Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98421
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor蘇偉儁zh_TW
dc.contributor.advisorWei-Jiun Suen
dc.contributor.author楊宜瑄zh_TW
dc.contributor.authorYi-Syuan Yangen
dc.date.accessioned2025-08-05T16:18:36Z-
dc.date.available2025-08-06-
dc.date.copyright2025-08-05-
dc.date.issued2024-
dc.date.submitted2025-06-11-
dc.identifier.citation[1] N. H. T. S. Administration, "Traffic safety facts 2021: A compilation of motor vehicle traffic crash data," National Center for Statistics and Analysis, 2023.
[2] B.-C. Chen and F.-C. Hsieh, "Sideslip angle estimation using extended Kalman filter," Vehicle System Dynamics, vol. 46, no. S1, pp. 353-364, 2008.
[3] R. Rajamani, D. Piyabongkarn, V. Tsourapas, and J. Y. Lew, "Parameter and State Estimation in Vehicle Roll Dynamics," IEEE Transactions on Intelligent Transportation Systems, vol. 12, no. 4, pp. 1558-1567, 2011, doi: 10.1109/tits.2011.2164246.
[4] R. Rajamani, D. Piyabongkarn, V. Tsourapas, and J. Y. Lew, "Real-time estimation of roll angle and CG height for active rollover prevention applications," in 2009 American Control Conference, 10-12 June 2009 2009, pp. 433-438, doi: 10.1109/ACC.2009.5160045.
[5] H. Guo, D. Cao, H. Chen, C. Lv, H. Wang, and S. Yang, "Vehicle dynamic state estimation: state of the art schemes and perspectives," IEEE/CAA Journal of Automatica Sinica, vol. 5, no. 2, pp. 418-431, 2018, doi: 10.1109/JAS.2017.7510811.
[6] E. Narby, "Modeling and estimation of dynamic tire properties," Institutionen för systemteknik, 2006.
[7] T. A. Wenzel, K. J. Burnham, M. V. Blundell, and R. A. Williams, "Dual extended Kalman filter for vehicle state and parameter estimation," Vehicle System Dynamics, vol. 44, no. 2, pp. 153-171, 2006, doi: 10.1080/00423110500385949.
[8] K. Tin Leung, J. F. Whidborne, D. Purdy, and A. Dunoyer, "A review of ground vehicle dynamic state estimations utilising GPS/INS," Vehicle System Dynamics, vol. 49, no. 1-2, pp. 29-58, 2011.
[9] K. B. Singh, M. A. Arat, and S. Taheri, "Literature review and fundamental approaches for vehicle and tire state estimation," Vehicle System Dynamics, vol. 57, no. 11, pp. 1643-1665, 2018, doi: 10.1080/00423114.2018.1544373.
[10] W. Cho, J. Yoon, S. Yim, B. Koo, and K. Yi, "Estimation of tire forces for application to vehicle stability control," IEEE Transactions on Vehicular Technology, vol. 59, no. 2, pp. 638-649, 2009.
[11] X. Jin and G. Yin, "Estimation of lateral tire–road forces and sideslip angle for electric vehicles using interacting multiple model filter approach," Journal of the Franklin Institute, vol. 352, no. 2, pp. 686-707, 2015.
[12] G. Baffet, A. Charara, and D. Lechner, "Estimation of vehicle sideslip, tire force and wheel cornering stiffness," Control Engineering Practice, vol. 17, no. 11, pp. 1255-1264, 2009.
[13] Y. Aoki, T. Inoue, and Y. Hori, "Robust design of gain matrix of body slip angle observer for electric vehicles and its experimental demonstration," in The 8th IEEE International Workshop on Advanced Motion Control, 2004. AMC'04., 2004: IEEE, pp. 41-45.
[14] J. Farrelly and P. Wellstead, "Estimation of vehicle lateral velocity," in Proceeding of the 1996 IEEE International Conference on Control Applications IEEE International Conference on Control Applications held together with IEEE International Symposium on Intelligent Contro, 1996: IEEE, pp. 552-557.
[15] D. Piyabongkarn, R. Rajamani, J. A. Grogg, and J. Y. Lew, "Development and experimental evaluation of a slip angle estimator for vehicle stability control," IEEE Transactions on control systems technology, vol. 17, no. 1, pp. 78-88, 2008.
[16] M. Tanelli, S. M. Savaresi, and C. Cantoni, "Longitudinal vehicle speed estimation for traction and braking control systems," in 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control, 2006: IEEE, pp. 2790-2795.
[17] L. Chu, Y. Shi, Y. Zhang, H. Liu, and M. Xu, "Vehicle lateral and longitudinal velocity estimation based on Adaptive Kalman Filter," in 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), 2010, vol. 3: IEEE, pp. V3-325-V3-329.
[18] L. Chu, L. Chao, Y. Zhang, and Y. Shi, "Design of longitudinal vehicle velocity observer using fuzzy logic and Kalman filter," in Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology, 2011, vol. 6: IEEE, pp. 3225-3228.
[19] C. Larish, D. Piyabongkarn, V. Tsourapas, and R. Rajamani, "A New Predictive Lateral Load Transfer Ratio for Rollover Prevention Systems," IEEE Transactions on Vehicular Technology, vol. 62, no. 7, pp. 2928-2936, 2013, doi: 10.1109/tvt.2013.2252930.
[20] H. Yue, L. Zhang, H. Shan, H. Liu, and Y. Liu, "Estimation of the vehicle's centre of gravity based on a braking model," Vehicle System Dynamics, vol. 53, no. 10, pp. 1520-1533, 2015, doi: 10.1080/00423114.2015.1064971.
[21] M. Rozyn and N. Zhang, "A method for estimation of vehicle inertial parameters," Vehicle System Dynamics, vol. 48, no. 5, pp. 547-565, 2010, doi: 10.1080/00423110902939863.
[22] S. Solmaz, M. Akar, R. Shorten, and J. Kalkkuhl, "Real-time multiple-model estimation of centre of gravity position in automotive vehicles," Vehicle System Dynamics, vol. 46, no. 9, pp. 763-788, 2008.
[23] R. Zarringhalam, A. Rezaeian, W. Melek, A. Khajepour, S. k. Chen, and N. Moshchuk, "A comparative study on identification of vehicle inertial parameters," in 2012 American Control Conference (ACC), 27-29 June 2012 2012, pp. 3599-3604, doi: 10.1109/ACC.2012.6314832.
[24] S. S. Haykin, Kalman filtering and neural networks (Adaptive and learning systems for signal processing, communications, and control). New York: Wiley, 2001, pp. xiii, 284 p.
[25] S. Hong, C. Lee, F. Borrelli, and J. K. Hedrick, "A Novel Approach for Vehicle Inertial Parameter Identification Using a Dual Kalman Filter," IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 1, pp. 151-161, 2015, doi: 10.1109/tits.2014.2329305.
[26] S. Hong, T. Smith, F. Borrelli, and J. K. Hedrick, "Vehicle inertial parameter identification using Extended and unscented Kalman Filters," in 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), 6-9 Oct. 2013 2013, pp. 1436-1441, doi: 10.1109/ITSC.2013.6728432.
[27] C. Li, Y. Liu, L. Sun, Y. Liu, M. Tomizuka, and W. Zhan, "Dual Extended Kalman Filter Based State and Parameter Estimator for Model-Based Control in Autonomous Vehicles," presented at the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), 2021.
[28] X. Huang and J. Wang, "Real-Time Estimation of Center of Gravity Position for Lightweight Vehicles Using Combined AKF–EKF Method," IEEE Transactions on Vehicular Technology, vol. 63, no. 9, pp. 4221-4231, 2014, doi: 10.1109/tvt.2014.2312195.
[29] C. Cheng and D. Cebon, "Parameter and state estimation for articulated heavy vehicles," Vehicle System Dynamics, vol. 49, no. 1-2, pp. 399-418, 2011/02/01 2011, doi: 10.1080/00423110903406656.
[30] T. Kailath, A. H. Sayed, and B. Hassibi, Linear estimation (Prentice Hall information and system sciences series). Upper Saddle River, N.J.: Prentice Hall, 2000, pp. xxvi, 854 p.
[31] T. A. Wenzel, K. J. Burnham, M. V. Blundell, R. A. Williams, and A. Fairgrieve, "Simplified extended Kalman filter for automotive state estimation," International Journal of Modelling, Identification and Control, vol. 3, no. 3, pp. 201-211, 2008, doi: 10.1504/ijmic.2008.02012.
[32] S. J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte, "A new approach for filtering nonlinear systems," in Proceedings of 1995 American Control Conference-ACC'95, 1995, vol. 3: IEEE, pp. 1628-1632.
[33] E. A. Wan and R. Van Der Merwe, "The unscented Kalman filter for nonlinear estimation," in Proceedings of the IEEE 2000 adaptive systems for signal processing, communications, and control symposium (Cat. No. 00EX373), 2000: Ieee, pp. 153-158.
[34] T. Zhu and H. Zheng, "Application of unscented Kalman filter to vehicle state estimation," in 2008 ISECS International Colloquium on Computing, Communication, Control, and Management, 2008, vol. 2: IEEE, pp. 135-139.
[35] M. Karasalo and X. Hu, "An optimization approach to adaptive Kalman filtering," Automatica, vol. 47, no. 8, pp. 1785-1793, 2011.
[36] H. Eric Tseng, L. Xu, and D. Hrovat, "Estimation of land vehicle roll and pitch angles," Vehicle System Dynamics, vol. 45, no. 5, pp. 433-443, 2007, doi: 10.1080/00423110601169713.
[37] L. Imsland, H. F. Grip, T. A. Johansen, T. I. Fossen, J. C. Kalkkuhl, and A. Suissa, "Nonlinear observer for vehicle velocity with friction and road bank angle adaptation-validation and comparison with an extended Kalman filter," SAE Technical Paper, 0148-7191, 2007.
[38] J. Stephant, A. Charara, and D. Meizel, "Virtual sensor: Application to vehicle sideslip angle and transversal forces," IEEE Transactions on industrial electronics, vol. 51, no. 2, pp. 278-289, 2004.
[39] S. Melzi and E. Sabbioni, "On the vehicle sideslip angle estimation through neural networks: Numerical and experimental results," Mechanical Systems and Signal Processing, vol. 25, no. 6, pp. 2005-2019, 2011.
[40] F. Cheli, E. Sabbioni, M. Pesce, and S. Melzi, "A methodology for vehicle sideslip angle identification: comparison with experimental data," Vehicle System Dynamics, vol. 45, no. 6, pp. 549-563, 2007.
[41] Y. Liu, D. Cui, and W. Peng, "Moving horizon estimation of vehicle state and parameters," Journal of Vibroengineering, vol. 25, no. 2, pp. 409-427, 2022, doi: 10.21595/jve.2022.22795.
[42] A. Gelb, Applied optimal estimation. MIT press, 1974.
[43] R. E. Kalman, "A new approach to linear filtering and prediction problems," 1960.
[44] G. Welch and G. Bishop, "Welch & Bishop , An Introduction to the Kalman Filter 2 1 The Discrete Kalman Filter In 1960," 1994.
[45] L. Nelson and E. Stear, "The simultaneous on-line estimation of parameters and states in linear systems," IEEE Transactions on automatic Control, vol. 21, no. 1, pp. 94-98, 1976.
[46] SAE J670 Vehicle Dynamics Terminology, 1952, 2022.
[47] I. The MathWorks, "Vehicle Dynamics Blockset R2024a," ed: The MathWorks, Inc., 2024.
[48] A. B. Will and S. H. Z˚Ak, "Modelling and Control of an Automated Vehicle," Vehicle System Dynamics, vol. 27, no. 3, pp. 131-155, 1997, doi: 10.1080/00423119708969326.
[49] H. B. Pacejka, "Tire and Vehicle Dynamics, 3rd Edition," (in English), Tire and Vehicle Dynamics, 3rd Edition, pp. 1-632, 2012. [Online]. Available: <Go to ISI>://WOS:000322044900016.
[50] "dSPACE ASM," ed: dSPACE GmbH, 2024.
[51] X. Niu, Y. Ban, Q. Zhang, T. Zhang, H. Zhang, and J. Liu, "Quantitative Analysis to the Impacts of IMU Quality in GPS/INS Deep Integration," Micromachines, vol. 6, no. 8, pp. 1082-1099, 2015, doi: 10.3390/mi6081082.
[52] ISO 3888-1:2018 Passenger cars — Test track for a severe lane-change manoeuvre — Part 1: Double lane-change, 2018.
[53] A. Renski, "Identification of driver model parameters," Int J Occup Saf Ergon, vol. 7, no. 1, pp. 79-90, 2001, doi: 10.1080/10803548.2001.11076478.
[54] ISO 4138:2021 Passenger cars — Steady-state circular driving behaviour — Open-loop test methods, 2021.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98421-
dc.description.abstract本研究旨在探討狀態估測以及參數識別對於車輛模型的重要性,強調其在加強先進駕駛輔助系統 (ADAS) 性能方面的作用。透過回顧相關文獻中即時估測的方法,包括卡爾曼濾波及其最新進展,本研究評估了這些方法的適用性、優點和局限性。研究中所提出演算法利用一個四自由度的車輛模型,結合Magic Formula輪胎模型,並採用了離散化空間狀態模型來進行狀態與參數估測。由於擴展卡爾曼濾波(EKF)具計算效率佳和適用於複雜系統等優點,因此以雙擴展卡爾曼濾波(DEKF)為框架設計估測演算法。此基於雙擴展卡爾曼濾波的估測方法於MATLAB/ Simulink 環境中進行模擬。該研究模擬使用 dSPACE ASM 模擬軟體,以多體虛擬車輛替代實車測試。本篇研究中詳盡說明測試案例、感測器規格和過程中使用的模擬工況,以及它們與研究目標的相關性。模擬結果顯示,所提出的狀態與參數識別方法能夠改善車輛在不同情況下的狀態估測精度。zh_TW
dc.description.abstractThis research investigates the significance of state estimation, with a specific focus on parameter identification techniques, emphasizing its use in Advanced Driver Assistance Systems (ADAS). Through a comprehensive review of real-time estimation methods, including Kalman filtering and recent advancements, assessing their applicability, advantages, and limitations in relevant literature. The proposed approach utilizes a 4-degree-of-freedom vehicle model, incorporating the tire magic formula model and employing discretization techniques. The Dual Extended Kalman Filter (DEKF) framework is proposed as the primary estimation method, and is implemented using MATLAB/Simulink environment. The research justifies the use of dSPACE ASM as a surrogate for real-world testing, detailing test cases, sensor specifications, maneuvers, and their relevance to research objectives. Results demonstrate efficacy of the proposed methodology in parameter identification and its enhancing effect on vehicle state estimation accuracy across various maneuvers.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-05T16:18:36Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-05T16:18:36Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAbstract ii
摘要 iii
Contents iv
List of figures ix
List of tables xiii
Nomenclature xiv
Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Motivation 2
1.3 Organization of this Thesis 3
Chapter 2 Literature Review 5
2.1 Vehicle Models 6
2.1.1 Kinematic Models 6
2.1.2 Dynamic Models 6
2.2 Sensor Configurations 8
2.2.1 Steering Angle Sensors 8
2.2.2 Wheel Speed Sensors 9
2.2.3 GPS/GNSS 9
2.2.4 Inertial Measurement Unit (IMU) 9
2.3 State and Parameter Estimation 10
2.3.1 Tire Forces 12
2.3.2 Sideslip Angle/ Cornering Stiffness 13
2.3.3 Velocity 14
2.3.4 Roll Analysis 15
2.3.5 Vehicle Parameter Identification 16
2.3.6 State and Parameter Estimation 17
2.4 Estimation Methodology 18
2.4.1 Kalman Filtering 18
2.4.2 Other Methods 20
2.5 Conclusion of Literature Review 21
Chapter 3 Dual Extended Kalman Filter 23
3.1 Dynamics Systems 23
3.1.1 Linear Dynamic Systems 23
3.1.2 Nonlinear Dynamic Systems 23
3.1.3 Discretization of Continuous Systems 24
3.1.4 Linearization of Dynamic Systems 25
3.2 Kalman Filter 26
3.2.1 History of the Kalman Filter 26
3.2.2 Concept of the Kalman Filter 26
3.2.3 Equations of a Kalman Filter 28
3.2.4 Extended Kalman Filter 30
3.3 Dual Extended Kalman Filter 32
Chapter 4 Vehicle model 36
4.1 4-DOF Vehicle Model 36
4.1.1 Vehicle Coordinates: 36
4.1.2 Vehicle Dynamic Equations 37
4.2 Tire Model 43
4.2.1 Tire Coordinate System 43
4.2.2 The Magic Formula Tire Model 45
4.2.3 Full Set of Tire Modeling Equations 47
4.3 Estimator Settings 52
4.3.1 Weighting Covariance 52
4.3.2 Relationship Between Parameters 53
Chapter 5 Simulation 56
5.1 Simulation Structure 56
5.2 Simulation Environment 58
5.3 Simulation Settings 59
5.3.1 Vehicle Loads 59
5.3.2 Sensor Configuration 61
5.3.3 Maneuvers 63
Chapter 6 Results 66
6.1 State Estimation 66
6.1.1 Longitudinal and Lateral Acceleration 66
6.1.2 Roll and Yaw Rates 68
6.1.3 Sideslip Angle 70
6.2 Parameter Identification 72
6.2.1 Mass Estimates 72
6.2.2 Inertial Parameter Estimates 75
6.3 State Estimation with Parameter Update 76
6.3.1 Double Lane Change Maneuver 77
6.3.2 Constant Radius Maneuver 82
Chapter 7 Conclusions and Future Work 87
7.1 Conclusions 87
7.2 Future Works 88
References 90
Appendix A 96
Appendix B 97
-
dc.language.isoen-
dc.subject車輛參數估計zh_TW
dc.subject車輛狀態估測zh_TW
dc.subject雙擴展卡爾曼濾波zh_TW
dc.subjectDual Extended Kalman filteren
dc.subjectVehicle state estimationen
dc.subjectVehicle parameter estimationen
dc.title載重車輛的即時狀態估測與參數識別zh_TW
dc.titleReal-time State Estimation and Parameter Identification of Load-carrying Vehicles Using a Dual Kalman Filteren
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee詹魁元;陳明彥zh_TW
dc.contributor.oralexamcommitteeKuei-Yuan Chan;Ming-Yen Chenen
dc.subject.keyword車輛狀態估測,車輛參數估計,雙擴展卡爾曼濾波,zh_TW
dc.subject.keywordVehicle state estimation,Vehicle parameter estimation,Dual Extended Kalman filter,en
dc.relation.page100-
dc.identifier.doi10.6342/NTU202403171-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-06-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2025-08-06-
Appears in Collections:機械工程學系

Files in This Item:
File SizeFormat 
ntu-113-2.pdf3.47 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved