝑥 (2- 30) 

    當速度在特定邊界並無實際節點分佈時 (如上邊界的水平速度或右邊界的垂

直速度)，則須要透過邊界外的虛擬節點來施加邊界條件，可透過線性外插表示為： 

 𝑈𝑖,𝑛𝑦+1 = 2 × 𝑈𝑘𝑛𝑜𝑤𝑛 − 𝑈𝑖,𝑛𝑦, 𝑖 = 1, … , 𝑛𝑥 (2- 31) 



doi:10.6342/NTU202503611
18 

 

 𝑉𝑛𝑥+1,𝑗 = 2 × 𝑉𝑘𝑛𝑜𝑤𝑛 − 𝑉𝑛𝑥,𝑗 , 𝑗 = 1, … , 𝑛𝑦 (2- 32) 

    對於壓力場 P，由於其在邊界並無實際節點分佈，因此須要透過邊界外的虛擬

節點來施加邊界條件𝑃𝑘𝑛𝑜𝑤𝑛，以上邊界和右邊界為例，可透過線性外插表示為： 

 𝑃𝑖,𝑛𝑦+1 = 2 × 𝑃𝑘𝑛𝑜𝑤𝑛 − 𝑃𝑖,𝑛𝑦, 𝑖 = 1, … , 𝑛𝑥 (2- 33) 

 𝑃𝑛𝑥+1,𝑗 = 2 × 𝑃𝑘𝑛𝑜𝑤𝑛 − 𝑃𝑛𝑥,𝑗 , 𝑗 = 1, … , 𝑛𝑦 (2- 34) 

透過上述方式可確保邊界上的物理量滿足所設定之邊界條件。 

2.3.2 諾伊曼邊界條件 

    諾伊曼邊界條件用於指定邊界上物理量沿法線方向的導數值。一般而言最常

使用的諾伊曼邊界條件為邊界法向導數為零，也稱為應力自由 (Traction free) 邊

界條件，意味著物理量於邊界處沒有變化。 

    對於速度場而言，其法線方向導數可透過差分法表示，例如在左邊界和右邊界

上之水平方向速度 U 之應力自由邊界條件可表示為： 

 
𝑈0,𝑗 − 𝑈−1,𝑗

ℎ𝑥
= 0 ⟺  𝑈−1,𝑗 = 𝑈0,𝑗 (2- 35) 

 
𝑈𝑛𝑥+1,𝑗 − 𝑈𝑛𝑥,𝑗

ℎ𝑥
= 0 ⟺  𝑈𝑛𝑥+1,𝑗 = 𝑈𝑛𝑥,𝑗 (2- 36) 

同理，垂直方向速度 V 在上下邊界的應力自由邊界條件可表示為： 

 
𝑉𝑖,0 − 𝑉𝑖,−1

ℎ𝑦
= 0 ⟺  𝑉𝑖,−1 = 𝑉𝑖,0 (2- 37) 
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𝑉𝑖,𝑛𝑦+1 − 𝑉𝑖,𝑛𝑦

ℎ𝑦
= 0 ⟺  𝑉𝑖,𝑛𝑦+1 = 𝑉𝑖,𝑛𝑦 (2- 38) 

    當速度在特定邊界並無實際節點分佈時 (如上邊界的水平速度或右邊界的垂

直速度)，則須要透過邊界外的虛擬節點來施加邊界條件，然而與邊界上有節點的

情況並無差別，其應力自由邊界條件可表示為： 

 
𝑈𝑖,𝑛𝑦+1 − 𝑈𝑖,𝑛𝑦

ℎ𝑦
= 0 ⟺  𝑈𝑖,𝑛𝑦+1 = 𝑈𝑖,𝑛𝑦 (2- 39) 

 
𝑉𝑛𝑥+1,𝑗 − 𝑉𝑛𝑥,𝑗

ℎ𝑥
= 0 ⟺  𝑉𝑛𝑥+1,𝑗 = 𝑉𝑛𝑥,𝑗 (2- 40) 

    對於壓力場 P，由於其在邊界並無實際節點分佈，因此須要透過邊界外的虛擬

節點來施加邊界條件，然而與邊界上有節點的情況並無差別，以上邊界和右邊界為

例，其壓力自由邊界條件可表示為： 

 
𝑃𝑖,𝑛𝑦+1 − 𝑃𝑖,𝑛𝑦

ℎ𝑦
= 0 ⟺  𝑃𝑖,𝑛𝑦+1 = 𝑃𝑖,𝑛𝑦 (2- 41) 

 
𝑃𝑛𝑥+1,𝑗 − 𝑃𝑛𝑥,𝑗

ℎ𝑥
= 0 ⟺  𝑃𝑛𝑥+1,𝑗 = 𝑃𝑛𝑥,𝑗 (2- 42) 

透過上述方式可確保邊界上的物理量滿足所設定之邊界條件。 

2.4 程式架構與求解流程 

    為了有效處理流場模擬中的動量方程式和連續方程式，本研究使用了具備高

計算效率和穩定性的程式架構與求解流程。本節將針對程式求解步驟和流場驗證

進行說明。 
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2.4.1 程式求解順序 

    本研究採用投影法 (Projection method) 進行速度場和壓力場的計算，旨在有

效解決非線性方程式的耦合問題，並提升模擬效率和數值穩定性。投影法最初是由

Chorin 於 1967 年提出  [42]，其核心概念是透過計算中繼速度  (Intermediate 

velocity)，並以連續方程式作為約束條件，逐步求解速度場和壓力場。 

    式(2- 4)經過離散化後，可將動量守恆方程式在兩時間步 n 和 n + 1 的關係表示

為： 

 
𝒖𝑛+1 − 𝒖𝑛

∆𝑡
= −(𝒖𝑛 ∙ ∇)𝒖𝑛 −

1

𝜌
∇𝑝𝑛+1 + 𝜈∆𝒖𝑛 +

1

𝜌
𝒇𝑛 (2- 43) 

其中 u 為向量場，包含 x 方向速度場 U 與 y 方向速度場 V。然而，兩組方程式彼

此互相耦合，且方程式中有三個未知數 U、V、p，較難直接求解。透過投影法的幫

助，得以先處理速度場，再透過連續方程式求解壓力場，最後再藉由求解的壓力場

來更新速度場。 

    投影法的求解流程如下，首先，會先對對流項和外力項進行計算，並得到第一

個中繼速度𝑈∗和𝑉∗，表示為： 

 
𝑈∗ − 𝑈𝑛

∆𝑡
= − ((𝑈𝑛)2)𝑥 − (𝑈𝑛𝑉𝑛)𝑦 +

1

𝜌
𝐹𝑛 (2- 44) 

 
𝑉∗ − 𝑉𝑛

∆𝑡
= − (𝑈𝑛𝑉𝑛)𝑥 − ((𝑉𝑛)2)𝑦 +

1

𝜌
𝐺𝑛 (2- 45) 

其中下標為對 x 或 y 方向進行偏微分，𝐹𝑛、𝐺𝑛則為第 n 個時間步在 x 或 y 方向的

單位體積力，可透過顯式的求解方式處理。接著，再對黏滯項進行計算，並得到第

二個中繼速度𝑈∗∗和𝑉∗∗，表示為： 
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𝑈∗∗ − 𝑈∗

∆𝑡
= 𝜈(𝑈𝑥𝑥

∗∗ + 𝑈𝑦𝑦
∗∗ ) (2- 46) 

 
𝑉∗∗ − 𝑉∗

∆𝑡
= 𝜈(𝑉𝑥𝑥

∗∗ + 𝑉𝑦𝑦
∗∗) (2- 47) 

此步驟透過隱式的求解方式處理偏微分方程式，可避免使用較小的時間步長進行

模擬，進而提高模擬效率。接著，再對壓力梯度項進行計算，得到第 n + 1 個時間

步的速度場𝑈𝑛+1、𝑉𝑛+1和壓力項的關係，可表示為： 

 
𝑈𝑛+1 − 𝑈∗∗

∆𝑡
= −

1

𝜌
(𝑃𝑛+1)𝑥 (2- 48) 

 
𝑉𝑛+1 − 𝑉∗∗

∆𝑡
= −

1

𝜌
(𝑃𝑛+1)𝑦 (2- 49) 

為了得到第 n + 1 個時間步的壓力場，將式(2- 48)對 x 方向偏微分，式(2- 49)對 y 方

向偏微分後相加，可表示為： 

 (𝑈𝑛+1)𝑥 + (𝑉𝑛+1)𝑦 − (𝑈∗∗)𝑥 − (𝑉∗∗)𝑦 = −
∆𝑡

𝜌
∙ ∆𝑃𝑛+1 (2- 50) 

觀察式(2- 50)，發現前兩項為連續方程式，在第 n + 1 個時間步時也必須滿足此方

程式，因此前兩項和為零，經整理後可表示為： 

 ∆𝑃𝑛+1 =
𝜌

∆𝑡
∇ ∙ 𝒖∗∗ (2- 51) 

式(2- 51)為泊松方程式 (Poisson’s equation)，可透過第二個中繼速度進行隱式求解

並得到壓力場，常見的求解方法有高斯消去法 (Gaussian elimination)、雅可比法 

(Jacobi method) 等。最後，再根據式(2- 48)和式(2- 49)得到第 n + 1 個時間步的速

度場𝑈𝑛+1和𝑉𝑛+1，可表示為： 
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 𝑈𝑛+1 = 𝑈∗∗ −
∆𝑡

𝜌
(𝑃𝑛+1)𝑥 (2- 52) 

 𝑉𝑛+1 = 𝑉∗∗ −
∆𝑡

𝜌
(𝑃𝑛+1)𝑦 (2- 53) 

透過上述流程，即可透過動量方程式和連續方程式求解速度場和壓力場，並有效地

避免直接求解方程式面臨的高度非線性的耦合問題，可顯著提升數值求解的穩定

性。圖 2- 4 為投影法的求解流程圖。 

 

圖 2- 4  以投影法求解流場之流程圖 

從前一個時間步得到
流場資訊 和

顯式求解得到
第一個中繼速度 和

隱式求解得到
第二個中繼速度 和

隱式求解泊松方程式
得到壓力場

更新速度場得到 和

時間步
n n 1
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2.4.2 文獻驗證 

    為了驗證本研究所提出之數值方法在求解流場問題的有效性與準確性，本節

選擇一個廣泛使用於流體力學模擬之經典驗證案例「頂蓋驅動穴室流 (Lid-driven 

cavity flow)」進行模擬，並將模擬結果與 Ghia 於 1982 年發表的文獻 [29] 之結果

進行比較與分析。 

    在模擬設定中，流場之幾何資訊如圖 2- 5 所示，整個場域由一個邊長為 1 單

位的正方形所組成，頂蓋以一固定之水平速度 Uo = 1 向右移動，帶動流體流動，其

他邊界則限制流速為零。流體使用 200×200 個網格進行模擬。透過設定不同的雷

諾數，得到不同的流場分布，可見圖 2- 6 至圖 2- 9。 

    圖 2- 10 至圖 2- 13 為雷諾數分別在 100 和 400 將速度場 U 於 x = 0.5 處沿 y 軸

作圖以及將速度場 V 於 y = 0.5 處沿 x 軸作圖並和文獻比較之結果，可發現在雷諾

數為 100 時，程式計算結果和文獻結果幾乎一致，而在雷諾數為 400 時，雖然程式

計算結果並無完全貼齊文獻結果，但其分布趨勢一致，因此透過和文獻比對，可確

保本研究使用之數值方法有其準確性和可靠性。 
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圖 2- 5  頂蓋驅動穴室流之幾何資訊 

 

圖 2- 6  頂蓋驅動穴室流之水平方向速度圖 (Re = 100) 

 0 0)  1 0)

 1 1) 0 1)
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圖 2- 7  頂蓋驅動穴室流之垂直方向速度圖 (Re = 100) 

 

圖 2- 8  頂蓋驅動穴室流之水平方向速度圖 (Re = 400) 
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圖 2- 9  頂蓋驅動穴室流之垂直方向速度圖 (Re = 400) 

 

圖 2- 10  頂蓋驅動穴室流在 x = 0.5 沿 y 軸之水平方向速度圖 (Re = 100) 
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圖 2- 11  頂蓋驅動穴室流在 y = 0.5 沿 x 軸之垂直方向速度圖 (Re = 100) 

 

圖 2- 12  頂蓋驅動穴室流在 x = 0.5 沿 y 軸之水平方向速度圖 (Re = 400) 



doi:10.6342/NTU202503611
28 

 

 

圖 2- 13  頂蓋驅動穴室流在 y = 0.5 沿 x 軸之垂直方向速度圖 (Re = 400) 
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第三章 沉浸有限元素法 

    沉浸有限元素法是一種近年來受到廣泛關注的數值計算方法，尤其適用於處

理流固耦合問題。沉浸有限元素法結合了計算流體力學和有限元素法，其主要特點

在於使用了一套獨立於流體網格的固體網格，使得固體的運動不再侷限於固定網

格內。透過固體和流體間耦合力的傳遞機制，沉浸有限元素法允許固體自由地運動

於流體網格內，進而大幅提升了流固耦合模擬的靈活性和適應性。 

    本研究透過沉浸有限元素法探討複雜的流固交互作用現象，主要包含固體弱

形式的推導、形狀函數的建立、高斯積分求解以及流固耦合的機制。固體弱形式的

推導有助於將連續的問題轉換成離散的問題，而形狀函數則是描述元素內物理量

分布的重要工具。本章首先會介紹有限元素法的基礎理論，包含形狀函數之定義及

其性質，接著說明高斯積分方法以及超彈性材料的方程式。隨後，將深入探討沉浸

有限元素法的座標描述方式、流體動力學的基本概念和固體弱形式的推導過程。此

外，流固耦合機制也將作為本章重點討論的內容，包含插值函數以及耦合流程的具

體步驟。最後再透過分析文獻實例，顯示 IFEM 在實際問題中的適用性。 

3.1 有限元素法理論 

    本節將介紹有限元素法的相關理論，包含形狀函數、高斯積分以及超彈性材料

之本構方程式。 

3.1.1 形狀函數 

    形狀函數 (Shape function) 是有限元素法中非常重要的工具，用於描述元素內

物理量的分布情形。以二維的三節點三角形元素為例，每一個元素有三個節點，而
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各節點具有不同的座標與對應的物理量數值。若元素內某一點的座標為 (𝑥1, 𝑥2)，

三節點三角形元素的形狀函數可定義為： 

 𝑁𝑎(𝑥1, 𝑥2) =
(𝑥1 − 𝑥1

(𝑏)
)(𝑥2

(𝑐)
− 𝑥2

(𝑏)
) − (𝑥2 − 𝑥2

(𝑏)
)(𝑥1

(𝑐)
− 𝑥1

(𝑏)
)

(𝑥1
(𝑎)

− 𝑥1
(𝑏)

)(𝑥2
(𝑐)

− 𝑥2
(𝑏)

) − (𝑥2
(𝑎)

− 𝑥2
(𝑏)

)(𝑥1
(𝑐)

− 𝑥1
(𝑏)

)
 (3- 1) 

 𝑁𝑏(𝑥1, 𝑥2) =
(𝑥1 − 𝑥1

(𝑐)
)(𝑥2

(𝑎)
− 𝑥2

(𝑐)
) − (𝑥2 − 𝑥2

(𝑐)
)(𝑥1

(𝑎)
− 𝑥1

(𝑐)
)

(𝑥1
(𝑏)

− 𝑥1
(𝑐)

)(𝑥2
(𝑎)

− 𝑥2
(𝑐)

) − (𝑥2
(𝑏)

− 𝑥2
(𝑐)

)(𝑥1
(𝑎)

− 𝑥1
(𝑐)

)
 (3- 2) 

 𝑁𝑐(𝑥1, 𝑥2) =
(𝑥1 − 𝑥1

(𝑎)
)(𝑥2

(𝑏)
− 𝑥2

(𝑎)
) − (𝑥2 − 𝑥2

(𝑎)
)(𝑥1

(𝑏)
− 𝑥1

(𝑎)
)

(𝑥1
(𝑐)

− 𝑥1
(𝑎)

)(𝑥2
(𝑏)

− 𝑥2
(𝑎)

) − (𝑥2
(𝑐)

− 𝑥2
(𝑎)

)(𝑥1
(𝑏)

− 𝑥1
(𝑎)

)
 (3- 3) 

其中 (𝑥1
(𝑎)

, 𝑥2
(𝑎)

)、(𝑥1
(𝑏)

, 𝑥2
(𝑏)

)、(𝑥1
(𝑐)

, 𝑥2
(𝑐)

) 分別為元素三個節點的座標，透過此表

示方式，可使座標在各自節點位置時，對應的形狀函數值為 1，其他節點的形狀函

數值為 0，且形狀函數在元素內呈線性變化。 

 

圖 3- 1  三節點三角形元素示意圖 

    透過上述定義的形狀函數，即可將元素內的物理量以各節點物理量的加權和

來表示，以位移𝑢𝑖(𝑥1, 𝑥2)為例，可表示為： 

 a)   )

  )
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 𝑢𝑖(𝑥1, 𝑥2) = 𝑢𝑖
(𝑎)

𝑁𝑎(𝑥1, 𝑥2) + 𝑢𝑖
(𝑏)

𝑁𝑏(𝑥1, 𝑥2) + 𝑢𝑖
(𝑐)

𝑁𝑐(𝑥1, 𝑥2) (3- 4) 

其中𝑢𝑖
(𝑎)
、𝑢𝑖

(𝑏)
、𝑢𝑖

(𝑐)
分別為元素三個節點的位移。利用形狀函數，有助於將連續問

題有效離散化，便於進行數值模擬和分析。 

3.1.2 高斯積分 

    在有限元素法的分析中，許多積分運算無法透過解析的方式直接求解，因此須

要藉由數值積分的方法，其中以高斯積分 (Gaussian quadrature) 最為常見。高斯積

分透過選取適當的積分點位置和權重，得以在較少的積分點數量下，獲得較高的積

分精度。高斯積分可表示為： 

 ∫ 𝑓(𝜉)𝑑𝑉 = ∑ 𝜔𝐼𝑓(𝜉𝐼)
𝑀

𝐼=1Ω

 (3- 5) 

其中，Ω為積分之區域，𝜉𝐼為第 I個高斯積分點的座標，𝜔𝐼為對應的權重，M則是

積分點的總數量。 

    為了執行高斯積分，必須將函數從空間座標轉換至標準化座標 (Normalized 

coordinate)。此轉換可透過形狀函數的導數來表示，首先定義雅可比矩陣 (Jacobian 

matrix) J，其各元素可表示為： 

 𝐽𝑖𝑗 =
𝜕𝑥𝑖

𝜕𝜉𝑗
=

𝜕

𝜕𝜉𝑗
(∑ 𝑁𝑎𝑥𝑖

𝑎
𝑁𝑒

𝑎=1
) = ∑ 𝑥𝑖

𝑎 𝜕𝑁𝑎

𝜕𝜉𝑗

𝑁𝑒

𝑎=1
 (3- 6) 

其中，𝑥𝑖
𝑎為元素第 a 個節點在空間座標的第 i 個座標，𝑁𝑎為第 a 個節點的形狀函

數，𝑁𝑒則為元素節點的數量。透過雅可比矩陣可獲得空間座標和標準化座標之間

的對應關係，並可獲得雅可比行列式|𝐽|，表示為： 
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 |𝐽| = det (𝑱) (3- 7) 

透過上述轉換，可將空間積分轉換為標準化座標內的積分形式，以二維面積積分為

例，可表示為： 

 ∫ 𝐹(𝑥)𝑑𝐴
𝑉𝑒

= ∫ 𝐹̂(𝜉)
𝑉

|𝐽|𝑑𝜉1𝑑𝜉2 (3- 8) 

其中𝑉̂為標準化座標內的積分區域。透過高斯積分可有效地應用於有限元素法的數

值積分中，並大幅提升積分精度和計算效率。 

3.1.3 超彈性材料之方程式 

    超彈性材料 (Hyperelastic material) 適用於大變形分析。假設材料之變形前座

標為𝑥𝑖，變形後座標為𝑦𝑖，位移場為𝑢𝑖，方程式可表示為： 

 𝑦𝑖 = 𝑥𝑖 + 𝑢𝑖(𝑥𝑗) (3- 9) 

定義變形梯度張量 F 及其行列式𝐽，表示為： 

 𝐹𝑖𝑗 =
𝜕𝑦𝑖

𝜕𝑥𝑗
=

𝑥𝑖 + 𝑢𝑖(𝑥𝑘)

𝑥𝑗
= 𝛿𝑖𝑗 +

𝜕𝑢𝑖

𝜕𝑥𝑗
 (3- 10) 

 𝐽 = det (𝑭) (3- 11) 

定義左柯西格林變形張量 (Left Cauchy-Green deformation tensor) B，相關公式可表

示為： 

 𝑩 = 𝑭𝑭𝑻 (3- 12) 



doi:10.6342/NTU202503611
33 

 

 𝐼1 = trace(𝑩) = 𝐵𝑘𝑘 (3- 13) 

 𝐼1̅ =
𝐼1

𝐽2/3
=

𝐵𝑘𝑘

𝐽2/3
 (3- 14) 

超彈性材料的應力應變關係可透過應變能密度函數來描述。以 Neo-Hookean 材料

為例，其應變能密度函數 U 可表示為： 

 𝑈 =
𝜇

2
(𝐼1̅ − 3) +

𝐾

2
(𝐽 − 1)2 (3- 15) 

其中，𝜇為超彈性材料之剪切模數 (Shear modulus)，𝐾為超彈性材料之體積模數 

(Bulk modulus)，𝐼1̅則為第一不變量。超彈性材料之柯西應力  Cau hy stress) 𝝈可透

過應變能密度函數之導數來計算，簡化後可表示為： 

 𝜎𝑖𝑗 =
𝜇

𝐽5 3⁄
(𝐵𝑖𝑗 −

1

3
𝐵𝑘𝑘𝛿𝑖𝑗) + 𝐾(𝐽 − 1)𝛿𝑖𝑗 (3- 16) 

透過上述之超彈性材料的本構關係式，結合有限元素法之數值求解流程，即可有效

分析超彈性材料之固體於大變形情形下的力學行為。 

3.2 沉浸有限元素法理論 

    本節將介紹沉浸有限元素法的相關理論，包含座標描述、流體動力學和固體弱

形式的推導。 

3.2.1 座標描述 

    在沉浸有限元素法中，固體與流體分別採用不同的座標描述，以適應其物理性

質與計算需求，示意圖可見圖 3- 2。流體場域Ω𝑓採用歐拉描述 (Eulerian description)，
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其位置以固定座標系 x 表示，和時間無關；固體場域Ω𝑠則是採用拉格朗日描述 

(Lagrangian description)，以固體初始位置𝐗𝑠為依據，追蹤其於時間 t 下的運動與變

形，當前位置可表示為𝐱𝑠(𝐗𝑠, 𝑡)。此外，在沉浸有限元素法中，流體場域Ω𝑓涵蓋了

整個計算場域Ω，而固體場域Ω𝑠則嵌入其中，可表示為： 

 Ω𝑓 = Ω (3- 17) 

 Ω𝑠 ⊆ Ω𝑓 (3- 18) 

    由於固體和流體共享空間，須其重疊區域建立物理量的交換關係。在沉浸有限

元素法中，這些耦合關係將透過後續所介紹的插值函數進行描述，藉此將固體作用

力分布至流體網格，並從流體節點插值速度至固體節點。這種座標描述方式，有效

結合了拉格朗日描述處理大變形和介面追蹤的優勢，以及歐拉描述在處理整體流

場時的穩定性和效率，是 IFEM 能處理複雜流固耦合問題的關鍵基礎。 

 

圖 3- 2  座標描述示意圖 

3.2.2 流體動力學 

    在沉浸有限元素法中，流體的運動由控制體積中的動量守恆方程式所主導，其

非保守型式可表示為： 
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 𝜌
D𝑣𝑖

D𝑡
= 𝜎𝑖𝑗,𝑗 + 𝑓𝑖

𝑒𝑥𝑡 (3- 19) 

其中，𝜌為流體密度，𝑣𝑖為流體速度分量，𝜎𝑖𝑗為柯西應力張量，𝑓𝑖
𝑒𝑥𝑡為單位體積所

受之外力，常見為重力。式(3- 19)表達了流體在單位體積所受的總力，包含內部應

力和外力，此方程式為 Navier-Stokes 方程組中的動量守恆方程式，其形式也可適

用於彈性固體。 

    為了整合流體和固體系統，IFEM 假設整個計算場域為不可壓縮的連續體，流

體場域涵蓋了整個場域Ω，而固體場域Ω𝑠則嵌入其中。為了描述固體對流體的影響，

可於固體場域中進一步將方程式進行分解，表示為： 

 𝜌
D𝑣𝑖

D𝑡
= {

𝜌𝑓
D𝑣𝑖

D𝑡
,   𝐱 ∈ Ω/Ω𝑠

𝜌𝑓
D𝑣𝑖

D𝑡
+ (𝜌𝑠 − 𝜌𝑓)

D𝑣𝑖

D𝑡
,    𝐱 ∈ Ω𝑠 

 (3- 20) 

同理，外力項也可以表示為： 

 𝑓𝑖
𝑒𝑥𝑡 = {

𝜌𝑓𝑔𝑖,   𝐱 ∈ Ω/Ω𝑠

𝜌𝑓𝑔𝑖 + (𝜌𝑠 − 𝜌𝑓)𝑔𝑖,    𝐱 ∈ Ω𝑠 
 (3- 21) 

其中𝑔𝑖為重力加速度分量。忽略靜水壓後，可簡化為： 

 𝑓𝑖
𝑒𝑥𝑡 = {

0,   𝐱 ∈ Ω/Ω𝑠

(𝜌𝑠 − 𝜌𝑓)𝑔𝑖,    𝐱 ∈ Ω𝑠 
 (3- 22) 

接著，將應力項表示為： 

 𝜎𝑖𝑗,𝑗 = {
𝜎𝑖𝑗,𝑗

f ,   𝐱 ∈ Ω/Ω𝑠

𝜎𝑖𝑗,𝑗
f + 𝜎𝑖𝑗,𝑗

𝑠 − 𝜎𝑖𝑗,𝑗
f ,    𝐱 ∈ Ω𝑠 

 (3- 23) 

透過上述方程式，可定義固體內部的固體耦合力𝑓𝑖
FSI,s，可表示為： 
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 𝑓𝑖
FSI,s = −(𝜌𝑠 − 𝜌𝑓)

D𝑣𝑖

D𝑡
+ 𝜎𝑖𝑗,𝑗

𝑠 − 𝜎𝑖𝑗,𝑗
f + (𝜌𝑠 − 𝜌𝑓)𝑔𝑖,    𝐱 ∈ Ω𝑠 (3- 24) 

由於式(3- 24)是透過拉格朗日描述得到的，為了將此耦合力作用於流體網格上，須

透過插值函數的幫助以得到流體所受之耦合力𝑓𝑖
FSI，流體速度也會透過插值函數分

配給固體，會在 3.3 節做更詳細的說明。最終方程式可表示為： 

 𝜌𝑓
D𝑣𝑖

D𝑡
= 𝜎𝑖𝑗,𝑗

f + 𝑓𝑖
𝐹𝑆𝐼 ,   𝐱 ∈ Ω (3- 25) 

由於假設流體為不可壓縮流，所以流體也必須滿足連續方程式，可表示為： 

 𝑣𝑖,𝑖 = 0,   𝐱 ∈ Ω (3- 26) 

透過上述方程式，沉浸有限元素法得以在不須要動態重建網格的情況下，實現固體

對流體的耦合力傳遞和速度插值，進而完成穩定且高效率的流固耦合模擬。 

3.2.3 固體弱形式推導 

    沉浸有限元素法中，固體場域採用拉格朗日描述，因此控制方程式可以直接由

固體節點計算。考慮固體密度𝜌𝑠和流體密度𝜌𝑓之差異，固體控制方程式的強形式

可表示為： 

 (𝜌𝑠 − 𝜌𝑓)𝑢̈𝑖
s = 𝜎𝑖𝑗,𝑗

𝑠 − 𝜎𝑖𝑗,𝑗
f + (𝜌𝑠 − 𝜌𝑓)𝑔𝑖 − 𝑓𝑖

FSI,s
 (3- 27) 

此方程式描述了固體內部的力平衡，其中𝑢̈𝑖
s為固體加速度，而耦合力𝑓𝑖

FSI,s可以視

為因固體不同於流體的行為而產生的額外外力。從式(3- 27)可發現，當固體密度和

流體密度相同，且固體行為和流體相同，則耦合力𝑓𝑖
FSI,s為零，即不產生額外的外

力。 
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    為了透過有限元素法進行計算，必須導出弱形式 (Weak form)。由於流體應力

相較於固體應力小上許多，因此可以忽略。透過虛功原理 (Principle of virtual work)，

將式(3- 27)兩邊乘上虛位移函數δ𝑢𝑖，並對當下的固體場域Ω𝑠進行積分，可表示為： 

 ∫ δ𝑢𝑖 [(𝜌𝑠 − 𝜌𝑓)𝑢̈𝑖
s −

𝜕𝜎𝑖𝑗
𝑠

𝜕𝑥𝑗
− (𝜌𝑠 − 𝜌𝑓)𝑔𝑖 + 𝑓𝑖

FSI,s] 𝑑Ω𝑠 = 0
Ω𝑠

 (3- 28) 

由於 IFEM 採用的是拉格朗日描述，因此必須將積分區域從當下的固體場域Ω𝑠轉

換至初始的固體場域Ω0
𝑠，在假設材料為不可壓縮的情況下，可將式(3- 28)表示為： 

 ∫ δ𝑢𝑖 [(𝜌𝑠 − 𝜌𝑓)𝑢̈𝑖
s −

𝜕𝑃𝑖𝑗

𝜕𝑋𝑗
− (𝜌𝑠 − 𝜌𝑓)𝑔𝑖 + 𝑓𝑖

FSI,s] 𝑑Ω0
𝑠 = 0

Ω0
𝑠

 (3- 29) 

其中𝑃𝑖𝑗為第一 Piola-Kir hhoff應力張量，和柯西應力之關係可表示為： 

 𝑃𝑖𝑗 = 𝐽𝐹𝑖𝑘
−1𝜎𝑘𝑗

𝑠  (3- 30) 

 𝐹𝑖𝑗 =
𝜕𝑥𝑖

𝜕𝑋𝑗
 (3- 31) 

將應力項進行分部積分並使用高斯散度定理後，可將式(3- 29)表示為： 

 

∫ δ𝑢𝑖(𝜌𝑠 − 𝜌𝑓)𝑢̈𝑖
s𝑑Ω0

𝑠

Ω0
𝑠

+ ∫ δ𝑢𝑖,𝑗𝑃𝑖𝑗𝑑Ω0
𝑠

Ω0
𝑠

 

− ∫ δ𝑢𝑖(𝜌𝑠 − 𝜌𝑓)𝑔𝑖𝑑Ω0
𝑠

Ω0
𝑠

+ ∫ δ𝑢𝑖𝑓𝑖
FSI,s𝑑Ω0

𝑠

Ω0
𝑠

= 0 

(3- 32) 

接著，將虛位移與實際位移場皆以有限元素的形狀函數來表示，可得： 

 δ𝑢𝑖 = ∑ 𝑁𝐼

𝐼

δ𝑢𝑖𝐼 (3- 33) 

 𝑢𝑖 = ∑ 𝑁𝐽

𝐽

δ𝑢𝑖𝐽 (3- 34) 
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將式(3- 33)和式(3- 34)代入式(3- 32)，並根據虛位移函數的任意性，可表示為： 

 

∑ ∫ 𝑁𝐼(𝜌𝑠 − 𝜌𝑓)𝑁𝐽𝑢̈𝑖𝐽
s 𝑑Ω0

𝑠

Ω0
𝑠

𝐽

+ ∫ 𝑁𝐼,𝐽𝑃𝑖𝑗𝑑Ω0
𝑠

Ω0
𝑠

 

− ∫ 𝑁𝐼(𝜌𝑠 − 𝜌𝑓)𝑔𝑖𝑑Ω0
𝑠

Ω0
𝑠

+ ∫ 𝑁𝐼𝑓𝑖
FSI,s𝑑Ω0

𝑠

Ω0
𝑠

= 0 

(3- 35) 

根據式(3- 35)，即可建立每一個固體節點 I 的力平衡關係式，表示為： 

 𝑓𝑖𝐼
inert + 𝑓𝑖𝐼

int − 𝑓𝑖𝐼
ext + 𝑓𝑖𝐼

FSI,s = 0 (3- 36) 

其中𝑓𝑖𝐼
inert、𝑓𝑖𝐼

int、𝑓𝑖𝐼
ext、𝑓𝑖𝐼

FSI,s分別表示固體節點 I 上的慣性力、內應力、外力和耦

合力。 

    透過固體弱形式的表示方式，可與流場的離散動量方程式進行耦合。藉由有限

元素法的形狀函數，計算固體材料的應力，進而計算耦合力，並和流體交換場資訊，

達到固體材料在大變形下的高精度求解。 

3.3 流固耦合機制 

3.3.1 插值函數 

    在沉浸有限元素法中，流固耦合的關鍵機制之一，即為建立固體與流體間物理

量交換的有效橋梁。由於流體和固體場域分別採用歐拉描述和拉格朗日描述，兩種

網格系統在空間上並不重合，因此須建立適當的插值與分布機制，使固體節點的耦

合力可有效映射至周圍的流體節點，並反向從流體場域中取得對應的速度資訊傳

回固體節點。此傳遞機制可透過離散狄拉克函數 (Discretized Dirac delta function) 

來完成。 



doi:10.6342/NTU202503611
39 

 

    根據文獻 [22]，二維離散狄拉克函數可定義為： 

 𝛿(𝑥, 𝑦) =
1

ℎ2
𝜙 (

𝑥

ℎ
) 𝜙 (

𝑦

ℎ
) (3- 37) 

其中 x、y 為歐拉描述下的座標位置，h 為單一網格的邊長，𝜙(𝑟)則為一維離散狄

拉克函數，其函數須為連續，且必須滿足以下性質： 

 𝜙(𝑟) = 0,    𝑖𝑓  |𝑟| ≥ 2 (3- 38) 

此外，對於任意值 r，也必須滿足： 

 ∑ 𝜙(𝑟 − 𝑗)

𝑗 𝑒𝑣𝑒𝑛

= ∑ 𝜙(𝑟 − 𝑗)

𝑗 𝑜𝑑𝑑

=
1

2
 (3- 39) 

 ∑(𝑟 − 𝑗)𝜙(𝑟 − 𝑗)

𝑗 

= 0 (3- 40) 

 ∑(𝜙(𝑟 − 𝑗))
2

𝑗 

= 𝐶 (3- 41) 

其中 C 為常數，和 r 互相獨立，而根據文獻 [22] 推導，可將一維離散狄拉克函數

透過多項式來描述，可表示為： 

 

𝜙(𝑟) = 0,     𝑟 ≤ −2                                                                             

=
1

8
( 5 + 2𝑟 − √−7 − 12𝑟 − 4𝑟2 ) , −2 ≤ 𝑟 ≤ −1 

 =
1

8
( 3 + 2𝑟 + √1 − 4𝑟 − 4𝑟2 ) ,     − 1 ≤ 𝑟 ≤ 0     

=
1

8
( 3 − 2𝑟 + √1 + 4𝑟 − 4𝑟2 ) ,          0 ≤ 𝑟 ≤ 1    

=
1

8
( 5 − 2𝑟 − √−7 + 12𝑟 − 4𝑟2 ) ,    1 ≤ 𝑟 ≤ 2     

 = 0,   2 ≤ 𝑟                                                                       (3- 42) 
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根據式(3- 42)可得知，一維狄拉克函數只在−2 ≤ 𝑟 ≤ 2之間有非零值，因此對於二

維場域而言，固體節點的耦合力在傳遞給流體時，僅會分布在該固體節點附近的 16

個流體節點，同理，流體節點的速度在傳遞給固體時，一個固體節點也會接受到附

近 16 個流體節點的速度場，且依據式(3- 39)也可得知，透過這 16 個節點加總的值

會和該節點傳遞物理量的值相同。流固耦合機制之示意圖可見圖 3- 3，其中橘色為

固體節點，藍色為流體節點，紅色則是插值涵蓋之區域。 

    插值函數在 IFEM 扮演著關鍵橋梁的角色，連接流體和固體的資訊傳遞。藉由

離散狄拉克函數的設計，得以實現兩系統下的準確耦合和數值穩定性。 

 

圖 3- 3  沉浸有限元素法之流固耦合機制示意圖 

3.3.2 耦合流程 

    沉浸有限元素法的核心目標在於建立固體與流體場域之間的資訊交換和物理

交互作用。為了達成此目標，必須在每一個時間步中，透過插值和分布機制，在拉

固體節點

流體節點

插值區域
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格朗日描述之固體網格和歐拉描述之流體網格之間建立耦合關係。耦合流程主要

可以分為六個階段，並依序執行以完成流固耦合模擬的時間推進，流程如下： 

(1) 給定初始條件與時間步資料 

    在計算耦合力前，必須給定在第 n 個時間步的固體位置𝐱𝑠,𝑛和流體速度場𝐯𝑛。

此步驟建立整體模擬的起始狀態，後續的計算皆以此為基準。 

(2) 計算固體耦合力 

    透過固體控制方程式中的動量平衡式，計算每一固體節點所對應之耦合力，依

據式(3- 36)，可表示為： 

 𝑓𝑖𝐼
FSI,s = −𝑓𝑖𝐼

inert − 𝑓𝑖𝐼
int + 𝑓𝑖𝐼

ext (3- 43) 

其中𝑓𝑖𝐼
inert、𝑓𝑖𝐼

int分別代表慣性力和內應力，而𝑓𝑖𝐼
ext則為外力。此耦合力會作為下一

步驟中流體受力的來源。 

(3) 分布耦合力至流體場域 

    為了將拉格朗日座標下的固體耦合力分布至歐拉網格上的流體節點，須透過

離散狄拉克函數δ進行處理，假設固體座標為𝐱𝑖
𝑠(𝑡)，流體座標為𝐱𝐽，方程式可表示

為： 

 𝑓𝑖𝐽
FSI = ∑ 𝑓𝑖𝐼

FSI,s(𝐗𝑠, 𝑡)

𝐼

𝛿(𝐱𝐽 − 𝐱𝑖
𝑠) (3- 44) 

此式可將原本作用於固體的力映射至分散於流體節點的外力項，使流體能感受到

固體對其所施加之作用力。 

(4) 更新流體場域 
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    在已知第 n 個時間步的流場資訊和耦合力的情況下，透過流體的動量守恆方

程式和連續方程式進行求解，可表示為： 

 𝜌𝑓(𝑣𝑖,𝑡 + 𝑣𝑗𝑣𝑖,𝑗) = 𝜎𝑖𝑗,𝑗
f + 𝑓𝑖

FSI (3- 45) 

 𝑣𝑖,𝑖 = 0 (3- 46) 

其中𝜎𝑖𝑗
f 可表示為： 

 𝜎𝑖𝑗
f = −𝑝𝛿𝑖𝑗 + 2𝜇𝜏𝑖𝑗 (3- 47) 

 𝜏𝑖𝑗 =
1

2
(𝑣𝑖,𝑗 + 𝑣𝑗,𝑖) (3- 48) 

其中𝜇和𝑝分別為流體的黏度和壓力。透過上述方程式解得第 n + 1 個時間步的速度

場𝐯𝑛+1和壓力場𝑝𝑛+1。 

(5) 插值速度至固體節點 

    為了使固體更新位置，須將求得的流體速度插值回固體節點。此步驟同樣透過

離散狄拉克函數進行計算，可表示為： 

 𝑣𝑖𝐼
s = ℎ2 ∑ 𝑣𝑖𝐽(𝑡)

𝐽

𝛿(𝐱𝐽 − 𝐱𝑖
𝑠) (3- 49) 

此步驟可視為將流體場的結果投射回固體節點，使其可依據流場進行更新。 

(6) 更新固體位置 

    根據上一步驟得到的固體速度更新固體位置，可表示為： 



doi:10.6342/NTU202503611
43 

 

 𝐱𝑠,𝑛+1 = 𝐱𝑠,𝑛 + 𝐯𝑠,𝑛+1∆𝑡 (3- 50) 

此時固體位置即完成一個時間步的更新，並可回到步驟(2)進行下一時間步之計算。 

    綜合上述流程可知，沉浸有限元素法透過分步處理的方式，建立穩健的流固耦

合計算機制。藉由插值函數的一致性和對稱性，可幫助流體和固體間的傳遞，並滿

足其相關方程式，這也是 IFEM 能在非匹配網格下，能夠實現高精度的流固耦合模

擬之關鍵。 

 

圖 3- 4  沉浸有限元素法之流固耦合流程圖 

給定初始條件與時間步資料

計算固體耦合力

插值耦合力至流體場域

更新流體場域

插值速度至固體節點

更新固體位置

時間步
n n 1
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3.4 文獻實例研析 

    為了驗證本研究所使用之沉浸有限元素法於處理流固耦合問題的準確性與有

效性，本節選擇一個經典案例「可變形圓盤於頂蓋驅動穴室流 (Disk in a lid-driven 

cavity flow)」進行模擬，並將模擬結果與 Wang 和 Zhang 於 2010 年發表的文獻 [30] 

之結果進行比較和分析。 

    在模擬設定中，流場之幾何資訊如圖 3- 5 所示，整個場域由一個邊長為 1 cm

的正方形所組成，內部有一個半徑為 0.2 cm 之圓盤，其初始位置為 (0.6,0.5) 處。

頂蓋以一固定之水平速度 Uo = 1 cm/s 向右移動，帶動流體和固體運動，其他邊界

則限制流速為零。流體和固體之參數可見表 3- 1 和表 3- 2，固體分別為較軟的 Soft 

disk 和較硬的 Hard disk，並探討材料剛性對固體變形與運動行為之影響，固體使

用mesh size為 0.02 cm和 0.03 cm的網格大小進行模擬；流體網格則是使用 25×25、

50×50 和 100×100 個網格進行模擬，因此共有六組不同之數據。 

 

圖 3- 5  可變形圓盤於頂蓋驅動穴室流之幾何資訊 

 0.6 0.5)

   0.2  m

1  m

1
  
m

 0 0)  1 0)

 1 1) 0 1)
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表 3- 1  可變形圓盤於頂蓋驅動穴室流之流體參數 

流體參數 密度 (g/cm3) 黏度 (dyn·s/cm2) 

Fluid 1 0.01 

表 3- 2  可變形圓盤於頂蓋驅動穴室流之固體參數 

固體參數 密度 (g/cm3) 半徑 (cm) 剪切模數 (dyn/cm2) 

Soft disk 1 0.2 0.1 

Hard disk 1 0.2 10 

    從模擬結果可觀察到，隨著時間推移，圓盤受到流體的作用而逐漸產生變形並

移動至新的平衡位置。較軟的圓盤因其剛性較低，明顯產生更大的變形量，且透過

軌跡圖也能發現其更快達到平衡狀態；相較之下，較硬的圓盤其變形量較小且較慢

達到穩態位置，這和文獻所觀察到的現象一致。 

    除此之外，圖 3- 6 至圖 3- 13 為 Soft disk 和 Hard disk 分別在 2.4、4.7、7.0 和

10.0 秒的變形圖和對應之流線，其固體位置和流線趨勢也和文獻相符。從圖 3- 14

和圖 3- 15 可發現，兩者之固體質心軌跡圖也和文獻結果相似，也進一步證明本研

究採用之沉浸有限元素法於流固耦合問題中具有高度的準確性和穩定性，並成功

與文獻中的結果進行了有效的驗證和比對。 
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圖 3- 6  Soft disk 於 2.4 秒之變形圖和對應之流線 

 

圖 3- 7  Soft disk 於 4.7 秒之變形圖和對應之流線 
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圖 3- 8  Soft disk 於 7.0 秒之變形圖和對應之流線 

 

圖 3- 9  Soft disk 於 10.0 秒之變形圖和對應之流線 
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圖 3- 10  Hard disk 於 2.4 秒之變形圖和對應之流線 

 

圖 3- 11  Hard disk 於 4.7 秒之變形圖和對應之流線 
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圖 3- 12  Hard disk 於 7.0 秒之變形圖和對應之流線 

 

圖 3- 13  Hard disk 於 10.0 秒之變形圖和對應之流線 
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圖 3- 14  Soft disk 於不同流固網格下之軌跡關係圖 
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圖 3- 15  Hard disk 於不同流固網格下之軌跡關係圖 

3.5 商用軟體驗證 

    為了驗證本研究所使用之沉浸有限元素法於處理流固耦合問題的準確性與有

效性，本研究進行了MATLAB與商用軟體 SimLab之間的模擬結果比較。MATLAB



doi:10.6342/NTU202503611
52 

 

使用有限差分法進行流場之計算，並配合沉浸式有限元素法進行固體變形之計算；

SimLab 則是使用有限元素法進行流場之計算，並配合使用者自定義函數 (User-

defined function, UDF) 進行固體變形之計算。 

    本次驗證使用一個左端為入口端，右端為出口端之管流。在模擬設定中，流場

之幾何資訊如圖 3- 16 所示，整個場域由一個邊長為 2 cm 的正方形所組成，內部

有一個尺寸為 0.25×0.5 cm 之固體，下方為固定端。左端以一固定之水平速度 Uo = 

0.05 cm/s 向右移動，帶動流體和固體運動，右端則將壓力設為 0 Pa。流體和固體

之參數可見表3- 3和表3- 4，固體使用5×10個網格進行模擬；流體則是使用100×100

個網格進行模擬。 

 

圖 3- 16  管流之幾何資訊 

2  m

2  m Pressure outlet

 0 0)  2 0)

 0 2)  2 2)
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表 3- 3  管流之流體參數 

流體參數 密度 (g/cm3) 黏度 (dyn·s/cm2) 

Fluid 1 0.2 

表 3- 4  管流之固體參數 

固體參數 密度 (g/cm3) 剪切模數 (dyn/cm2) 

Leaflet 1 0.2 

    圖 3- 17 至圖 3- 24 為透過 MATLAB 和 SimLab 進行模擬後，固體分別在 0.2、

0.5、0.8 和 1.0 秒的變形圖和對應之速度場，可發現兩者之固體變形和流場皆有相

似的趨勢。為了得到更具體的數值，將固體右上角節點之位移對時間作圖 (如圖 3- 

25)，可發現兩者之節點位移非常相似，也進一步證明本研究採用之沉浸有限元素

法於流固耦合問題中具有高度的準確性和穩定性，並成功與商用軟體進行了有效

的驗證和比對。 
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圖 3- 17  固體於 0.2 秒之變形圖和對應之速度場 (MATLAB) 

 

圖 3- 18  固體於 0.5 秒之變形圖和對應之速度場 (MATLAB) 
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圖 3- 19  固體於 0.8 秒之變形圖和對應之速度場 (MATLAB) 

 

圖 3- 20  固體於 1.0 秒之變形圖和對應之速度場 (MATLAB) 
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圖 3- 21  固體於 0.2 秒之變形圖和對應之速度場 (SimLab) 

 

圖 3- 22  固體於 0.5 秒之變形圖和對應之速度場 (SimLab) 
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圖 3- 23  固體於 0.8 秒之變形圖和對應之速度場 (SimLab) 

 

圖 3- 24  固體於 1.0 秒之變形圖和對應之速度場 (SimLab) 
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圖 3- 25  固體右上角節點位移對時間之比較圖 
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第四章 複雜幾何微流體元件固液耦合之應用與

模擬 

    隨著微流體系統的應用逐漸拓展至生物醫學、化學檢測及環境監測等多元領

域，複雜幾何微流道的設計已經成為提升流體控制精準度和功能性的關鍵技術。然

而，複雜幾何微流道在生物醫學上往往涉及複雜的流固耦合現象，使得傳統數值方

法的應用面臨許多挑戰。本研究透過沉浸有限元素法探討複雜幾何微流體元件內

的流固耦合現象，並結合數值技術如直接強制法與數值積分方式等，建立有效且精

確的模擬平台。 

    本章首先介紹複雜幾何的建構方法，包含直接強制法的原理說明、網格數值積

分比較及商用軟體驗證，以提供數值模擬之準確性和穩定性。隨後針對各種微流道

設計進行分析，包含十字流道、等角度流道、曲線流道和螺旋流道，闡述不同設計

對於流固耦合行為的影響，藉此展現 IFEM 在複雜幾何微流體內系統分析的優勢。 

4.1 複雜幾何流道之建構 

    本節將介紹在結構化的均勻網格內如何建構複雜幾何之流道，包含直接強制

法的說明、網格數值積分的方法，以及和商用軟體驗證的結果。 

4.1.1 直接強制法 

    直接強制法 (Direct-forcing method) 是一種用於處理複雜幾何邊界條件的重

要數值技術，其主要原理是在求解完流體控制方程式之後，對速度場加入虛擬外力 

(Virtual force)，使流場得以滿足特定的幾何邊界條件。本研究將複雜幾何的外部區
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域視為流場中的阻流體，在該邊界上速度場為零，透過添加虛擬外力項調整流體速

度並進行壓力場的修正以符合邊界的要求。 

    流體的速度場計算會基於 Navier-Stokes 方程式進行求解，其中包含黏滯項、

對流項和壓力項。然而，在複雜幾何邊界處，這些項不足以自然滿足邊界條件，因

此透過計算額外的虛擬外力，並和有限差分法配合，可強制複雜流道的流場在邊界

處的速度滿足邊界條件。此方法有效地提升了數值模擬在處理複雜幾何問題時的

穩定性與準確性。 

    考慮動量守恆，可將 Navier-Stokes 方程式表示為： 

 
𝜕𝒖

𝜕𝑡
+ (𝒖 ∙ ∇) 𝒖 = −

1

𝜌
∇𝑝 + ∇ ∙ ( 𝜈∇𝒖 ) (4- 1) 

藉由第二章提及之求解流程可透過當前步之速度場𝒖得到未滿足邊界條件之速度

場𝒖𝑓。首先，會先對對流項進行計算，並得到第一個中繼速度𝒖∗，表示為： 

 𝒖∗ = 𝒖 − ∆𝑡 × (𝒖 ∙ ∇) 𝒖 (4- 2) 

式(4- 2)可透過顯式的求解方式處理。接著，再對黏滯項進行計算，並得到第二個

中繼速度𝒖∗∗，表示為： 

 𝒖∗∗ = 𝒖∗ + ∆𝑡 × 𝜈∇2𝒖∗∗ (4- 3) 

式(4- 3)則須透過隱式的求解方式處理偏微分方程式，可避免使用較小的時間步長

進行模擬，進而提高模擬效率。接著，再對壓力梯度項進行計算，得到未滿足邊界

條件之速度場𝒖𝑓和壓力項的關係，可表示為： 
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𝒖𝑓 − 𝒖∗∗

∆𝑡
= −

1

𝜌
∇𝑝 (4- 4) 

將式(4- 4)分成 x 方向速度場 U 和 y 方向速度場 V，可表示為： 

 
𝑈𝑓 − 𝑈∗∗

∆𝑡
= −

1

𝜌
𝑃𝑥 (4- 5) 

 
𝑉𝑓 − 𝑉∗∗

∆𝑡
= −

1

𝜌
𝑃𝑦 (4- 6) 

為了得到壓力場，將式(4- 5)對 x 方向偏微分，式(4- 6)對 y 方向偏微分後相加，可

表示為： 

 (𝑈𝑓)
𝑥

+ (𝑉𝑓)
𝑦

− (𝑈∗∗)𝑥 − (𝑉∗∗)𝑦 = −
∆𝑡

𝜌
∙ ∇2𝑝 (4- 7) 

觀察式(4- 7)，發現前兩項為連續方程式。由於𝒖𝑓必須滿足此方程式，因此前兩項

和為零，經整理後可表示為： 

 ∇2𝑝 =
𝜌

∆𝑡
∇ ∙ 𝒖∗∗ (4- 8) 

式(4- 8)為泊松方程式 (Poisson’s equation)，可透過第二個中繼速度進行隱式求解

並得到壓力場。最後，再根據式(4- 4)得到未滿足邊界條件之速度場𝒖𝑓，可表示為： 

 𝒖𝑓 = 𝒖∗∗ −
∆𝑡

𝜌
∇𝑝 (4- 9) 

然而，為了在複雜幾何邊界處滿足邊界條件，將虛擬外力𝒇定義為： 

 𝒇 = 𝜂
𝒖𝑝 − 𝒖𝑓

∆𝑡
 (4- 10) 
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其中𝒇為單位體積所受之虛擬外力，𝒖𝑝為流速的控制條件 (通常為邊界速度 0)， 𝜂

則是網格體積占比 (Volume of fraction, VOF)，當流體網格位於阻流體，其𝜂值為 1，

反之則為 0，可表示為： 

 𝜂 = {
 1 ,   CV ∈ Ωb

 0 ,   CV ∉ Ωb

 (4- 11) 

其中Ωb為阻流體所沉浸之場域，不同流道可使用不同的方程式進行描述，本次研

究使用之方程式如表 4- 1 所示。 

表 4- 1  不同流道之方程式 

流道種類 方程式 

十字流道 x or y = constant 

等角度流道 y = ax + b 

曲線流道 y = ax2 + bx + c 

螺旋流道 r(φ) = aφ1/2 

然而，若流體網格位在阻流體的邊界上，則𝜂會介於 0 到 1 之間。此時則必須

透過網格積分方法進行計算，將會在下一小節進行說明。值得注意的是，VOF 定

義在網格中心的位置，即壓力節點的位置，然而，虛擬外力是作用在速度節點上，

因此在計算完 VOF 後，必須透過線性插值的方式以得到網格邊上的𝜂值，即將相

鄰兩網格之 VOF 值取平均後得到共用邊上的速度節點的 VOF 值。線性插值的方

程式可表示為： 

 𝜂
𝑖+

1
2

,𝑗
=

𝜂𝑖,𝑗 + 𝜂𝑖+1,𝑗

2
 (4- 12) 

 𝜂
𝑖,𝑗+

1
2

=
𝜂𝑖,𝑗 + 𝜂𝑖,𝑗+1

2
 (4- 13) 
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其中𝜂𝑖,𝑗為編號為 ij 的網格的 VOF 值。接著，將式(4- 10)兩邊乘上時間項，可表示

為： 

 𝒇 × ∆𝑡 = 𝜂 × (𝒖𝑝 − 𝒖𝑓) (4- 14) 

根據式(4- 14)可發現，等號右方即為速度場之變化，因此透過將式(4- 9)和式(4- 14)

相加後，可求得下一步之速度場𝒖𝑛+1，可表示為： 

 𝒖𝑛+1 = 𝒖𝑓 + ∆𝑡 × 𝒇 (4- 15) 

將式(4- 15)展開後可得： 

 𝒖𝑛+1 = 𝜂 × 𝒖𝑝 + (1 − 𝜂) × 𝒖𝑓 (4- 16) 

假設邊界速度為 0，即𝒖𝑝為 0 的情況，根據式(4- 5)、式(4- 6)和式(4- 16)，可得到

第 n + 1 個時間步的速度場𝑈𝑛+1和𝑉𝑛+1，表示為： 

 𝑈𝑛+1 = (1 − 𝜂) × (𝑈∗∗ −
∆𝑡

𝜌
(𝑃𝑛+1)𝑥) (4- 17) 

 𝑉𝑛+1 = (1 − 𝜂) × (𝑉∗∗ −
∆𝑡

𝜌
(𝑃𝑛+1)𝑦) (4- 18) 

值得注意的是，雖然式(4- 15)中的速度場並沒有滿足連續方程式，但是藉由在流體

方程式中加入虛擬外力調整速度場以滿足邊界條件，再透過式(4- 8)使下一個時間

步的壓力場被速度場更新，可以得到正確的壓力場分布，並使速度場滿足連續方程

式。圖 4- 1 為直接強制法的求解流程圖。 
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圖 4- 1  以直接強制法求解流場之流程圖 

4.1.2 單一網格積分比較 

    在數值模擬過程中，單一網格的數值積分方法對於模擬的準確性與效率有顯

著的影響。上一小節有提及，當𝜂介於 0 到 1 之間時，則必須透過網格積分方法進

從前一個時間步得到
流場資訊

顯式求解得到
第一個中繼速度

隱式求解得到
第二個中繼速度

隱式求解泊松方程式
得到壓力場

更新速度場得到

時間步
n n 1

更新速度場得到

定義阻流體所沉浸之場域

求解網格體積占比   
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行計算。為了提升模擬的精確度和效率，本研究透過比較自適應積分法 (Vectorized 

adaptive quadrature) 和離散體積積分法，找出較適合的數值積分方法。 

    自適應積分法是利用高斯-克朗羅德積分 (Gaussian-Kronrod quadrature) 進行

運算。高斯-克朗羅德積分為透過 7 點與 15 點的積分點設置，快速且精確地估算單

一網格的積分值，並透過兩個不同積分點個數計算得到之絕對誤差 (AbsTol) 和相

對誤差 (RelTol) 控制積分的精度。當誤差超出設定的容許範圍時，則會進一步細

分網格，以達到精度要求或是網格細分上限 [1]。 

    離散體積積分法藉由將單一網格劃分為更小的子網格，得到所有的子網格的

中心座標，最後再對整個網格進行積分得到 VOF 值。 

    接著，透過兩種不同的複雜幾何，分別為方程式 y = x2以及 10°的漸擴流道，

探討兩種積分方法的誤差和計算效率，根據表 4- 2 至表 4- 5，自適應積分法在處理

單一網格的複雜邊界時，相較於離散體積積分法能達到較低的積分誤差並且有效

降低計算時間，顯示此方法在處理高曲率邊界上的積分問題具有明顯的優勢，而離

散體積積分法雖然也能達到同樣的精度要求，但明顯須要使用較多的子網格數量

以及計算時間，也更加凸顯了自適應積分法的高效性。 

 

圖 4- 2  y = x2之單一網格示意圖 

 0 0)  1 0)

 0 1  1 1)
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表 4- 2  自適應積分法之結果、誤差與計算時間表 

RelTol 
自適應積分結

果 
解析解 誤差 (%) 計算時間 (s) 

10-1 0.66500208 

⅔ 
2.5×10-1 0.007 

10-2 0.66903011 3.55×10-1 0.009 

10-3 0.66664942 2.59×10-3 0.037 

表 4- 3  離散體積積分法之結果、誤差與計算時間表 

離散體積積分

子網格數目 

離散體積積分

結果 
解析解 誤差 (%) 計算時間 (s) 

100×100 0.6660 

⅔ 

1×10-1 0.007 

500×500 0.66660 1×10-2 0.042 

1000×1000 0.66665 2.5×10-3 0.124 

 

圖 4- 3  10°漸擴流道之單一網格示意圖 

 0 0)  1 0)

 0 1  1 1)
10 
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表 4- 4  自適應積分法之結果、誤差與計算時間表 

RelTol 
自適應積分結

果 
解析解 誤差 (%) 計算時間 (s) 

10-1 0.91081117 

0.91183651 

1.12×10-1 0.078 

10-2 0.91124635 6.47×10-2 0.155 

10-3 0.91184432 8.57×10-4 0.376 

表 4- 5  離散體積積分法之結果、誤差與計算時間表 

離散體積積分

子網格數目 

離散體積積分

結果 
解析解 誤差 (%) 計算時間 (s) 

100×100 0.9121 

0.91183651 

2.89×10-1 0.176 

250×250 0.911888 5.65×10-3 0.562 

500×500 0.91844 8.21×10-4 6.013 

1000×1000 0.911840 3.83×10-4 19.959 

    本研究經由分析發現，相較於離散體積積分法，在相同精度要求下，自適應積

分法能夠以更低的計算時間達成精確的積分結果，證實此方法於複雜幾何微流體

模擬中有更好的效率。 

4.1.3 商用軟體驗證 

    為了驗證本研究採用之直接強制法和單一網格數值積分方法的準確性，本研

究進行了與商用軟體 SimLab 之間的模擬結果比較。透過分析 MATLAB 所使用之

直接強制法與 SimLab 在複雜幾何上的網格建構方法的差異，包含網格處理方式與

數值求解技術之差異，本次驗證使用 10°之漸擴流道作為複雜幾何流道，而入口流

速設為 1 mm/s。MATLAB 是透過設定不同網格數量進行模擬，而 SimLab 則是透

過設定不同的網格大小進行分析。根據圖 4- 4、圖 4- 5 與表 4- 6，可發現兩種方法

所模擬的中心線水平速度分布圖呈現出非常接近的趨勢，兩種結果之間的差距都

在 5% 以內。這個差異主要源自於兩種模擬平台對網格處理的不同所導致。 
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圖 4- 4  中心線水平速度隨 x 方向變化圖 (MATLAB) 

 

圖 4- 5  中心線水平速度隨 x 方向變化圖 (SimLab) 



doi:10.6342/NTU202503611
69 

 

表 4- 6  MATLAB 和 SimLab 於漸擴流道之流速關係表 

網格數量 
MATLAB 

Umax (mm/s) 

MATLAB 

Umin (mm/s) 

SimLab 

Umax (mm/s) 

SimLab 

Umin (mm/s) 
Δmax Δmin 

160×80 1.4573 0.8327 1.4804 0.7945 1.56% 4.59% 

320×160 1.4717 0.8188 1.4884 0.7945 1.12% 3.06% 

640×320 1.4770 0.8052     

960×480 1.4782 0.7944     

1280×640 1.4786 0.7938     

    MATLAB 以有限差分法搭配直接強制法處理幾何邊界條件，而 SimLab 則以

有限元素法直接於複雜幾何內建構網格進行求解。結果顯示，直接強制法在處理複

雜幾何問題時，能夠提供與商用軟體近似的模擬精度，進一步證明本研究採用之數

值技術在複雜幾何微流體系統模擬中的可靠性與準確性。 

4.2 細胞於十字流道之分析 

    十字流道為微流體裝置中常見的流道設計之一，其能夠有效地進行細胞的分

離和分類。本例題設計參考自 Mach 和 Di Carlo 於 2010 年發表的文獻 [2]，細胞會

先經過等角度漸擴流道將紅血球 (Red blood cells, RBC) 和細菌進行側向位移之分

離，再透過十字流道將靠近管壁附近的細胞遷移至側出口。本節運用 IFEM 技術模

擬不同細胞於十字流道內的運動行為，並分析不同初始位置對於細胞運動軌跡的

影響。 

    在模擬設定中，流道之幾何資訊如圖 4- 6 所示，假設細胞初始位置距離入口

端 50 μm，和流道中心線之距離為𝑌𝑖，流道寬度為 160 μm，側出口寬度設為 80 μm，

為上下對稱之流道，流體使用 0.5% 的人類全血和 99.5% 的生理食鹽水，其密度

和黏度可見表 4- 7；固體則分別使用紅血球和細菌，其密度、直徑和剛性可見表 4- 

8。流場入口端之流速𝑈𝑖𝑛根據文獻流率 200 μL/min 設為 0.3475 m/s，出口端之流速

𝑈𝑜𝑢𝑡皆設為 0.17375 m/s。固體使用 41 個節點和 64 個元素進行模擬，示意圖如圖
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4- 7 所示；流體則是使用 90×80 個網格進行模擬，示意圖如圖 4- 8 所示。 

 

圖 4- 6  十字流道之幾何資訊 

表 4- 7  十字流道之流體參數 

流體參數 密度 (kg/m3) 黏度 (mPa·s) 

生理食鹽水 1×103 0.89 

全血 1.06×103 [3] 3.5 [14] 

0.5% 全血 + 99.5% 生理食鹽水 1.0003×103 0.90305 

表 4- 8  十字流道之固體參數 

固體參數 
密度 

(kg/m3) 

直徑  

(μm) 

楊式模數 

(kPa) 
蒲松比 

剪切模數 

(kPa) 

紅血球 1.11×103 [6] 6 [16] 5 [7] 0.5 1.667 

細菌 1.1×103 1 8 [27] 0.5 2.667 

200 80 80

160

80

50
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圖 4- 7  固體網格示意圖 

 

圖 4- 8  十字流道之流體網格示意圖 
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圖 4- 9  紅血球於 Yi為 34 μm之運動軌跡 

 

圖 4- 10  紅血球於 Yi為 36 μm之運動軌跡 
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圖 4- 11  細菌於 Yi為 34 μm之運動軌跡 

 

圖 4- 12  細菌於 Yi為 36 μm之運動軌跡 
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圖 4- 13  紅血球於不同 Yi之軌跡比較圖 

 

圖 4- 14  細菌於不同 Yi之軌跡比較圖 
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    模擬結果顯示，紅血球與細菌在十字流道內的運動具有相似的側向遷移閾值。

因此，在實際應用中，須先藉由其他流道 (如漸擴流道) 達到初步的側向分離效果，

再透過十字流道進一步分離不同細胞。 

4.3 細胞於等角度流道之分析 

4.3.1 等角度漸擴流道 

    等角度漸擴流道是一種可有效進行細胞分離的流道，其能夠透過流場特性使

細胞產生明顯的側向遷移。參考 4.2 節提到的文獻 [2]，本小節運用 IFEM 技術模

擬不同細胞於等角度漸擴流道內的運動行為，並分析不同幾何設計對細胞運動軌

跡的影響。 

    在模擬設定中，流道之幾何資訊如圖 4- 15 所示，𝛼為漸擴流道之角度，假設

細胞初始位置距離入口端 50 μm，和流道中心線之距離為𝑌𝑖，流道寬度從 20 μm漸

擴至 160 μm，為上下對稱之流道，流體使用 0.5% 的人類全血和 99.5% 的生理食

鹽水，其密度和黏度可見表 4- 7；固體則分別使用紅血球和細菌，其密度、直徑和

剛性可見表 4- 8。流場入口端之流速𝑈𝑖𝑛根據文獻流率 200 μL/min 設為 2.78 m/s，

出口端則將壓力設為 0 Pa。固體使用 41 個節點和 64 個元素進行模擬，示意圖如

圖 4- 7 所示；流體則是根據不同漸擴角度使用 120×40 和 60×40 個網格進行模擬，

示意圖如圖 4- 16 和圖 4- 17 所示。 
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圖 4- 15  等角度漸擴流道之幾何資訊 

 

圖 4- 16  9.2°漸擴流道之流體網格示意圖 

20

50

160
Pressure

outlet
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圖 4- 17  20°漸擴流道之流體網格示意圖 

    首先，根據文獻設置紅血球之𝑌𝑖為 5.5 μm，並探討其在不同角度之漸擴流道 

(9.2°和 20°) 的運動行為。圖 4- 20 中之 up 和 down 分別代表初始位置在中心線上

方和下方的情形，可發現由於流道為上下對稱，因此圖中之固體位置也會呈現上下

對稱。除此之外，模擬結果也顯示，初期在角度為 20°漸擴的流道紅血球遠離中心

線的速率較快，然而，由於角度為 9.2°漸擴的流道有更長的流道長度，因此有更長

的作用時間，最終使其在流道尾端的平衡位置較接近管壁。 
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圖 4- 18  紅血球於 9.2°漸擴流道之運動軌跡 

 

圖 4- 19  紅血球於 20°漸擴流道之運動軌跡 
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圖 4- 20  紅血球於不同角度漸擴流道之運動軌跡關係圖 

    接著，透過 IFEM 技術將紅血球所受到的耦合力繪製成圖 (如圖 4- 21 和圖 4- 

22)，可發現不同漸擴角度流道的耦合力在 x 大於 100 μm有較明顯差異，然而位置

隨時間之變化圖卻在初期就有明顯差異，因此推測影響紅血球位置較大的因素為

不同漸擴角度流道之流場差異。 
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圖 4- 21  紅血球於不同角度漸擴流道之 x 方向耦合力關係圖 

 

圖 4- 22  紅血球於不同角度漸擴流道之 y 方向耦合力關係圖 
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圖 4- 23  紅血球於不同角度漸擴流道之 y 方向速度關係圖 

    定義 yeq為流道內固體和中心線的距離，w 為流道寬度之一半，並繪製 yeq / w

和流道寬度之關係圖 (如圖 4- 24)，可發現 IFEM 技術所得到之 9.2°漸擴流道的結

果和文獻之實驗資料相吻合，進一步驗證了 IFEM 在模擬細胞於複雜流道內運動

行為的準確性與可靠性。 
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圖 4- 24  紅血球於不同角度漸擴流道之 yeq / w 關係圖 

    為了探討不同剛性之紅血球對於其平衡位置的影響，分別設置了在 9.2°漸擴

流道下固體之剪切模數𝜇為 0.667 kPa 和 2.667 kPa 的情形，並將紅血球所受到的耦

合力繪製成圖 (如圖 4- 28 和圖 4- 29)，可發現在 x 方向大於 150 μm時，x 方向之

耦合力趨於穩定，而在剪切模數為 0.667 kPa 的細胞先受到較大向上的 y 方向耦合

力，隨著 x 漸增，後期則受到較大向下的耦合力，可對應到位置隨時間變化圖 (如

圖 4- 27) 中的區段，進而代表不同剛性之細胞在相同流道條件下因變形不同，經

計算之耦合力不同，進而影響其在流道內之位置。 
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圖 4- 25  紅血球於 9.2°漸擴流道之運動軌跡 (剪切模數為 0.667 kPa) 

 

圖 4- 26  紅血球於 9.2°漸擴流道之運動軌跡 (剪切模數為 2.667 kPa) 



doi:10.6342/NTU202503611
84 

 

 

圖 4- 27  不同剛性之紅血球於 9.2°漸擴流道之運動軌跡關係圖 

 

圖 4- 28  不同剛性之紅血球於 9.2°漸擴流道之 x 方向耦合力關係圖 
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圖 4- 29  不同剛性之紅血球於 9.2°漸擴流道之 y 方向耦合力關係圖 

    將上述模擬結果繪製成 yeq / w 和流道寬度之關係圖 (如圖 4- 30)，可發現在三

者不同硬度的紅血球中，剪切模數為 0.667 kPa 的細胞有最接近文獻之實驗數據，

因此推測文獻實驗使用之紅血球應接近此剛性。 
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圖 4- 30  不同剛性之紅血球於 9.2°漸擴流道之 yeq / w 關係圖 

    為了比較沉浸有限元素法和沉浸邊界法 (Immersed boundary method, IBM) 的

差異，根據文獻方法 [4] 對超彈性材料進行三維單軸拉伸試驗，在應變約為 0.05

處之斜率得到對應之楊式模數𝐸𝑆 (Secant modulus) 和𝐸𝑇 (Tangent modulus)，如表

4- 9 所示。 
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圖 4- 31  三維單軸拉伸示意圖 

 

圖 4- 32  超彈性材料應力應變曲線圖 (剪切模數為 0.667 kPa) 

 eforme 

 onfi uration
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圖 4- 33  超彈性材料應力應變曲線圖 (剪切模數為 1.667 kPa) 

 

圖 4- 34  超彈性材料應力應變曲線圖 (剪切模數為 2.667 kPa) 
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表 4- 9  三維單軸拉伸試驗之結果 

超彈材料之 μ (Pa) 超彈材料之 K (MPa) 對應之 ES (Pa) 對應之 ET (Pa) 

667 0.33 1906 1810 

1667 0.83 4764 4525 

2667 1.33 7626 7257 

    為了將楊式模數轉換成彈簧常數 k，須得到截面積 A 和長度 L。考慮一個立方

體受到單軸拉伸 (如圖 4- 36)，單軸拉伸力和應力的關係可表示為： 

 
𝐹

𝐴
= 𝜎 (4- 19) 

根據虎克定律，可將線彈性材料的應力和應變的關係表示為： 

 𝜎 = 𝐸 × 𝜀 (4- 20) 

線性彈簧材料的外力和變形的關係可表示為： 

 𝐹 = 𝑘 × ∆𝐿 (4- 21) 

根據式(4- 19)、式(4- 20)和式(4- 21)，可得到楊式模數和彈簧常數 k 的關係，表示

為： 

 𝑘 =
𝐸𝐴

𝐿
 (4- 22) 

其中 A 為立方體的受力面面積，L 為立方體的高。以細胞為例，截面積 A 為細胞

膜之寬度乘上細胞高度，長度 L 則為細胞之圓周長除以元素數量，相關參數如表

4- 10 所示，彈性固體纖維模型之示意圖如圖 4- 35 所示。 
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圖 4- 35  彈性固體纖維模型示意圖 

 

圖 4- 36  立方體受力示意圖 

表 4- 10  不同生物固體材料之厚度和細胞高度 

固體材料 厚度 (nm) 細胞高度 (μm) 

紅血球 7.5 [13] 2 

細菌 8.75 0.4 

    圖 4- 43 至圖 4- 46 為使用 IBM 計算不同楊式模數對於細胞軌跡之關係圖。相

較於 IBM，IFEM 能更有效地分辨不同剛性的細胞其軌跡的不同，剛性較低的紅血

球軌跡較靠近中心線，此現象和文獻說明相符，代表 IFEM 比 IBM 更能描述微流

體之運動行為。 

 

 

 

 ：細胞膜高度和細胞高度之乘積
 ：細胞之圓周長除以元素數量
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圖 4- 37  紅血球於 9.2°漸擴流道之運動軌跡 (ET為 1810 Pa) 

 

圖 4- 38  紅血球於 9.2°漸擴流道之運動軌跡 (ES為 1906 Pa) 



doi:10.6342/NTU202503611
92 

 

 

圖 4- 39  紅血球於 9.2°漸擴流道之運動軌跡 (ET為 4525 Pa) 

 

圖 4- 40  紅血球於 9.2°漸擴流道之運動軌跡 (ES為 4764 Pa) 
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圖 4- 41  紅血球於 9.2°漸擴流道之運動軌跡 (ET為 7257 Pa) 

 

圖 4- 42  紅血球於 9.2°漸擴流道之運動軌跡 (ES為 7626 Pa) 
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圖 4- 43  不同 ET之紅血球於 9.2°漸擴流道之運動軌跡關係圖 

 

圖 4- 44  不同 ET之紅血球於 9.2°漸擴流道之 yeq / w 關係圖 
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圖 4- 45  不同 ES之紅血球於 9.2°漸擴流道之運動軌跡關係圖 

 

圖 4- 46  不同 ES之紅血球於 9.2°漸擴流道之 yeq / w 關係圖 
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    接著，針對細菌做分析，分別探討細菌初始位置在距離中心線 0.5 μm和 0.75 

μm的情況，根據圖 4- 49，可發現初始位置在距離中心線 0.5 μm以下之細菌可透

過 9.2°漸擴流道達到側向位移分離之效果，而初始位置在距離中心線 0.75 μm以上

之細菌則較無法達到側向位移分離之效果。 

 

圖 4- 47  細菌於 9.2°漸擴流道之運動軌跡 (Yi為 0.5 μm) 
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圖 4- 48  細菌於 9.2°漸擴流道之運動軌跡 (Yi為 0.75 μm) 

 

圖 4- 49  紅血球和細菌於 9.2°漸擴流道之運動軌跡關係圖 
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藉由以上的分析，可得到以下之結論： 

(1) 透過模擬結果，可發現紅血球在較小角度的漸擴流道的尾端得到離管壁較近的

平衡位置，且 9.2°流道之模擬結果也和文獻實驗相符合。 

(2) 藉由模擬結果得到 IFEM 的耦合力，可推論在相同流道條件下不同剛性之細胞

其耦合力對軌跡帶來的影響。 

(3) 透過 IFEM 模擬技術，可藉由文獻實驗曲線推估文獻無法測量的紅血球剛性。 

(4) 透過模擬結果和實驗比對，可得到 IFEM 比 IBM 更能描述細胞之運動行為。 

(5) 藉由 IFEM 模擬技術也能模擬文獻未測量的細菌軌跡圖，並給予不同初始位置

之側向位移分離之效果。 

(6) 根據 4.2 節，紅血球和細菌在十字流道有相似的閾值，因此可先藉由漸擴流道

達到側向分離的效果，再透過十字流道蒐集濃度較高之紅血球。 

4.3.2 等角度漸縮流道 

    等角度漸縮流道可用於檢測細胞受感染之情形。本例題設計參考自Wu和 Feng

於 2013 年發表的文獻 [18]，受瘧疾感染之細胞由於其剛性會比正常細胞來的大，

變形能力降低，進而阻塞微血管，因此透過特定之流道設計可分辨正常紅血球 

(RBC) 和感染之紅血球 (infected RBC, iRBC)。本小節運用 IFEM 技術模擬 RBC 和

iRBC 於等角度漸縮流道內的運動行為，並分析不同入口流速下細胞的變形程度。 

    在模擬設定中，流道之幾何資訊如圖 4- 50 所示，流道寬度從 12 μm漸縮至 4.8 

μm，為上下對稱之流道，流體使用血漿，其密度和黏度可見表 4- 11；固體則分別

使用 RBC 和 iRBC，其密度、直徑和剛性可見表 4- 12。流場入口端設置不同的入
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口流速𝑈𝑖𝑛，出口端則將壓力設為 0 Pa。固體使用 1201 個節點和 2304 個元素進行

模擬，示意圖如圖 4- 51 所示；流體則是使用 60×30 個網格進行模擬，示意圖如圖

4- 52 所示。 

 

圖 4- 50  等角度漸縮流道之幾何資訊 

表 4- 11  等角度漸縮流道之流體參數 

流體參數 密度 (kg/m3) 黏度 (mPa·s) 

血漿 1×103 1 

表 4- 12  等角度漸縮流道之固體參數 

固體參數 
密度 

(kg/m3) 

直徑   

(μm) 

楊式模數 

(kPa) 
蒲松比 

剪切模數 

(kPa) 

RBC 1×103 6 5 0.5 1.667 

iRBC 1×103 6 15 0.5 5 

12

8 8 8

4.8

45 

Pressure

outlet



doi:10.6342/NTU202503611
100 

 

 

圖 4- 51  固體網格示意圖 

 

圖 4- 52  等角度漸縮流道之流體網格示意圖 
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    文獻之光滑粒子流體動力 (Smoothed particle hydrodynamics, SPH) 模擬是透

過顆粒分隔距離 (Nominal particle separation, NPS) 使模擬得以正常運行，在細胞

與壁面之距離小於 NPS 時，代表紅血球無法進一步變形，並將其定義為阻塞 

(Blockage)，而文獻使用之 NPS 約為 0.4-0.6 μm；本研究之 IFEM 模擬則是將固體

碰觸或是超出流體邊界時，定義為接觸 (Contact)，並停止模擬。接觸即代表固體

已經和流體邊界沒有距離，即 NPS 為 0，因此符合文獻模擬中阻塞之定義。除此

之外，根據接觸發生的位置，可再將接觸細分為前端接觸 (Contact at front) 和後端

接觸 (Contact at end)。 

    為了更進一步量化細胞變形的程度，根據文獻 [19]，可透過 Deformation ratio 

(DR) 來判斷，其定義為： 

 DR =
𝐿

𝐷
 (4- 23) 

其中 L 為細胞長軸，D 為細胞短軸。值得注意的是，過大之 DR 可能會導致紅血球

出現溶血 (Hemolysis) 的現象，進而導致氧氣運輸功能下降等現象 [21]。根據文獻 

[20]，未溶血的紅血球的 Elongation index (EI) 最大值約為 0.65，EI 值之定義為： 

 EI =
𝐿 − 𝐷

𝐿 + 𝐷
 (4- 24) 

透過 EI 轉換成 DR，可得到 DR 可容許之最大值約為 4.71。 
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圖 4- 53  DR 示意圖 

    透過設定不同的入口流速𝑈𝑖𝑛，可得到各細胞在不同流場條件下細胞變形之程

度，並繪製 DR 對 x 座標之關係圖。從圖 4- 66 和圖 4- 67 可發現，由於 iRBC 相較

於 RBC 剛性較大，導致變形量較小，因此在相同入口流速下 DR 也相對較小。 

 

圖 4- 54  RBC 於等角度漸縮流道之變形圖 (Uin為 3 m/s) 
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圖 4- 55  RBC 於等角度漸縮流道之變形圖 (Uin為 1 m/s) 

 

圖 4- 56  RBC 於等角度漸縮流道之變形圖 (Uin為 0.3 m/s) 
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圖 4- 57  RBC 於等角度漸縮流道之變形圖 (Uin為 0.1 m/s) 

 

圖 4- 58  RBC 於等角度漸縮流道之變形圖 (Uin為 0.03 m/s) 
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圖 4- 59  RBC 於等角度漸縮流道之變形圖 (Uin為 0.01 m/s) 

 

圖 4- 60  iRBC 於等角度漸縮流道之變形圖 (Uin為 3 m/s) 
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圖 4- 61  iRBC 於等角度漸縮流道之變形圖 (Uin為 1 m/s) 

 

圖 4- 62  iRBC 於等角度漸縮流道之變形圖 (Uin為 0.3 m/s) 
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圖 4- 63  iRBC 於等角度漸縮流道之變形圖 (Uin為 0.1 m/s) 

 

圖 4- 64  iRBC 於等角度漸縮流道之變形圖 (Uin為 0.03 m/s) 
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圖 4- 65  iRBC 於等角度漸縮流道之變形圖 (Uin為 0.01 m/s) 

 

圖 4- 66  RBC 之 DR 對 x 座標之關係圖 (不同入口流速 Uin) 
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圖 4- 67  iRBC 之 DR 對 x 座標之關係圖 (不同入口流速 Uin) 

    接著，將紅血球於不同入口流速下所受到的 x 方向耦合力繪製成圖 (如圖 4- 

68)，可發現 x 方向耦合力的最大量值隨著入口流速上升而隨之上升，原因為相同

材料和形狀下，入口端流速越大，材料變形越大，固體內部的應力與應變呈正相關，

使得耦合力量值也越大。除此之外，也能發現在固體逐漸離開漸縮流道時，因固體

變形逐漸趨緩，導致耦合力量值也隨之變小。 
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圖 4- 68  RBC 之 x 方向耦合力對 x 座標之關係圖 (不同入口流速 Uin) 

    固定入口流速為 3 m/s，將 RBC 與 iRBC 所受到的 x 方向耦合力繪製成圖 (如

圖 4- 69)，可發現在相同入口流速下，iRBC 比 RBC 有更大的 x 方向耦合力，原因

為剛性較大的細胞較難以順應流場，導致固體內部產生較大的應力，流體與細胞的

交互作用更加劇烈，進而反映在耦合力量值的上升。 
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圖 4- 69  RBC 和 iRBC 之 x 方向耦合力對 x 座標之關係圖 (Uin為 3 m/s) 

    從圖 4- 66 可發現，DR 有兩段不連續的線段，為了探究其原因，固定入口流

速為 3 m/s，將細胞在 x 和 y 方向之應變和應變率對時間之關係圖繪製成圖 (如圖

4- 70 和圖 4- 71)，可發現在經過等角度漸縮流道時，由於流場開始變得複雜，y 方

向之應變有兩個明顯的轉折點，而這兩個轉折點即對應到 DR 的不連續。因此，可

將經過等角度漸縮流道之細胞的變形分為三個階段：第一階段為 DR 快速上升，y

方向之應變逐漸下降；第二階段為 DR 上升趨緩，y 方向之應變較為穩定；第三階

段為 DR 逐漸下降，y 方向之應變逐漸上升。 



doi:10.6342/NTU202503611
112 

 

 

圖 4- 70  RBC 之應變和 DR 對時間之關係圖 (Uin為 3 m/s) 

 

圖 4- 71  RBC 之應變率對時間之關係圖 (Uin為 3 m/s) 
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    為了找到 RBC 和 iRBC 在等角度漸縮流道中接觸於不同端的結果，設計入口

流速為 0.08 m/s 的情況，並從圖 4- 72 和圖 4- 73 可發現，RBC 會出現後端接觸之

現象，而 iRBC 則會出現前端接觸之現象。 

 

圖 4- 72  RBC 於等角度漸縮流道之變形圖 (Uin為 0.08 m/s) 
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圖 4- 73  iRBC 於等角度漸縮流道之變形圖 (Uin為 0.08 m/s) 

    最後，可將 IFEM 於等角度漸縮流道之模擬結果繪製成表 4- 13，並和文獻結

果 (如表 4- 14) 比對，得以找到和文獻結果相同之速度區間，並在此區間分別 RBC

和 iRBC 在經過流道呈現之不同行為。 

表 4- 13  IFEM 於等角度漸縮流道之模擬結果 

初速 Uin (m/s) RBC (μs = 1.667 kPa) iRBC (μs = 5 kPa) 

3 passage passage 

1 passage passage 

0.3 passage passage 

0.1 passage contact at end 

0.08 contact at end contact at front 

0.03 contact at front contact at front 

0.01 contact at front contact at front 
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表 4- 14  文獻之模擬結果 [18] 

Healthy passage 

Ring passage 

Early trophozoite passage 

Late trophozoite passage 

Schizont blockage 

藉由以上的分析，可得到以下之結論： 

(1) 透過模擬結果，可發現當入口流速約為 0.1 m/s 時，RBC 可通過此流道，但 iRBC

則會出現後端接觸之現象。 

(2) 透過模擬結果，可發現當入口流速約為 0.08 m/s 時，RBC 會出現後端接觸之現

象，而 iRBC 則會出現前端接觸之現象。 

(3) 藉由模擬結果得到 IFEM 的耦合力，可推論在相同流道條件下不同剛性之細胞

其耦合力之大小關係，以及相同細胞在不同流速條件下對耦合力之影響。 

(4) 透過模擬結果，可發現在相同邊界條件和流道下，iRBC 在相同 x 座標下之 DR

較 RBC 來的小，原因為其剛性較大，因此變形量較小。 

(5) 根據模擬結果，DR 會有兩個不連續的線段，透過研究得知，DR 上升趨緩和開

始下降的情形和 y 方向之應變有關，代表等角度漸縮流道使流場發生變化，進而影

響應變和 DR。 

(6) 根據文獻，iRBC 較容易使血管阻塞，而根據模擬結果，也能在特定速率下發

現 iRBC 因變形性較小，較容易阻塞在通道中，和文獻趨勢符合。 
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4.4 細胞於曲線流道之分析 

4.4.1 曲線漸縮流道 

    曲線漸縮流道可用於檢測細胞受感染之情形。本例題設計參考自 Faustino 於

2019 年發表的文獻 [23]，患有末期腎臟疾病 (End stage kidney disease, ESKD) 之

細胞由於其剛性會比正常細胞來的大，變形能力降低，進而表現出不同運動行為，

因此透過特定之流道設計可分辨正常紅血球 (RBC) 和感染之紅血球 (infected 

RBC, iRBC)。本小節運用 IFEM 技術模擬 RBC 和 iRBC 於曲線漸縮流道內的運動

行為，並分析不同入口流速下細胞的變形程度。 

    在模擬設定中，流道之幾何資訊如圖 4- 74 所示，流道寬度從 20 μm漸縮至 8 

μm，為上下對稱之流道，流體使用 Dextran 40，其密度和黏度可見表 4- 15；固體

則分別使用 RBC 和 iRBC，其密度、直徑和剛性可見表 4- 16，其中 ESKD 患者的

紅血球之楊式模數約為正常值的 5 倍 [24]。流場入口端設置不同的入口流速𝑈𝑖𝑛，

出口端則將壓力設為 0 Pa。固體使用 1201 個節點和 2304 個元素進行模擬，示意

圖如圖 4- 51 所示；流體則是使用 60×50 個網格進行模擬，示意圖如圖 4- 75 所示。 
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圖 4- 74  曲線漸縮流道之幾何資訊 

表 4- 15  曲線漸縮流道之流體參數 

流體參數 密度 (kg/m3) 黏度 (mPa·s) 

Dextran 40 1.046×103 [23] 4.5 [23] 

表 4- 16  曲線漸縮流道之固體參數 

固體參數 
密度 

(kg/m3) 

直徑   

(μm) 

楊式模數 

(kPa) 
蒲松比 

剪切模數 

(kPa) 

RBC 1.08×103 6 5 0.5 1.667 

iRBC 1.08×103 6 25 0.5 8.333 

8 8 8

20 8 Pressure

outlet
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圖 4- 75  曲線漸縮流道之流體網格示意圖 

    透過設定不同的入口流速𝑈𝑖𝑛，可得到各細胞在不同流場條件下細胞變形之程

度，並繪製 DR 對 x 座標之關係圖。從圖 4- 80 和圖 4- 81 可發現，由於 iRBC 相較

於 RBC 剛性較大，導致變形量較小，因此在相同入口流速下 DR 也相對較小。 
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圖 4- 76  RBC 於曲線漸縮流道之變形圖 (Uin為 0.05 m/s) 

 

圖 4- 77  RBC 於曲線漸縮流道之變形圖 (Uin為 0.5 m/s) 
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圖 4- 78  iRBC 於曲線漸縮流道之變形圖 (Uin為 0.05 m/s) 

 

圖 4- 79  iRBC 於曲線漸縮流道之變形圖 (Uin為 0.5 m/s) 
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圖 4- 80  RBC 之 DR 對 x 座標之關係圖 (不同入口流速 Uin) 

 

圖 4- 81  iRBC 之 DR 對 x 座標之關係圖 (不同入口流速 Uin) 
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    接著，將紅血球於不同入口流速下所受到的 x 方向耦合力繪製成圖 (如圖 4- 

82)，可發現 x 方向耦合力的最大量值隨著入口流速上升而隨之上升，原因為相同

材料和形狀下，入口端流速越大，材料變形越大，固體內部的應力與應變呈正相關，

使得耦合力量值也越大。除此之外，也能發現在固體逐漸離開漸縮流道時，因固體

變形逐漸趨緩，導致耦合力量值也隨之變小。 

 

圖 4- 82  RBC 之 x 方向耦合力對 x 座標之關係圖 (不同入口流速 Uin) 

    固定入口流速為 0.5 m/s，將 RBC 與 iRBC 所受到的 x 方向耦合力繪製成圖 

(如圖 4- 83)，可發現在相同入口流速下，iRBC 比 RBC 有更大的 x 方向耦合力，

原因為剛性較大的細胞較難以順應流場，導致固體內部產生較大的應力，流體與細

胞的交互作用更加劇烈，進而反映在耦合力量值的上升。 
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圖 4- 83  RBC 和 iRBC 之 x 方向耦合力對 x 座標之關係圖 (Uin為 0.5 m/s) 

    從圖 4- 80 可發現，DR 有一段不連續的線段，為了探究其原因，固定入口流

速為 0.5 m/s，將細胞在 x 和 y 方向之應變和應變率對時間之關係圖繪製成圖 (如

圖 4- 84 和圖 4- 85)，可發現在經過曲線漸縮流道時，由於流場開始變得複雜，y 方

向之應變有一個明顯的轉折點，而此轉折點即對應到 DR 的不連續。因此，可將經

過曲線漸縮流道之細胞的變形分為兩個階段：第一階段為 DR 逐漸上升，y 方向之

應變逐漸下降；第二階段為 DR 逐漸下降，y 方向之應變逐漸上升。 

    除此之外，比較圖 4- 71 和圖 4- 85 後，可發現相較於等角度漸縮流道，曲線

漸縮流道能產生一段應變率較為穩定的區間，可用來當作細胞測量區段之標準。 
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圖 4- 84  RBC 之應變和 DR 對時間之關係圖 (Uin為 0.5 m/s) 

 

圖 4- 85  RBC 之應變率對時間之關係圖 (Uin為 0.5 m/s) 
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    最後，透過設計不同入口流速，觀察 RBC 和 iRBC 在相同流場條件下之 DR

最大值，得到 RBC 相較於 iRBC 有較大的 DR 值，和文獻結果之趨勢相同。 

表 4- 17  IFEM 於曲線漸縮流道之模擬結果 

初速 Uin (m/s) RBC DR iRBC DR 

0.05 1.22 1.04 

0.5 3.2 1.54 

藉由以上的分析，可得到以下之結論： 

(1) 根據文獻，患有 ESKD 之紅血球之 DR 會比正常紅血球來的小，而模擬結果也

發現在相同的流場條件設置下，相同 x 座標下受感染之紅血球的 DR 較小，和文獻

趨勢符合。 

(2) 藉由模擬結果得到 IFEM 的耦合力，可推論在相同流道條件下不同剛性之細胞

其耦合力之大小關係，以及相同細胞在不同流速條件下對耦合力之影響。 

(3) 根據模擬結果，曲線漸縮流道會使 DR 有一個不連續的線段，透過研究得知，

DR 開始下降的情形和 y 方向之應變有關，代表曲線漸縮流道使流場發生變化，進

而影響應變和 DR。 

(4) 透過模擬結果，可發現曲線漸縮流道相較於等角度漸縮流道能產生一段應變率

較為穩定的區間，可用來當作細胞測量區段之標準，有利於觀察細胞變化之研究。 

(5) 根據模擬結果，在入口流速為 0.5 m/s 時，RBC 之 DR 最大值約為 3.2，而 iRBC

之 DR 最大值約為 1.54，可觀察到兩者不同之生理現象。 
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4.4.2 曲線漸擴流道 

    曲線漸擴流道是一種可有效進行細胞分離的流道，其能夠透過流場特性使細

胞產生明顯的側向遷移。本例題設計參考自 Claire Hur 於 2011 年發表的文獻 [5]，

本小節運用 IFEM 技術模擬不同細胞於曲線漸擴流道內的運動行為，並分析不同

固體參數對細胞運動軌跡的影響。 

    在模擬設定中，流道之幾何資訊如圖 4- 86 所示，假設細胞初始位置距離入口

端 100 μm，和流道中心線之距離為𝑌𝑖，流道寬度從 40 μm漸擴至 120 μm，為上下

對稱之流道，流體使用 3% Tween 80，其密度和黏度可見表 4- 18；固體則使用紅

血球 (RBC)、海拉細胞 (HeLa)、乳腺癌細胞 (MCF7) 和骨肉瘤細胞 (SAOS-2)，

其密度、直徑和剛性可見表 4- 19。流場入口端之流速𝑈𝑖𝑛根據文獻雷諾數 21 設為

0.466 m/s，出口端則將壓力設為 0 Pa。固體使用 41 個節點和 64 個元素進行模擬，

示意圖如圖 4- 7 所示；流體則是使用 80×30 個網格進行模擬，示意圖如圖 4- 87 所

示。 

 

圖 4- 86  曲線漸擴流道之幾何資訊 
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表 4- 18  曲線漸擴流道之流體參數 

流體參數 密度 (kg/m3) 黏度 (mPa·s) 

3% Tween 80 1.005×103 [12] 1.25 [12] 

表 4- 19  曲線漸擴流道之固體參數 

固體參數 
密度  

(kg/m3) 

直徑  

(μm) 

楊式模數 

(kPa) 
蒲松比 

剪切模數 

(kPa) 

紅血球 1.11×103 [6] 6 [5] 5 [7] 0.5 1.667 

HeLa 1.04×103 [8] 15 [5] 0.387 [9] 0.5 0.129 

MCF7 1.05×103 [10] 20 [5] 0.35 [11] 0.5 0.117 

SAOS-2 1.08×103 25 [5] 1.5 [17] 0.5 0.5 

 

圖 4- 87  曲線漸擴流道之流體網格示意圖 

    首先，根據文獻設置不同細胞之初始位置 (如表 4- 20)，並探討其在曲線漸擴

流道的運動行為。根據圖 4- 92，可發現尺寸較大且容易變形之細胞較容易聚集在

通道中心，和文獻趨勢符合。除此之外，透過此曲線漸擴流道，可將 RBC 和癌細
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胞進行分離，進而對 RBC 進行採集，或是對尺寸較大之癌細胞進行研究。 

表 4- 20  不同固體之初始位置 

固體材料 Yi (μm) 

紅血球 (RBC) 8.6 

HeLa 6.4 

MCF7 5 

SAOS-2 2 

 

圖 4- 88  紅血球於曲線漸擴流道之運動軌跡 (Yi為 8.6 μm) 
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圖 4- 89  HeLa 於曲線漸擴流道之運動軌跡 (Yi為 6.4 μm) 

 

圖 4- 90  MCF7 於曲線漸擴流道之運動軌跡 (Yi為 5 μm) 
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圖 4- 91  SAOS-2 於曲線漸擴流道之運動軌跡 (Yi為 2 μm) 

 

圖 4- 92  四種細胞於曲線漸擴流道之運動軌跡關係圖 
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    為了找出各個細胞的不同初始位置分別會遷移至哪個出口，分別探討各個細

胞於不同初始位置𝑌𝑖的情況，並找出各個細胞的分界𝑌𝑖，其定義為細胞在接觸邊界

前之形心之 y 座標距離中心線是否大於 20 μm，若細胞之初始位置離中心線距離小

於分界𝑌𝑖，會遷移至中間出口；若細胞之初始位置離中心線距離大於分界𝑌𝑖，則會

遷移至上下出口。 

 

圖 4- 93  紅血球於曲線漸擴流道之運動軌跡關係圖 (不同 Yi) 



doi:10.6342/NTU202503611
132 

 

 

圖 4- 94  HeLa 於曲線漸擴流道之運動軌跡關係圖 (不同 Yi) 

 

圖 4- 95  MCF7 於曲線漸擴流道之運動軌跡關係圖 (不同 Yi) 
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圖 4- 96  SAOS-2 於曲線漸擴流道之運動軌跡關係圖 (不同 Yi) 

表 4- 21  不同細胞之分界 Yi模擬結果 

細胞 分界 Yi (μm) 

RBC 5-6 

HeLa 7-7.25 

MCF7 7.25-8 

SAOS-2 6-7 

    根據模擬結果可發現，隨著細胞尺寸愈大，分界𝑌𝑖有愈大的趨勢。然而，SAOS-

2 之分界𝑌𝑖卻比 HeLa 和 MCF7 來的小，推測為其剛度較兩者來的大上許多 (約 4

倍)，因此變形較小，細胞更遠離中心線，導致其分界𝑌𝑖較小。 

    為了探討細胞尺寸、剛性對分界𝑌𝑖的影響，設計三組不同細胞直徑和剪切模數

的情形，並固定初始位置 (如表 4- 22)，以及繪製不同直徑和剛性細胞之運動軌跡
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關係圖 (如圖 4- 100)。根據圖 4- 100 可發現，隨著細胞尺寸越大，軌跡越靠近中

心線，因此分界𝑌𝑖越大；隨著細胞剛性越大，軌跡越遠離中心線，因此分界𝑌𝑖越小。

此現象也和前述推論相符。 

表 4- 22  不同直徑和剛性之固體參數 

種類 Yi (μm) 細胞直徑 (μm) 剪切模數 (Pa) 

Test 1 6 15 129 

Test 2 6 20 129 

Test 3 6 15 1667 

 

圖 4- 97  Test 1 於曲線漸擴流道之運動軌跡 
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圖 4- 98  Test 2 於曲線漸擴流道之運動軌跡 

 

圖 4- 99  Test 3 於曲線漸擴流道之運動軌跡 
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圖 4- 100  不同直徑和剛性細胞於曲線漸擴流道之運動軌跡關係圖 

    透過 IFEM 技術將不同直徑和剛性細胞所受到的耦合力繪製成圖 (如圖 4- 101

和圖 4- 102)，可發現在 x 約為 200-260 μm時，x 方向耦合力較穩定，而直徑較大

以及剛性較小的細胞有較大往中心線方向的耦合力，因此產生不同的側向位移。 
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圖 4- 101  不同直徑和剛性細胞之 x 方向耦合力對 x 座標之關係圖 

 

圖 4- 102  不同直徑和剛性細胞之 y 方向耦合力對 x 座標之關係圖 
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    接著，設置不同直徑和剪切模數的人工細胞參數 (A1-A7)，得到其分界𝑌𝑖，並

繪製細胞直徑、剪切模數與分界𝑌𝑖之關係圖 (如圖 4- 103 至圖 4- 106)，可發現在剪

切模數較大時，分界𝑌𝑖對直徑的變化較不明顯，而在剪切模數較小時，隨著直徑變

大，分界𝑌𝑖也有變大的趨勢，且在細胞直徑較大時，分界𝑌𝑖對剪切模數的變化較明

顯。 

 

圖 4- 103  細胞與人工細胞之直徑 
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圖 4- 104  細胞與人工細胞之剪切模數 

 

圖 4- 105  細胞與人工細胞之分界 Yi 
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圖 4- 106  細胞直徑、剪切模數與分界 Yi之關係圖 

藉由以上的分析，可得到以下之結論： 

(1) 根據模擬結果，透過此設計參數可將癌細胞分離至中間出口，紅血球分離至上

下出口，和文獻結果趨勢相符。 

(2) 藉由模擬結果得到 IFEM 的耦合力，可推論在相同流道條件下不同直徑大小和

不同剛性細胞其耦合力對軌跡帶來的影響。 

(3) 透過 IFEM 模擬技術，可得到不同細胞在曲線漸擴流道之分界𝑌𝑖，並探討其和

細胞大小及剛性之間的關係。 

4.5 細胞於螺旋流道之分析 

    螺旋流道是一種可有效進行細胞分離的流道，其能夠透過流場特性使不同大
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小細胞產生不同的側向遷移。本例題設計參考自 Sun 於 2013 年發表的文獻 [28]，

文獻提及之迪恩渦 (Dean vorticies) 為微流體在螺旋狀流道中運動時會在流道截面

的方向產生二次流動的現象，因此無法透過本模擬之二維系統進行深入探討，但仍

可透過 IFEM 技術模擬不同細胞於螺旋流道內的運動行為，並分析不同固體參數

對細胞運動軌跡的影響。 

    在流道建構過程中，由於螺旋狀之幾何較為複雜，因此在數學方程式上常透過

極座標的方式表示。將單一螺旋之流道中心線的方程式表示為： 

 𝑟(𝜙) = 𝑎√𝜙 (4- 25) 

其中𝑎為比例常數，控制螺距和整體尺寸，𝜙則為角度範圍。在此模擬中，𝑎設為 80 

μm，𝜙則設為 0 至 3π。若將式(4- 25)使用笛卡爾座標系統進行描述，則可表示為： 

 𝑥(𝜙) = 𝑎√𝜙 × cos (𝜙) (4- 26) 

 𝑦(𝜙) = 𝑎√𝜙 × sin (𝜙) 
(4- 27) 

接著，再透過流道中心線與各流體節點之間的距離，並判斷其和流道寬度之大小關

係，即可建構螺旋流道。 

    在模擬設定中，螺旋流道之示意圖如圖 4- 107 所示，左下方為入口端，右上

方為出口端，流道之寬度為 50 μm，為雙螺旋構造，單一螺旋分別繞 1.5 圈。假設

細胞初始位置距離入口端 100 μm，且在螺旋流道的中心線上，流體使用 DMEM + 

10% FBS，其密度和黏度可見表 4- 23；固體則使用 5 μm和 15 μm之細胞，其密

度、直徑和剛性可見表 4- 24。流場入口端設置不同的入口流速𝑈𝑖𝑛，出口端則將壓

力設為 0 Pa。固體使用 41 個節點和 64 個元素進行模擬，示意圖如圖 4- 7 所示；

流體則是使用 200×200 個網格進行模擬，示意圖如圖 4- 108 所示。 
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圖 4- 107  螺旋流道示意圖 

表 4- 23  螺旋流道之流體參數 

流體參數 密度 (kg/m3) 黏度 (mPa·s) 

DMEM + 10% FBS 1.009×103 [26] 1.25 [26] 

表 4- 24  螺旋流道之固體參數 

固體參數 
密度 

(kg/m3) 

直徑  

(μm) 

楊式模數 

(kPa) 
蒲松比 

剪切模數 

(kPa) 

5 μm之細胞 1.04×103 5 0.387 0.5 0.129 

15 μm之細胞 1.04×103 15 0.387 0.5 0.129 
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圖 4- 108  螺旋流道之流體網格示意圖 

    針對兩種不同直徑之細胞，分別給予不同入口流速𝑈𝑖𝑛，可得到各細胞在不同

流場條件下之細胞軌跡圖 (如圖 4- 109 至圖 4- 114)。 
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圖 4- 109  直徑 5 μm之細胞於螺旋流道之運動軌跡 (Uin為 0.55 m/s) 

 

圖 4- 110  直徑 15 μm之細胞於螺旋流道之運動軌跡 (Uin為 0.55 m/s) 
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圖 4- 111  直徑 5 μm之細胞於螺旋流道之運動軌跡 (Uin為 1.1 m/s) 

 

圖 4- 112  直徑 15 μm之細胞於螺旋流道之運動軌跡 (Uin為 1.1 m/s) 
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圖 4- 113  直徑 5 μm之細胞於螺旋流道之運動軌跡 (Uin為 1.38 m/s) 

 

圖 4- 114  直徑 15 μm之細胞於螺旋流道之運動軌跡 (Uin為 1.38 m/s) 
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    接著，將入口流速𝑈𝑖𝑛固定為 1.1 m/s，並繪製不同直徑大小細胞之運動軌跡圖 

(如圖 4- 115 和圖 4- 116)，文獻提及，慣性升力𝐹𝐿會隨著細胞直徑越大而跟著越大，

使細胞被推離通道中心，而螺旋流道由於其幾何曲率造成的速度不對稱性，通道外

側的流速會高於通道內側，使得橫截面上的剪應力梯度也呈現偏斜分布。因此，慣

性升力在螺旋流道中會使粒子偏向通道內側，最終導致較大直徑的細胞遷移至通

道內側處。從圖 4- 116 也可發現直徑較大之細胞相較於直徑較小之細胞在出口端

的位置較靠近通道內側，和文獻之趨勢相符。 

 

圖 4- 115  不同直徑細胞之運動軌跡關係圖 (Uin為 1.1 m/s) 
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圖 4- 116  不同直徑細胞於出口端之運動軌跡關係圖 (Uin為 1.1 m/s) 

    將不同直徑大小之細胞所受到的耦合力繪製成圖 (如圖 4- 117 和圖 4- 118)，

可發現在接近出口端時，直徑較大之細胞相較於直徑較小之細胞有較大往通道內

側方向的耦合力，進而導致軌跡較接近通道內側。 
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圖 4- 117  不同直徑細胞之 x 方向耦合力對時間之關係圖 (Uin為 1.1 m/s) 

 

圖 4- 118  不同直徑細胞之 y 方向耦合力對時間之關係圖 (Uin為 1.1 m/s) 
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    將細胞直徑固定為 15 μm，並繪製不同入口流速下細胞之運動軌跡圖 (如圖 4- 

119 和圖 4- 120)，文獻提及，慣性升力𝐹𝐿會隨著雷諾數越大而跟著越大，使細胞被

推離通道中心，因此入口流速越大，細胞會遷移至較靠近通道內側處。從圖 4- 120

也可發現入口流速較大之細胞相較於入口流速較小之細胞在出口端的位置較靠近

通道內側，和文獻之趨勢相符。 

 

圖 4- 119  不同入口流速下細胞之運動軌跡關係圖 
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圖 4- 120  不同入口流速下細胞於出口端之運動軌跡關係圖 

    將不同入口流速下之細胞所受到的耦合力繪製成圖 (如圖 4- 121和圖 4- 122)，

可發現在接近出口端時，隨著入口流速越快，相同直徑的細胞有較大往通道內側方

向的耦合力，進而導致軌跡較接近通道內側。 
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圖 4- 121  不同入口流速下細胞之 x 方向耦合力對時間之關係圖 

 

圖 4- 122  不同入口流速下細胞之 y 方向耦合力對時間之關係圖 
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    接著，繪製不同入口流速和直徑下細胞之運動軌跡圖 (如圖 4- 123 和圖 4- 124)。

模擬結果顯示，整體而言直徑較大之細胞相較於直徑較小之細胞在出口端的位置

較靠近通道內側，和文獻之趨勢相符。 

 

圖 4- 123  不同入口流速和直徑下細胞之運動軌跡關係圖 
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圖 4- 124  不同入口流速和直徑下細胞於出口端之運動軌跡關係圖 

    根據上述模擬結果，為了分離不同大小之細胞，可在 x 座標為 590 μm後設置

一水平分界線，分離 y 座標在 770 μm上下之細胞，如圖 4- 125 所示。 
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圖 4- 125  設置水平分界線之示意圖 

    分別探討不同入口流速下之分離效果，可分為三種結果：一為入口流速為 0.55 

m/s，此時兩者皆會遷移至外側通道，無法達到分離之效果 (如圖 4- 126)；二為入

口流速為 1.1 m/s，此時直徑為 5 μm之細胞會遷移至外側通道，而直徑為 15 μm之

細胞則因軌跡太靠近水平分界線，細胞會部分遷移至外側通道，部分遷移至內側通

道，達到部分分離之效果 (如圖 4- 127)；三為入口流速為 1.38 m/s，此時直徑為 5 

μm之細胞會遷移至外側通道，而直徑為 15 μm之細胞則會遷移至內側通道，可達

到分離之效果 (如圖 4- 128)，因此可推論在入口流速越快，即入口流率越大，會有

越好的分離效果，此現象也和文獻結果之趨勢相符。 

 

圖 4- 126  不同直徑大小細胞之分離效果 (Uin為 0.55 m/s) 

 5 0 770)

分離至外側通道之細胞  直徑較小)

分離至內側通道之細胞  直徑較大)
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圖 4- 127  不同直徑大小細胞之分離效果 (Uin為 1.1 m/s) 

 

圖 4- 128  不同直徑大小細胞之分離效果 (Uin為 1.38 m/s) 
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    為了分析不同剛性對於細胞軌跡的影響，在固定入口流速和細胞直徑分別為

1.1 m/s 和 15 μm的情況下，設計不同的細胞剛性，如表 4- 25 所示，並繪製不同細

胞剛性下細胞之運動軌跡圖 (如圖 4- 129 至圖 4- 131)。根據圖 4- 132 可發現，隨

著剛性增加，細胞之軌跡越往通道外側遷移，可藉此分辨細胞剛性之大小關係。 

表 4- 25  不同細胞剛性之固體參數 

種類 細胞直徑 (μm) 剪切模數 (Pa) 

Test 1 15 129 

Test 2 15 387 

Test 3 15 645 
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圖 4- 129  直徑 15 μm之細胞於螺旋流道之運動軌跡 (剪切模數為 387 Pa) 

 

圖 4- 130  直徑 15 μm之細胞於螺旋流道之運動軌跡 (剪切模數為 645 Pa) 



doi:10.6342/NTU202503611
159 

 

 

圖 4- 131  不同剛性之細胞之運動軌跡關係圖 



doi:10.6342/NTU202503611
160 

 

 

圖 4- 132  不同剛性之細胞於出口端之運動軌跡關係圖 

    將不同剛性之細胞所受到的耦合力繪製成圖 (如圖 4- 133 和圖 4- 134)，可發

現在接近出口端時，隨著細胞剛性增加，細胞有較大往通道外側方向的耦合力，進

而使軌跡較接近通道外側。因此，軌跡較靠近通道內側之細胞剛性較小，對於癌細

胞來說其變形性較大，導致其容易轉移至其他器官，可作為判斷轉移可能性之標準。 
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圖 4- 133  不同剛性之細胞之 x 方向耦合力對時間之關係圖 

 

圖 4- 134  不同剛性之細胞之 y 方向耦合力對時間之關係圖 
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藉由以上的分析，可得到以下之結論： 

(1) 根據模擬結果，可得到較大尺寸之細胞在出口端較靠近通道內側，和文獻結果

之趨勢相符。 

(2) 根據模擬結果，可得到在相同固體參數下，較大的入口流速可使細胞在出口端

較靠近通道內側，和文獻結果之趨勢相符。 

(3) 藉由模擬結果得到 IFEM 的耦合力，可推論在相同流道條件下不同大小細胞其

耦合力之關係，以及相同細胞在不同流速條件下對耦合力之影響。 

(4) 透過模擬結果，可在出口端設計一水平分界線，進而在設計的不同入口流速下，

觀察到不同的分離效果。 

(5) 根據模擬結果，可發現在相同直徑的細胞下，剛性較低之細胞其軌跡在出口端

較靠近通道內側，可作為癌細胞轉移可能性之標準。 
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第五章 結論與未來展望 

5.1 結論 

本論文成功運用沉浸有限元素法 (IFEM)，建立一套適合微流體元件內複雜幾

何之流固耦合問題的高效模擬平台。透過動量方程式與連續方程式結合有限差分

法、交錯網格、虛擬網格以及直接強制法，有效提升流場模擬的準確性與穩定性。

除此之外，更進一步結合有限元素法之形狀函數、高斯積分，精確描述超彈性固體

材料於流體作用下的變形與運動行為。 

    本研究深入分析多種複雜幾何微流道設計，包括十字流道、漸擴流道、漸縮流

道與螺旋流道。透過模擬結果，成功驗證本數值方法的可靠性，並進一步探討細胞

尺寸、剛性以及流場條件對細胞運動軌跡和變形行為的影響，並透過沉浸有限元素

法計算之耦合力進行分析，深入理解在微尺度下流固交互作用的複雜機制。 

    綜上所述，本研究提出之數值方法以及分析流程，成功地模擬複雜幾何的微流

體細胞實驗，展現出極大的潛力，期許可將其與生物醫學應用相結合，並將其廣泛

應用於細胞篩選、疾病診斷等領域，為相關研究提供一個重要且精準的數值模擬工

具。 

5.2 未來展望 

    本研究已初步證明沉浸有限元素法於微流體元件流固耦合模擬之有效性與準

確性，而未來仍有許多值得進一步深入研究以及發展的方向。 

    首先，由於目前的數值方法在處理大規模或是大量細胞交互作用時，仍須耗費

較長計算時間，因此未來可透過平行運算與 GPU 加速等技術，進一步優化演算法，
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提升模擬效率。 

    再者，本研究目前假設流體為單一相，但實際應用中流體可能包含懸浮顆粒或

氣泡，呈現多相流體特性，因此未來可試著引入多相流模型進行模擬，以更貼近實

際流場狀況，並搭配實驗驗證模擬之準確性。 

    此外，本研究目前皆以二維模擬為主，即不考慮流道截面方向的流體運動，但

部分微流體系統須考慮三維問題帶來的效應，因此未來可將模擬平台擴展至三維，

探討更多實際且複雜的三維微流道設計，以更真實地反映實驗現象與臨床需求。 
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