Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98524
Title: 基於全球性資料庫與階層式貝氏模型之液化沉陷預測模式
Prediction Model for Liquefaction-Induced Settlement Based on Global Database and Hierarchical Bayesian Modeling
Authors: 林昕儀
Sin-Yi Lin
Advisor: 卿建業
Jianye Ching
Keyword: 土壤液化,液化後地層下陷,階層式貝氏模型(HBM),體積應變,相對密度,
Soil liquefaction,post-liquefaction subsidence,Hierarchical Bayesian model (HBM),volumetric strain,geotechnical engineering,
Publication Year : 2025
Degree: 碩士
Abstract: 當地震波傳遞至鬆散且飽和水分的砂質土層時,可能引發土壤液化現象,導致地層表現如液體般流動,進而造成嚴重的地層下陷與結構損壞。台灣於 1999 年九二一集集大地震期間,即曾出現此類災害案例。準確預測液化後地層下陷量,對於災害防減工作而言至關重要。
本研究旨在建立一套針對砂質土壤液化後地層下陷的預測模式,結合階層式貝氏模型(Hierarchical Bayesian Model, HBM)與經驗公式(Ishihara and Yoshimine 1992),以克服場址間差異性與觀測資料不完整所造成的不確定性。研究首先建構一個全球砂質土壤資料庫,涵蓋六組與 r D 具相關性的參數,並以 Johnson 轉換將其轉換至標準常態空間,以符合 HBM 建模需求。
預測流程分為兩條路徑:其一為 HBM 推估 rD ,再利用經驗模型估算體積應變與下陷量;其二則為直接套用經驗公式進行沉陷預測。模型透過 Gibbs 抽樣進行參數推論與模擬,並應用於東日本大地震等五個實地案例,比較其預測結果與實測值的一致性。
研究結果顯示, HBM 具備良好的多場址整合能力與條件推論能力,且可提供信賴區間評估不確定性。在資料有限的情況下, HBM 仍能預測 r D 與沉陷量,並對於液化區與非液化區展現不同預測特性。與 Ishihara 經驗模式相比,雖預測準確度略遜,但 HBM 提供了更強的彈性與不確定性表徵能力,對於地震後快速判讀與資料補值具有潛在應用價值。
Soil liquefaction occurs when seismic waves cause loose, water-saturated sandy soils to behave like a liquid, leading to significant ground subsidence and structural damage, as evidenced by the 1999 Chi-Chi Earthquake in Taiwan. Accurate prediction of postliquefaction subsidence is essential for disaster mitigation.
This study develops a predictive framework for ground settlement induced by soil liquefaction in sandy deposits, integrating a Hierarchical Bayesian Model (HBM) with empirical formulations (Ishihara and Yoshimine 1992) to address site variability and incomplete data. A global database was constructed with six influencing parameters, and all inputs were transformed using the Johnson distribution system to fit the HBM's Gaussian assumptions.
The predictive framework includes two steps: one that estimates r D via HBM and computes settlement using empirical models; and another that directly applies empirical formulas. Inference and simulation were performed using Gibbs sampling, and the approach was validated using five real-world sites affected by the 2011 Tohoku earthquake.
Results indicate that the HBM exhibits strong multi-site integration, conditional inference capability, and uncertainty quantification through credible intervals. Even under sparse data conditions, the HBM effectively predicts r D and settlement. While the accuracy may be slightly inferior to Ishihara’s empirical model, the HBM offers greater flexibility and interpretability—making it a valuable tool for post-earthquake assessment and data imputation under uncertainty.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98524
DOI: 10.6342/NTU202503467
Fulltext Rights: 同意授權(全球公開)
metadata.dc.date.embargo-lift: 2025-08-15
Appears in Collections:土木工程學系

Files in This Item:
File SizeFormat 
ntu-113-2.pdf12.41 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved