Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98596
Title: 物理訊息神經網路輔助擴展卡爾曼濾波器之設計與實現
Physics-Informed Neural Networks Assisted Extended Kalman Filter System Design and Implementation
Authors: 林秉諭
Ping-Yu Lin
Advisor: 王立昇
Li-Sheng Wang
Keyword: 數據導向,擴展卡爾曼濾波器,阿克曼轉向載具,物理訊息神經網路,
Data-Driven,Extended Kalman Filter,Ackermann vehicle,Physics-Informed Neural Network,
Publication Year : 2025
Degree: 碩士
Abstract: 本研究旨在設計並實現一套數據導向(Data-Driven)之系統狀態估測系統,應用於阿克曼(Ackermann)無人載具於戶外環境中的定位及定向。為解決阿克曼轉向機構的載具非線性模型不易掌握的問題,本研究進一步引入物理訊息神經網路(Physics-Informed Neural Networks0, PINN)輔助擴展卡爾曼濾波器(Extended Kalman Filter, EKF),透過學習車輛運動方程,融合GPS/GNSS 與IMU 資訊,有效估測車輛在戶外環境中的座標與朝向角,提升估測精度與穩定性。最終,引入動態節點擴張概念及線上即時學習修正類神經網路模型,整體系統融合數據導向方法與物理模型推導之優勢,實現具備自適應性、運動可行性與動態穩健性的戶外阿克曼載具定位與控制架構。
This study aims to design and implement a data-driven state estimation system for localization of Ackermann-type unmanned ground vehicles (UGVs) operating in outdoor environments. To address the challenges posed by the uncertain nonlinear dynamical model inherent to the Ackermann steering mechanism, a Physics-Informed Neural Network (PINN) is incorporated to enhance the performance of the Extended Kalman Filter (EKF). By learning the vehicle’s motion equations and fusing data from GPS/GNSS and inertial measurement units (IMUs), the proposed system effectively estimates the vehicle’s position and heading, thereby improving both the accuracy and stability of localization.
To further adapt to real-world environmental dynamics and model uncertainties, this work introduces a dynamic node expansion strategy and an online learning mechanism for real-time model correction. The resulting framework leverages the complementary strengths of data-driven learning and physics-based modeling, enabling adaptive, physically feasible, and robust localization and control of outdoor Ackermann UGVs.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98596
DOI: 10.6342/NTU202501008
Fulltext Rights: 同意授權(限校園內公開)
metadata.dc.date.embargo-lift: 2025-08-18
Appears in Collections:應用力學研究所

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
Access limited in NTU ip range
14.06 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved