Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98481
Title: 6T與8T鰭式場效電晶體之低溫靜態隨機存取記憶體最佳化
Optimization of 6T and 8T FinFET Cryogenic SRAM
Authors: 李庚倫
Geng-Lun Li
Advisor: 胡璧合
Pi-Ho Hu
Keyword: 低溫金氧半場效電晶體,靜態隨機存取記憶體,高效能運算,臨界電壓,感測放大器,能量效率,
Cryo-CMOS,SRAM,HPC,threshold voltage,sense amplifier,energy efficiency,
Publication Year : 2025
Degree: 碩士
Abstract: 將互補式金氧半場效電晶體(Complementary Metal-Oxide Semiconductor, CMOS)操作於低溫環境,有助於實現高效能運算(High-Performance Computing, HPC)。然而,如何在低臨界電壓(Vt)設計下維持靜態隨機存取記憶體(Static Random-Access Memory, SRAM)的穩定性仍是一大挑戰。本研究針對低溫6T與8T-SRAM的特性進行系統性分析,並提出優化設計方案,以同時強化其穩定性與操作效能。
對77 K下6T-SRAM單元,本研究提出兩種優化穩定性Vt設計:(1) 標準供應電壓(0.75 V)下之6T-ES(Enhanced Speed)方案,相較於LVT(|Vt| = 0.15 V)設計,可提升3.4倍的讀取靜態雜訊邊界(Read Static Noise Margin, RSNM);(2) 低電壓(0.4 V)下之6T-LP(Low Power)方案,透過強化上拉電晶體(Pull-Up, PU)設計,可提升讀取穩定性,同時不犧牲讀取速度與寫入能力。於關鍵製程角落(Process Corner)下,6T-LP可將RSNM提升至LVT設計的1.3倍。
本研究亦分析低溫電流閂鎖感測放大器(Current-Latched Sense Amplifier, CLSA)與電壓閂鎖感測放大器(Voltage-Latched Sense Amplifier, VLSA)。考量冷卻能量(Cooling Energy)後,77 K下CLSA與VLSA皆採用較低的VDD(0.4 V)與LVT設計,CLSA可維持與室溫操作相當的能量效率(Energy Delay Product, EDP),而VLSA則因具備顯著的速度提升,可進一步降低約20%的EDP。
8T-SRAM單元由於具備讀寫路徑分離架構,本身具有較佳的讀取穩定性,本研究進一步提出Vt設計策略,優化其在低VDD(0.4 V)下的穩定性與讀取效能。針對77 K下6N2P與4N4P架構,分別提出8T-6N2P-LP與8T-4N4P-LP之Vt設計方案。相較於採用LVT設計之6T-SRAM,8T-6N2P-LP與8T-4N4P-LP在關鍵製程角落下之RSNM可提升6.3倍。此外,將4N4P讀出電路 (Readout Circuit) 之供應電壓(VSEN)由0.4 V降低至0.3 V(LRV-8T-4N4P-LP),可額外縮短8%的讀取時間。綜合上述研究成果,本論文提出之設計策略展現具備提升低溫SRAM應用於HPC系統之潛力,為未來低溫積體電路設計提供重要參考依據與實用方法。
Cryogenic complementary metal-oxide semiconductor (Cryo-CMOS) technology offers promising potential for enabling high-performance computing (HPC). However, maintaining the stability of static random-access memory (SRAM) under low threshold voltage (Vt) design remains a significant challenge. This study systematically analyzes the characteristics of 6T and 8T-SRAM under cryogenic operation and proposes optimized design strategies to simultaneously enhance both stability and performance.
For 6T-SRAM at 77 K, two Vt optimization designs are proposed: (1) the 6T-ES (Enhanced Speed) design for nominal VDD = 0.75 V, which improves the read static noise margin (RSNM) by 3.4× compared to the LVT design (|Vt| = 0.15 V). (2) the 6T-LP (Low Power) design for reduced VDD = 0.4 V, which strengthens the pull-up (PU) transistors to enhance read stability without sacrificing read and write capability. Under critical process corners, the 6T-LP achieves up to 1.3× RSNM improvement over the LVT baseline.
In addition, this study evaluates the performance of cryogenic current-latched sense amplifier (CLSA) and voltage-latched sense amplifier (VLSA). Considering cooling energy, CLSA and VLSA adopt low VDD (0.4 V) and LVT design at 77 K. The cryogenic CLSA maintains a comparable energy delay product (EDP) to its room-temperature counterpart, while the cryogenic VLSA achieves approximately 20% lower EDP due to significant speed improvement.
Owing to the decoupled read/write paths, 8T-SRAM inherently provides better read stability. This work proposes Vt design strategies for 6N2P and 4N4P 8T-SRAM to optimize their stability and read performance under low VDD (0.4 V) conditions. Compared to 6T-SRAM with an LVT design at 77 K, the proposed 8T designs enhance RSNM by up to 6.3× under critical process corners. Furthermore, reducing the supply voltage (VSEN) of 4N4P readout circuit from 0.4 V to 0.3 V (LRV-8T-4N4P-LP) shortens the read time by an additional 8%. In summary, the proposed design strategies significantly enhance the stability and performance of cryogenic SRAM, demonstrating strong potential for HPC applications and providing valuable guidance for future cryogenic IC design.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98481
DOI: 10.6342/NTU202502990
Fulltext Rights: 同意授權(限校園內公開)
metadata.dc.date.embargo-lift: 2030-07-30
Appears in Collections:電子工程學研究所

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
  Restricted Access
7.63 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved