Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98542
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林俊達zh_TW
dc.contributor.advisorGuin-Dar Linen
dc.contributor.author謝子研zh_TW
dc.contributor.authorTzu-Yen Hsiehen
dc.date.accessioned2025-08-18T00:48:35Z-
dc.date.available2025-08-18-
dc.date.copyright2025-08-15-
dc.date.issued2025-
dc.date.submitted2025-08-05-
dc.identifier.citationA. F. Kockum and F. Nori, Quantum Bits with Josephson Junctions, pp. 703–741. Cham: Springer International Publishing, 2019.
K.-T. Lin, T. Hsu, C.-Y. Lee, I.-C. Hoi, aVuletić, and M. D. Lukin, “Quantum nonlinear optics — photon by photon,” Nature Photonics, vol. 8, pp. 685–694, Aug. 2014.
Y. Cai, nd G.-D. Lin, “Scalable collective lamb shift of a 1d superconducting qubit array in front of a mirror,” Scientific Reports, vol. 9, Dec. 2019.
D. E. Chang, V. J. Feng, H. Wang, G. Ferrini, X. Xu, J. Jing, and N. Treps, “Quantum-network generation based on four-wave mixing,” Phys. Rev. A, vol. 91, p. 013843, Jan 2015.
A. Dutt, A. Mohanty, A. L. Gaeta, and M. Lipson, “Nonlinear and quantum photonics using integrated optical materials,” Nature Reviews Materials, vol. 9, pp. 321–346, May 2024.
J. Zhong, Rituraj, F. Dinc, and S. Fan, “Detecting the relative phase between different frequency components of a photon using a three-level Λ atom coupled to a waveguide,” Phys. Rev. A, vol. 107, p. L051702, May 2023.
H. Zhang and H. Wang, “Entanglement concentration of microwave photons based on the kerr effect in circuit qed,” Phys. Rev. A, vol. 95, p. 052314, May 2017.
J. Guo, Q. He, and M. Fadel, “Quantum metrology with a squeezed kerr oscillator,”Phys. Rev. A, vol. 109, p. 052604, May 2024.
M. Ma, Q. Zhu, and F.-F. Du, “Kerr-Effect-Based High-Dimensional Entanglement Generation for Qudit Systems,” Adv. Quantum Technol., vol. 8, no. 5, p. 2500010, 2025.
X. Qiao, Z. Yao, and H. Yang, “Strongly enhanced photon-pair blockade with threewave mixing by quantum interference,” Phys. Rev. A, vol. 110, p. 053702, Nov 2024.
M. Chen, J. Tang, L. Tang, H. Wu, and K. Xia, “Photon blockade and single-photon generation with multiple quantum emitters,” Phys. Rev. Res., vol. 4, p. 033083, Jul 2022.
J. Tang, L. Tang, H. Wu, Y. Wu, H. Sun, H. Zhang, T. Li, Y. Lu, M. Xiao, and K. Xia, “Towards on-demand heralded single-photon sources via photon blockade,” Phys. Rev. Appl., vol. 15, p. 064020, Jun 2021.
L. Chang, S. Liu, and J. E. Bowers, “Integrated optical frequency comb technologies,” Nature Photonics, vol. 16, pp. 95–108, Feb. 2022.
J. Rivera Hernández, F. Lingua, S. W. Jolin, and D. B. Haviland, “Control of multimodal scattering in a microwave frequency comb,” APL Quantum, vol. 1, no. 3, 2024.
S. W. Jolin, G. Andersson, J. C. R. Hernández, I. Strandberg, F. Quijandría, J. Aumentado, R. Borgani, M. O. Tholén, and D. B. Haviland, “Multipartite entanglement in a microwave frequency comb,” Phys. Rev. Lett., vol. 130, p. 120601, Mar 2023.
A. V. Venkatramani, Quantum nonlinear optics: controlling few-photon interactions. PhD thesis, Harvard University, 2021.
C. Joshi, A. Farsi, A. Dutt, B. Y. Kim, X. Ji, Y. Zhao, A. M. Bishop, M. Lipson, and A. L. Gaeta, “Frequency-domain quantum interference with correlated photons from an integrated microresonator,” Phys. Rev. Lett., vol. 124, p. 143601, Apr 2020.
A. F. Kockum, V. Macrì, L. Garziano, S. Savasta, and F. Nori, “Frequency conversion in ultrastrong cavity qed,” Scientific Reports, vol. 7, July 2017.
Y. Zhang, F. Wen, and M. Xiao, Quantum Control of Multi-Wave Mixing. Wiley-VCH, July 2013.
R. W. Boyd, “Chapter 3 - quantum-mechanical theory of the nonlinear optical susceptibility,”in Nonlinear Optics (Third Edition) (R. W. Boyd, ed.), pp. 135–206, Burlington: Academic Press, third edition ed., 2008.
J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Charge-insensitive qubit design derived from the cooper pair box,” Phys. Rev. A, vol. 76, p. 042319, Oct 2007.
M. K. Tey, Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G. Maslennikov, and C. Kurtsiefer,“Strong interaction between light and a single trapped atom without the need for a cavity,” Nature Physics, vol. 4, pp. 924–927, Oct. 2008.
Y. Wang, J. c. v. Minář, L. Sheridan, and V. Scarani, “Efficient excitation of a two-level atom by a single photon in a propagating mode,” Phys. Rev. A, vol. 83, p. 063842, Jun 2011.
I.-C. Hoi, C. M. Wilson, G. Johansson, T. Palomaki, B. Peropadre, and P. Delsing,“Demonstration of a single-photon router in the microwave regime,” Phys. Rev. Lett., vol. 107, p. 073601, Aug 2011.
O. Astafiev, A. M. Zagoskin, A. Abdumalikov Jr, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science, vol. 327, no. 5967, pp. 840–843, 2010.
A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature, vol. 431, pp. 162–167, Sept. 2004.
A. Abdumalikov Jr, O. Astafiev, Y. A. Pashkin, Y. Nakamura, and J. Tsai, “Dynamics of coherent and incoherent emission from an artificial atom in a 1d space,” Physical review letters, vol. 107, no. 4, p. 043604, 2011.
D. Toyli, A. Eddins, S. Boutin, S. Puri, D. Hover, V. Bolkhovsky, W. Oliver, A. Blais, and I. Siddiqi, “Resonance fluorescence from an artificial atom in squeezed vacuum,” Physical Review X, vol. 6, no. 3, p. 031004, 2016.
K.-T. Lin, T. Hsu, F. Aziz, Y.-C. Lin, P.-Y. Wen, I.-C. Hoi, and G.-D. Lin, “Singleatom amplification assisted by multiple sideband interference in waveguide qed systems,” New Journal of Physics, 2025.
Q. Miao and G. S. Agarwal, “Transparency, nonclassicality, and nonreciprocity in chiral waveguide quantum electrodynamics,” Phys. Rev. Res., vol. 7, p. 013138, Feb 2025.
Y.-L. L. Fang and H. U. Baranger, “Multiple emitters in a waveguide: Nonreciprocity and correlated photons at perfect elastic transmission,” Phys. Rev. A, vol. 96, p. 013842, Jul 2017.
L. Du, Y.-T. Chen, and Y. Li, “Nonreciprocal frequency conversion with chiral Λ-type atoms,” Phys. Rev. Res., vol. 3, p. 043226, Dec 2021.
P. Y. Wen, K.-T. Lin, A. F. Kockum, B. Suri, H. Ian, J. C. Chen, S. Y. Mao, C. C. Chiu, P. Delsing, F. Nori, G.-D. Lin, and I.-C. Hoi, “Large collective lamb shift of two distant superconducting artificial atoms,” Phys. Rev. Lett., vol. 123, p. 233602, Dec 2019.
J. A. Mlynek, A. A. Abdumalikov, C. Eichler, and A. Wallraff, “Observation of dicke superradiance for two artificial atoms in a cavity with high decay rate,” Nature Communications, vol. 5, Nov. 2014.
K. Lalumière, B. C. Sanders, A. F. van Loo, A. Fedorov, A. Wallraff, and A. Blais,“Input-output theory for waveguide qed with an ensemble of inhomogeneous atoms,” Phys. Rev. A, vol. 88, p. 043806, Oct 2013.
A. Albrecht, L. Henriet, A. Asenjo-Garcia, P. B. Dieterle, O. Painter, and D. E. Chang, “Subradiant states of quantum bits coupled to a one-dimensional waveguide," New Journal of Physics, vol. 21, no. 2, p. 025003, 2019.
T. Hönigl-Decrinis, I. V. Antonov, R. Shaikhaidarov, V. N. Antonov, A. Y. Dmitriev, and O. V. Astafiev, “Mixing of coherent waves in a single three-level artificial atom,” Phys. Rev. A, vol. 98, p. 041801, Oct 2018.
C. Wu, H. R. Hamedi, C. Kong, W. Li, and Z. Wang, “Vortex modulation via four-wave mixing in superconducting artificial atoms,” Chaos, Solitons & Fractals, vol. 196, p. 116293, 2025.
H.-C. Li, G.-Q. Ge, and H.-Y. Zhang, “Coexistence of three-wave, four-wave, and five-wave mixing processes in a superconducting artificial atom,” Opt. Lett., vol. 40, pp. 1133–1136, Mar 2015.
A. Y. Dmitriev, R. Shaikhaidarov, T. Hönigl-Decrinis, S. E. de Graaf, V. N. Antonov, and O. V. Astafiev, “Probing photon statistics of coherent states by continuous wave mixing on a two-level system,” Phys. Rev. A, vol. 100, p. 013808, Jul 2019.
A. Y. Dmitriev, R. Shaikhaidarov, V. N. Antonov, T. Hönigl-Decrinis, and O. V. Astafiev, “Quantum wave mixing and visualisation of coherent and superposed photonic states in a waveguide,” Nature Communications, vol. 8, Nov. 2017.
W. V. Pogosov, A. Y. Dmitriev, and O. V. Astafiev, “Effects of photon statistics in wave mixing on a single qubit,” Phys. Rev. A, vol. 104, p. 023703, Aug 2021.
Y. X. Liu, H.-C. Sun, Z. H. Peng, A. Miranowicz, J. S. Tsai, and F. Nori, “Controllable microwave three-wave mixing via a single three-level superconducting quantum circuit,” Scientific Reports, vol. 4, Dec. 2014.
A. V. Vasenin, A. Y. Dmitriev, S. V. Kadyrmetov, A. N. Bolgar, and O. V. Astafiev, “Dynamics of multiphoton scattering in a two-level mixer,” Phys. Rev. A, vol. 106, p. L041701, Oct 2022.
S. A. Gunin, A. Y. Dmitriev, A. V. Vasenin, K. S. Tikhonov, G. P. Fedorov, and O. V. Astafiev, “Quantum and classical field scattered on a single two-level system,” Phys. Rev. A, vol. 108, p. 033723, Sep 2023.
P. Yanes-Thomas, R. Gutiérrez-Jáuregui, P. Barberis-Blostein, D. Sahagún-Sánchez, R. Jáuregui, and A. Kunold, “Collective coupling of driven multilevel atoms and itseffect on four-wave mixing,” Phys. Rev. Res., vol. 7, p. 013028, Jan 2025.
T. E. Roth, R. Ma, and W. C. Chew, “The transmon qubit for electromagnetics engineers: An introduction,” IEEE Antennas and Propagation Magazine, vol. 65, no. 2, pp. 8–20, 2023.
B. Josephson, “Possible new effects in superconductive tunnelling,” Physics Letters, vol. 1, no. 7, pp. 251–253, 1962.
A. Blais, A. L. Grimsmo, S. M. Girvin, and A. Wallraff, “Circuit quantum electrodynamics,” Rev. Mod. Phys., vol. 93, p. 025005, May 2021.
J. Q. You and F. Nori, “Atomic physics and quantum optics using superconducting circuits,” Nature, vol. 474, pp. 589–597, June 2011.
L. N. Cooper, “Bound electron pairs in a degenerate fermi gas,” Phys. Rev., vol. 104, pp. 1189–1190, Nov 1956.
M. Tinkham, Introduction to superconductivity. Mineola, N.Y: Dover Publications, 2nd ed. ed., 1996.
J. J. García Ripoll, Superconductivity, pp. 19–33. Cambridge University Press, 2022.
M. Devoret, Quantum fluctuations in electrical circuits. Edition de Physique, Jan. 1995.
B. Yurke and J. S. Denker, “Quantum network theory,” Phys. Rev. A, vol. 29, pp. 1419–1437, Mar 1984.
J. J. García Ripoll, Quantum Circuit Theory, pp. 34–62. Cambridge University Press, 2022.
J. Lisenfeld, A. Bilmes, A. Megrant, R. Barends, J. Kelly, P. Klimov, G. Weiss, J. M. Martinis, and A. V. Ustinov, “Electric field spectroscopy of material defects in transmon qubits,” npj Quantum Information, vol. 5, Nov. 2019.
J. J. García Ripoll, Superconducting Qubits, p. 106–155. Cambridge University Press, 2022.
M. H. Devoret and R. J. Schoelkopf, “Superconducting circuits for quantum information: An outlook,” Science, vol. 339, no. 6124, pp. 1169–1174, 2013.
R. W. Boyd, “Chapter 1 - the nonlinear optical susceptibility,” in Nonlinear Optics (Third Edition) (R. W. Boyd, ed.), pp. 1–67, Burlington: Academic Press, third edition ed., 2008.
Y.-R. Shen, Principles of Nonlinear Optics. New York: John Wiley & Sons, 1984. Introduction.
P. D. Drummond and M. Hillery, Classical nonlinear optics, p. 4–36. Cambridge University Press, 2014.
F. J. Dyson, “The s matrix in quantum electrodynamics,” Phys. Rev., vol. 75, pp. 1736–1755, Jun 1949.
S. Weinberg, General scattering theory, p. 282–324. Cambridge University Press, 2015.
D. Manzano, “A short introduction to the lindblad master equation,” AIP Advances, vol. 10, p. 025106, 02 2020.
H.-P. Breuer and F. Petruccione, “Quantum master equations,” in The Theory of Open Quantum Systems, pp. 109–218, Oxford University Press, 01 2007.
H. J. Carmichael, Dissipation in Quantum Mechanics: The Master Equation Approach, pp. 1–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999.
K.-T. Lin, T. Hsu, F. Aziz, Y.-C. Lin, P.-Y. Wen, I.-C. Hoi, and G.-D. Lin, “Singleatom amplification assisted by multiple sideband interference in 1d waveguide qed systems,” arXiv preprint, 2023.
M. O. Scully and M. S. Zubairy, Quantum theory of radiation, p. 1–45. Cambridge University Press, 1997.
H. J. Carmichael, Two-Level Atoms and Spontaneous Emission, pp. 29–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999.
D. M. Pozar, “Microwave network analysis,” in Microwave Engineering, ch. 4, pp. 165–227, Wiley, 4 ed., 2012.
B. Peropadre, J. Lindkvist, I.-C. Hoi, C. M. Wilson, J. J. Garcia-Ripoll, P. Delsing, and G. Johansson, “Scattering of coherent states on a single artificial atom,” New Journal of Physics, vol. 15, p. 035009, mar 2013.
B. R. Mollow, “Power spectrum of light scattered by two-level systems,” Phys. Rev., vol. 188, pp. 1969–1975, Dec 1969.
D. Walls and G. J. Milburn, Interaction of Radiation with Atoms, pp. 197–211. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.
Z. Ficek and H. S. Freedhoff, “Fluorescence and absorption by a two-level atom in a bichromatic field with one strong and one weak component,” Phys. Rev. A, vol. 53, pp. 4275–4287, Jun 1996.
I. Strandberg, Y. Lu, F. Quijandría, and G. Johansson, “Numerical study of wigner negativity in one-dimensional steady-state resonance fluorescence,” Phys. Rev. A, vol. 100, p. 063808, Dec 2019.
B. Sain, C. Meier, and T. Zentgraf, “Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review,” Advanced Photonics, vol. 1, no. 2, pp. 024002–024002, 2019.
Y. Zheng and X. Chen, “Nonlinear wave mixing in lithium niobate thin film,” Advances in Physics: X, vol. 6, no. 1, p. 1889402, 2021.
S. Liu, Y. Zheng, Z. Fang, X. Ye, Y. Cheng, and X. Chen, “Effective four-wave mixing in the lithium niobate on insulator microdisk by cascading quadratic processes,” Optics letters, vol. 44, no. 6, pp. 1456–1459, 2019.
J. E. Sharping, M. Fiorentino, A. Coker, P. Kumar, and R. S. Windeler, “Four-wave mixing in microstructure fiber,” Opt. Lett., vol. 26, pp. 1048–1050, Jul 2001.
O. Aso, M. Tadakuma, and S. Namiki, “Four-wave mixing in optical fibers and its applications,” dEp, vol. 1, no. 2, 1999.
K. Hill, D. Johnson, B. Kawasaki, and R. MacDonald, “cw three-wave mixing in single-mode optical fibers,” Journal of Applied Physics, vol. 49, no. 10, pp. 5098– 5106, 1978.
Y. Li, Z. Yao, and H. Yang, “One-photon and two-photon blockades in a four-wave mixing system embedded with an atom,” Phys. Rev. A, vol. 109, p. 043702, Apr 2024.
A. Vasenin, A. Dmitriev, S. Kadyrmetov, and O. Astafiev, “Simulation and design of a superconducting qubit for the quantum wave mixing experiment,” in AIP Conference Proceedings, vol. 2241, AIP Publishing, 2020.
A. Elistratov, S. Remizov, W. Pogosov, A. Y. Dmitriev, and O. Astafiev, “Quantum theory of wave mixing on a two-level system,” arXiv preprint arXiv:2309.01444, 2023.
H. Wang, Q. Zeng, H. Ma, and Z. Yuan, “Progress on chip-based spontaneous fourwave mixing quantum light sources,” Advanced Devices and Instrumentation, vol. 5, p. 0032, 2024.
D. Groll, D. Wigger, K. Jürgens, T. Hahn, C. Schneider, M. Kamp, S. Höfling, J. Kasprzak, and T. Kuhn, “Four-wave mixing dynamics of a strongly coupled quantum-dot–microcavity system driven by up to 20 photons,” Phys. Rev. B, vol. 101, p. 245301, Jun 2020.
M. Zajnulina, B. Lingnau, and K. Lüdge, “Four-wave mixing in quantum-dot semiconductor optical amplifiers: A detailed analysis of the nonlinear effects,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 23, no. 6, pp. 1–12, 2017.
J. Li, G. S. Paraoanu, K. Cicak, F. Altomare, J. I. Park, R. W. Simmonds, M. A. Sillanpää, and P. J. Hakonen, “Decoherence, autler-townes effect, and dark states in two-tone driving of a three-level superconducting system,” Phys. Rev. B, vol. 84, p. 104527, Sep 2011.
J. Li, M. A. Sillanpä, G. S. Paraoanu, and P. J. Hakonen, “Pure dephasing in a superconducting three-level system,” Journal of Physics: Conference Series, vol. 400, p. 042039, dec 2012.
T. Ramos and J. J. García-Ripoll, “Correlated dephasing noise in single-photon scattering,” New Journal of Physics, vol. 20, no. 10, p. 105007, 2018.
M. O. Scully and M. S. Zubairy, Resonance fluorescence, p. 291–326. Cambridge University Press, 1997.
M. Lax, “Formal theory of quantum fluctuations from a driven state,” Phys. Rev., vol. 129, pp. 2342–2348, Mar 1963.
F. Campaioli, J. H. Cole, and H. Hapuarachchi, “Quantum master equations: Tips and tricks for quantum optics, quantum computing, and beyond,” PRX Quantum, vol. 5, p. 020202, Jun 2024.
G. Khitrova, P. R. Berman, and M. Sargent, “Theory of pump–probe spectroscopy,” J. Opt. Soc. Am. B, vol. 5, pp. 160–170, Jan 1988.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98542-
dc.description.abstract在本論文中,我們以理論方式研究一維波導量子電動力學系統中的量子波混頻現象。該系統是由一個多能階 transmon 同時受到兩組相干微波場的驅動所組成。我們結合 Floquet 理論與 Dyson 展開,系統性地分析導致頻譜邊帶產生的多光子過程。本研究架構顯示,透過調控兩組驅動場的相對功率與失諧量,可以實現可調式頻率轉換,從而產生可調式頻率梳。進一步地,當我們將 transmon 的更高能階納入考量時,發現新的量子途徑會對頻譜響應產生顯著影響。根據本理論進行的數值模擬結果與實驗頻譜高度吻合,驗證了我們方法的正確性。本研究成果對於發展量子光子元件具有重要意義,包括頻率轉換器、具頻率選擇性的光子路由器,以及片上光源等。zh_TW
dc.description.abstractIn this thesis, we theoretically investigate quantum wave mixing in a one-dimensional waveguide quantum electrodynamics (QED) system comprising a multi-level transmon qubit driven by two coherent microwave fields. By combining Floquet theory with Dyson series formalism, we systematically analyze the multi-photon processes responsible for generating spectral sidebands. Our framework shows that frequency conversion can be engineered by tuning the relative powers and detunings of the driving fields, enabling the creation of tunable and symmetric frequency combs. By including higher energy levels of the transmon, we identify new quantum pathways that significantly affect the spectral response. Numerical simulations based on our theory show excellent agreement with experimental spectra, validating our approach. These findings provide valuable insights for the development of quantum photonic devices such as frequency converters, frequency-selective photon routers, and on chip light sources.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T00:48:35Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T00:48:35Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsMaster’s Thesis Acceptance Certificate i
Acknowledgment iii
Abstract (Mandarin) v
Abstract (English) vii
1 Introduction 1
1.1 Motivation 1
1.2 Superconducting Atoms 3
1.2.1 Josephson Junction: a Nonlinear Inductor 3
1.2.2 Transmon Artificial Atom 5
1.3 Nonlinear Optics: Wave-Mixing Processes 7
1.3.1 Classical Wave-Mixing Processes 8
1.3.2 Quantum Wave-Mixing Processes 10
1.4 Open Quantum System 14
1.4.1 Born-Markov Master Equation 15
1.4.2 Lindblad Equation 21
1.5 Thesis Outline 22
2 Waveguide Quantum Electrodynamics Framework 23
2.1 Hamiltonian and Master Equation 23
2.2 Emission Spectrum 27
2.2.1 Input-Output Formalism 28
2.2.2 Emission Spectrum Expression 29
2.2.3 Coherent and Incoherent Parts 30
2.2.4 Example: Monochromatic Driving (Mollow Triplet) 31
2.3 Bichromatic Driving: Floquet Analysis 34
2.3.1 Periodic Steady States under Bichromatic Drivings 34
2.3.2 Coherent Spectrum and Sideband Structure 38
2.3.3 Incoherent Spectrum via Laplace Transform Method 39
3 Experimental Comparison and Interpretation 43
3.1 Characterizing the Transmon Used in Experiment 43
3.2 Power-Tunable Frequency Conversion 47
3.3 Understanding Spectral Peaks via Dyson Expansion 49
3.4 Detuning-Controlled Frequency Conversion 54
3.5 Influence of Number of Atomic Levels 56
4 Conclusions 59
A Dyson Series for a M-Level Atom Coupled to Two Coherent Fields 63
B Comparison of Classical and Quantum Wave Mixing 67
C Examples for Applying the Formalism in Sec. 1.4 71
C.1 Model: Multiple Transmons in a Semi-Infinite Waveguide 71
C.2 Pure Dephasing 74
D Quantum Regression Theorem 77
E Numerical Method: Vectorization of Master Equation 81
F Tranforming the Master Equation to a Rotating Frame 85
F.1 Example: Application to the Main-Text Master Equation 87
G Fitting Formula for Experimental Spectra 91
H Summary of Fitting Parameters for Theoretical Models 93
Bibliography 96
-
dc.language.isoen-
dc.subject頻率轉換zh_TW
dc.subject量子波混頻zh_TW
dc.subjectFloquet 分析zh_TW
dc.subject多能階人工原子zh_TW
dc.subject相干控制zh_TW
dc.subjectCoherent controlen
dc.subjectMulti-level artificial atomen
dc.subjectFloquet analysisen
dc.subjectFrequency conversionen
dc.subjectQuantum wave mixingen
dc.title波導量子電動力學中的超導人造原子波混頻研究zh_TW
dc.titleWave Mixing via a Superconducting Artificial Atom in Waveguide Quantum Electrodynamicsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee許耀銓 ;任祥華;林晏詳zh_TW
dc.contributor.oralexamcommitteeIo-Chun Hoi;Hsiang-Hua Jen;Yen-Hsiang Linen
dc.subject.keyword量子波混頻,頻率轉換,相干控制,多能階人工原子,Floquet 分析,zh_TW
dc.subject.keywordQuantum wave mixing,Frequency conversion,Coherent control,Multi-level artificial atom,Floquet analysis,en
dc.relation.page106-
dc.identifier.doi10.6342/NTU202503909-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-08-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
dc.date.embargo-lift2025-08-18-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf3.35 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved