Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98457
Title: 上下文學習優化方法之比較:靜態與動態策略分析
Optimization Methods for In-Context Learning: Comparing Static and Dynamic Strategies
Authors: 林承濬
Cheng-Chun Lin
Advisor: 林守德
Shou-De Lin
Keyword: 大型語言模型,自動化提示詞優化,上下文學習,範例優化,
Large Language Models,Automatic Prompt Optimization,In-Context Learning,Exemplar Optimization,
Publication Year : 2025
Degree: 碩士
Abstract: 在眾多自動化提示詞優化的方法中,指令的調整與範例的使用已經展現出強大的效果。本研究將優化範例的方法分為兩大類:靜態方法,即對所有測試樣本都使用一組固定的範例;以及動態方法,會根據測試樣本調整所使用的範例。儘管這兩種方法都在解決相同的問題,相關的系統性比較研究仍相對有限。因此,本研究針對具有代表性的靜態與動態方法,在多個資料集和實務情境中進行比較,以展示兩種方法間的差異。結果顯示動態方法在多數情境中表現優於靜態方法,但不同策略的效果仍會依據資料特性而異。
Among various automatic prompt optimization approaches, instruction tuning and the use of exemplars have shown strong effectiveness. We categorize exemplar optimization methods into two paradigms: static, which uses a fixed set of samples across all test samples, and dynamic, which adapts exemplars to the input. Despite addressing the same challenge, little attention has been paid to a systematic comparison. In this paper, we conduct an empirical study that compares representative static and dynamic methods across diverse benchmark datasets and real-world scenarios to demonstrate the difference in these two directions. Our results show that dynamic methods often outperform static ones, though effectiveness in different strategies varies depending on data characteristics.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98457
DOI: 10.6342/NTU202502349
Fulltext Rights: 同意授權(限校園內公開)
metadata.dc.date.embargo-lift: 2025-08-15
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
Access limited in NTU ip range
1.27 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved