Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98585
Title: LoGIC:用於視覺變換器的多任務剪枝之多重 LoRA 引導重要性共識方法
LoGIC: Multi-LoRA Guided Importance Consensus for Multi-Task Pruning in Vision Transformers
Authors: 周昱宏
Yu-Hong Chou
Advisor: 陳銘憲
Ming-Syan Chen
Keyword: 視覺變換器,模型剪枝,多任務學習,低秩適應,
Vision Transformers (ViTs),Model Pruning,Multi-Task Learning (MTL),Low-Rank Adaptation (LoRA),
Publication Year : 2025
Degree: 碩士
Abstract: 在現實世界的多任務學習(Multi-Task Learning, MTL)應用中部署強大的 Vision Transformers(ViTs),受到其高昂運算成本的限制,因此高效的剪枝技術變得至關重要。然而,核心挑戰在於如何在不同任務之間建立對參數重要性的共識,以有效地剪枝共享的 ViT 主幹。常見做法是對每個任務獨立進行單任務剪枝,但這會造成破壞性干擾,因為可能會移除對其他任務至關重要的權重。另一類方法則透過整合多任務的剪枝訊號來提升感知能力,但這些方法仰賴對所有參數進行高成本的反覆更新,因此難以擴展到當今具備十億參數等級的 ViT 模型。
為了解決上述問題,我們提出 LoGIC(Multi-LoRA Guided Importance Consensus),一個專為大規模多任務 ViTs 所設計的高效剪枝統一框架。LoGIC 結合了共享與任務專屬 LoRA 模組的混合架構,透過創新的任務自適應路由機制,緩解任務間的衝突,同時透過跨任務的重要性共識策略,整合多重重要性訊號,實現穩健的剪枝決策。
我們在五項不同的視覺任務上進行大量實驗,結果顯示 LoGIC 可達到高達 50% 的結構化稀疏性,不僅穩定優於所有既有的剪枝方法,還能在僅微調約 10% 模型參數的情況下,維持與原始完整微調模型相當的準確率。我們的研究為在資源受限的環境中部署強大且統一的 ViT 模型提供了一個實用且具擴展性的解決方案。
Deploying powerful Vision Transformers (ViTs) in real-world multi-task learning (MTL) applications is constrained by their high computational costs, making efficient pruning essential. However, the core challenge is forming a consensus on parameter importance across tasks to effectively prune the shared ViT backbone. A common approach is to apply single-task pruning independently to each task, but this leads to destructive interference by removing weights critical to others. Alternatively, some methods incorporate multi-task awareness by aggregating pruning signals, but they remain unscalable for today’s billion-parameter ViTs due to their reliance on costly iterative updates of all parameters. To overcome this, we propose LoGIC (Multi-LoRA Guided Importance Consensus), a unified framework designed specifically to prune large-scale multi-task ViTs efficiently and effectively. At its core, LoGIC integrates a hybrid architecture of shared and task-specific LoRA modules. It mitigates inter-task conflicts through a novel task-adaptive routing mechanism. In parallel, a cross-task consensus strategy ensures robust pruning decisions by aggregating multiple importance signals. Extensive experiments on five diverse vision tasks show that LoGIC achieves up to 50% structured sparsity, consistently outperforming all prior pruning baselines while matching the accuracy of the original, fully fine-tuned model, all while fine-tuning only a small fraction (~10%) of the total parameters. Our work provides a practical and scalable solution for deploying powerful, unified ViT models in resource-constrained environments.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98585
DOI: 10.6342/NTU202503383
Fulltext Rights: 同意授權(限校園內公開)
metadata.dc.date.embargo-lift: 2030-08-04
Appears in Collections:電機工程學系

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
  Restricted Access
1.82 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved