請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98379完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 彭隆瀚 | zh_TW |
| dc.contributor.advisor | Lung-Han Peng | en |
| dc.contributor.author | 吳佩霖 | zh_TW |
| dc.contributor.author | Pei-Lin Wu | en |
| dc.date.accessioned | 2025-08-05T16:08:18Z | - |
| dc.date.available | 2025-08-06 | - |
| dc.date.copyright | 2025-08-05 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-29 | - |
| dc.identifier.citation | [1] H. Okamoto, "Ga-Ni (Gallium-Nickel)," Journal of Phase Equilibria and Diffusion, Vol. 9(2), 41 (2021).
[2] S. Sharma and M. K. Sunkara, "Direct synthesis of gallium oxide tubes, nanowires, and nanopaintbrushes," J Am Chem Soc, Vol. 124, 12288(2002). [3] A. Mirzaei et al., "Metal Oxide Nanowires Grown by a Vapor-Liquid-Solid Growth Mechanism for Resistive Gas-Sensing Applications: An Overview," Materials (Basel), Vol. 16(18), 6233 (2023). [4] A. M. S. ElAhl et al., "Systematic study of effects of growth conditions on the (nano-, meso-, micro)size and (one-, two-, three-dimensional) shape of GaN single crystals grown by a direct reaction of Ga with ammonia," Journal of Applied Physics, Vol. 94, 7749 (2003). [5] Z. Zhu et al., "Rational Concept for Reducing Growth Temperature in Vapor-Liquid-Solid Process of Metal Oxide Nanowires," Nano Lett, Vol. 16, 7495 (2016). [6] 李柏廷, "電漿輔助型原子層沉積之發光二極體特性研究," 碩士, 光電工程學研究所, 國立臺灣大學, 2014年. [7] M. D. Brubaker et al., "Effect of AlN buffer layer properties on the morphology and polarity of GaN nanowires grown by molecular beam epitaxy," Journal of Applied Physics, Vol. 110, 053506 (2011). [8] M. Musolino et al., "Compatibility of the selective area growth of GaN nanowires on AlN-buffered Si substrates with the operation of light emitting diodes," Nanotechnology, Vol. 26, 085605 (2015). [9] J. D. Carey et al., "Formation of low-temperature self-organized nanoscale nickel metal islands," Nanotechnology, Vol. 14, 1223 (2003). [10] B. C. Di Lello et al., "Synthesis and characterization of GaN using gassolid reactions," Materials Science and Engineering: B, Vol. 93, 219 (2002). [11] W. Zhang et al., "Heteroepitaxial β-Ga2O3 thick films on sapphire substrate by carbothermal reduction rapid growth method," Semiconductor Science and Technology, Vol. 37, 2775 (2022). [12] M. A. Fakhri et al., "Synthesis and characterization of GaN/quartz nanostructure using pulsed laser ablation in liquid," Physica Scripta, Vol. 97, 115813 (2022). [13] A. Miura et al., "Growth and characterization of millimeter-sized GaN crystals by carbothermal reduction and nitridation of Ga2O3," Journal of Crystal Growth, Vol. 299, 22 (2007). [14] H. Kiyono et al., "Thermogravimetric analysis and microstructural observations on the formation of GaN from the reaction between Ga2O3 and NH3," Journal of Crystal Growth, Vol. 312, 2823 (2010). [15] R. Raj et al., "Growth of hierarchical GaN nanowires for optoelectronic device applications," Journal of Photonics for Energy, Vol. 7, 016001 (2017). [16] C.-C. Hu and H. Teng, "Gallium Oxynitride Photocatalysts Synthesized from Ga(OH)3 for Water Splitting under Visible Light Irradiation," The Journal of Physical Chemistry C, Vol. 114, 20100 (2010). [17] K. Xu et al., "Progress in bulk GaN growth," Chinese Physics B, Vol. 24, 066105 (2015). [18] S. Suman et al., "Annealing induced surface restructuring in hydrothemally synthesized gallium oxide nano-cuboids," Journal of Crystal Growth, Vol. 554, 125946 (2021). [19] G. A. H. Flores, "Gallium nitride and GaN:Eu nanocrystalline luminescent powders," physica status solidi (a), Vol. 205, 43 (2008). [20] M. Pan and A. J. Steckl, "Red emission from Eu-doped GaN luminescent films grown by metalorganic chemical vapor deposition," Applied Physics Letters, Vol. 83, 9 (2003). [21] M. M. Mezdrogina et al., "Emission from rare-earth ions in GaN wurtzite crystals," Inorganic Materials, Vol. 47, 1450 (2011). [22] X. Wang et al., "Luminescence mechanism and energy level structure of Eu-doped GaN powders investigated by cathodoluminescence spectroscopy," Science China Physics, Mechanics and Astronomy, Vol. 57, 628 (2014). [23] S. H. Ahn et al., "Catalytic growth of high quality GaN micro-crystals," Journal of Crystal Growth, Vol. 234, 70 (2002). [24] C. Franchini et al., "Polarons in materials," Nature Reviews Materials, Vol. 6, 560 (2021). [25] A. Alkauskas et al., "Tutorial: Defects in semiconductors—Combining experiment and theory," Journal of Applied Physics, Vol. 119, 181101 (2016). [26] D. Delbeke, "Design and fabrication of a highly efficient light-emitting diode: the Grating-Assisted Resonant-Cavity Light-Emitting Diode," Ghent University, 2002. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98379 | - |
| dc.description.abstract | 本論文主要進行氮氧化鎵奈米結構之生長特性的探討,大致可分為兩個部分進行論述。第一部分為 VLS (Vapor Liquid Solid)機制以及管型高溫爐內的參數調變特性,第二部分為奈米結構的特殊生長方式。
在本論文中,會詳細介紹本實驗中會用到的鍍膜儀器例如濺鍍機(Sputter)、原子層沉積(Atomic Layer Deposition, ALD),以及量測儀器如掃描式電子顯微鏡 (Scanning Electron Microscope, SEM)、光致發光量測 (Photoluminescence Measurement, PL)、X 射 線 光 電子能譜儀 ( X-ray Photoelectron Spectroscopy, XPS)等機台。利用管型高溫爐,並且在內部搭建導流架構使管內環境達到奈米線晶體的生長條件,並找出自此架構下的最佳參數,成功生長出了直徑200nm的奈米線結構,也利用黃光微影技術將此奈米結構做到可圖形化的階段,而後我們研究如何利用此方法將奈米線摻入稀土元素 Eu,並且利用 XPS 以及 PL 量測分析其含量,得知使用Eu2O3 粉末、Ga2O3粉末以及石墨粉的混合粉末可在此架構中成功生長出摻Eu的氮氧化鎵奈米線。 | zh_TW |
| dc.description.abstract | This thesis primarily investigates the growth characteristics of gallium oxynitride (GaON) nanostructures, which can be broadly divided into two parts. The first part focuses on the Vapor–Liquid–Solid (VLS) growth mechanism and the influence of various parameters within a tubular high-temperature furnace. The second part explores special growth techniques for nanostructures.
In this work, we detail the deposition equipment used in the experiments, such as sputtering and atomic layer deposition (ALD), as well as the characterization tools including scanning electron microscopy (SEM), photoluminescence (PL) spectroscopy, and X-ray photoelectron spectroscopy (XPS). A tubular furnace system was constructed with an internal gas flow guiding structure to create suitable conditions for nanowire growth. Optimal parameters for GaON nanowire formation were identified, resulting in the successful synthesis of nanowires with diameters of approximately 200 nm. Furthermore, photolithography techniques were employed to achieve patterning of the nanostructures. Subsequent studies investigated the incorporation of europium (Eu) into the nanowires. Using a powder mixture Eu₂O₃, Ga₂O₃, and graphite as source materials, Eu-doped GaON nanowires were successfully synthesized within the developed growth architecture. The incorporation and optical properties of Eu were confirmed and analyzed using XPS and PL measurements. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-05T16:08:18Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-05T16:08:18Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要............................................................................. I
Abstract ........................................................................ II 目次............................................................................. III 圖次............................................................................. VI 表次............................................................................. IX 第一章 緒論 .................................................................. 1 1.1 簡介 ....................................................................... 1 1.2 研究動機與目的 ............................................................ 2 1.3 論文內容概述 ............................................................... 3 第二章 氮氧化鎵長晶原理介紹 .................................................. 4 2.1 氮氧化鎵基本特性 ........................................................... 4 2.2 奈米結構及其應用 ............................................................ 5 2.2.1 奈米結構介紹 .............................................................. 5 2.2.2 奈米結構現象及常見應用 ................................................... 5 2.3 奈米線成長機制 .............................................................. 8 2.3.1 Vapor–Liquid–Solid (VLS) 機制介紹: ....................................... 8 2.3.2 Vapor–Solid –Solid (VSS) 機制介紹: ...................................... 11 2.3.3 Vapor–Solid (VS) 機制介紹: ............................................... 11 第三章 薄膜沉積及材料分析 .................................................... 15 3.1 物理氣相沉積 ( PVD ) 之濺鍍 ( Sputter ) .................................... 15 3.1.1 濺鍍機原理 ................................................................ 15 3.1.2 濺鍍機種類 ............................................................... 17 3.2 化學氣相沉積 ( CVD ) 之原子層沉積 ( ALD ) .................................. 17 3.2.1 ALD 成長原理 .............................................................. 17 3.2.2 控制PE-ALD之生長的參數 .................................................... 20 3.3 黃光微影技術(Photolithography)............................................. 21 3.3.1 光阻種類以及顯影液 ....................................................... 22 3.3.2 黃光微影步驟 ............................................................. 23 3.4 晶體材料分析 ................................................................ 23 3.4.1 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) .... 23 3.4.2 光致螢光光譜 ( Photoluminescence,PL ) ................................... 25 3.4.3 X光光電子能譜XPS(X-ray Photoelectron Spectroscopy) ..... 26 第四章 奈米線成長 ............................................................ 28 4.1 實驗架設 .................................................................... 28 4.2 奈米線成長參數 ............................................................. 30 4.3 奈米線生長實驗製程 ........................................................ 31 4.4 實驗結果與比較 ............................................................ 34 4.4.1 改變粉末及樣品相對位置之影響 ........................................... 35 4.4.2 粉末混合方式之影響 ...................................................... 39 4.4.3 不同溫度對長晶之影響 ................................................... 42 第五章 氮氧化鎵圖形化結構及稀土摻雜 ................................ 45 5.1 圖形化之奈米結構 ......................................................... 45 5.2 摻Eu之氮氧化鎵奈米線 ..................................................... 49 5.3 高溫晶體生長 .............................................................. 52 5.3.1 氮氧化鎵晶體 ........................................................... 52 5.3.2 氮化鎵晶體 .............................................................. 53 5.3.3 摻Eu之氮氧化鎵晶體 ...................................................... 53 第六章 補充研究:二極體共振腔模擬程式 ............................... 55 6.1 色心輻射發光機制 .......................................................... 55 6.2 LED共振腔模擬 ............................................................. 56 6.2.1 共振結構 ................................................................. 56 6.2.2 共振腔模擬理論 .......................................................... 57 6.3 程式擬合討論及結果 ........................................................ 59 6.3.1 擬合方法 ................................................................ 59 6.3.2 模擬結果與實驗結果之對比 ............................................. 60 第七章 結論與未來展望 ...................................................... 63 參考文獻 ..................................................................... 64 圖次 圖 2.1 VLS生長機制示意圖 ...................................................... 9 圖 2.2 Ga-Ni二元合金相圖[1] ................................................... 10 圖 2.3 不同溫度下的VLS機制生長型態 [3] ....................................... 10 圖 2.4 VS生長示意圖 .......................................................... 12 圖 2.5 (a) - (c) 為900度下不同氨氣流量之比較,(d) – (f) 為 .................. 13 圖 2.6 溫度與氨氣氣流對VS系統生長晶體之影響[4] ............................... 14 圖 2.7 氣相前驅物與生長溫度使主導的反應機制變化[5] .......................... 14 圖 3.1 濺鍍機原理示意圖 ....................................................... 16 圖 3.2 ALD架構示意圖[6] ....................................................... 19 圖 3.3 ALD生長過程示意圖 ...................................................... 19 圖 3.4 ALD生長中之氣體通入時間 ................................................ 21 圖 3.5 PL放光之能帶示意圖 ...................................................... 25 圖 3.6 XPS 量測 .................................................................. 27 圖 4.1 k-type 熱電偶之溫度-電流關係圖 ......................................... 28 圖 4.2 高溫爐 .................................................................... 29 圖 4.3 高溫爐內部架構示意圖 ..................................................... 29 圖 4.4 奈米線生長流程 ............................................................ 31 圖 4.5 5nm之Ni薄膜在500oC下加熱60分鐘之AFM掃描結果 ................ 33 圖 4.6高溫爐管內之架構(粉末至於坩堝最左端) ......................................... 35 圖 4.7 以圖 4.6架構調變位置之氮氧化鎵晶體3小時,距離粉末(a)1.5cm (b)3.0cm (c)4.5cm .............................................................................. 36 圖 4.8高溫爐管內之架構(粉末置於坩堝中央) ........................................ 37 圖 4.9以圖 4.8架構調變位置之氮氧化鎵晶體3小時,距離粉末(a)左側1.5cm (b)右側1.5cm .............................................................................. 38 圖 4.10 使用圖 4.6架構,將氧化鎵粉末平鋪於石墨粉上 ............................. 39 圖 4.11將氧化鎵以重量比例(a)1:1 (b)1:5 (c)1:10平鋪於石墨粉上並以950oC生長3小時的結果 ........................................................................... 40 圖 4.12以重量比例(a)1:1 (b)1:5 (c)1:10均勻混合粉末並以950oC生長3小時的結果 ............................................................................ 41 圖 4.13 在不同生長溫度 (a) 1000oC (b) 1050oC (c) 1100oC使用均勻混合粉末並生長3小時的結果 ......................................................................................... 43 圖 5.1 加入圖形化製程的奈米線生長流程 .......................................... 45 圖 5.2 300um X 300um之無分割奈米線區塊 ........................................ 46 圖 5.3 300um X 300um之分割奈米線區塊 .......................................... 46 圖 5.4 圖 5.2之SEM放大圖 ....................................................... 47 圖 5.5 圖 5.3之SEM放大圖 ....................................................... 47 圖 5.6 300um X 300um分割奈米線區塊結構的PL光譜圖 ........................... 48 圖 5.7氮氧化鎵奈米線之XPS光譜 .................................................. 48 圖 5.8摻Eu之氮氧化鎵奈米線之SEM圖 .............................................. 49 圖 5.9 圖 5.8之SEM放大圖 ........................................................ 50 圖 5.10摻Eu之氮氧化鎵奈米線之PL光譜 ............................................ 51 圖 5.11摻Eu之氮氧化鎵奈米線之XPS光譜 ........................................... 51 圖 5.12 SEM放大倍率500x(左) 3000x(右) ........................................... 52 圖 5.13氮化鎵晶體之SEM圖 ........................................................ 53 圖 5.14摻Eu之氮化鎵晶體SEM圖 ..................................................... 54 圖 6.1電子弛豫現象示意圖[24] .................................................... 55 圖 6.2 Franck-Condon Shift示意圖 [25] ........................................... 56 圖 6.3群創光電提供之基板疊層結構 ............................................... 57 圖 6.4 LED內部發光及共振腔光路示意圖[26] ...................................... 57 圖 6.5 不同模態之電偶極發光強度[26] ............................................ 58 圖 6.6 簡化整體元件之結構 ...................................................... 59 圖 6.7 程式擬合之流程 .......................................................... 60 圖 6.8(右) ITZnO doped P-poly基板、 (左)ITZnO doped Mo-poly基板。 ... 60 圖 6.9 (a)於P-poly基板進行ITZnO厚度調變之發光照片與光譜圖 ............ 61 圖 6.10 (a)P-poly基板沉積不同厚度ITZnO之實驗值(左)及模擬值(右)對比 (b) Mo-poly基板沉積不同厚度ITZnO之實驗值(左)及模擬值(右)對比 ...... 62 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 氮氧化鎵 | zh_TW |
| dc.subject | 氣-液-固反應機制 | zh_TW |
| dc.subject | 摻䥲之氮化鎵 | zh_TW |
| dc.subject | Eu doped GaN | en |
| dc.subject | V-L-S mechanism | en |
| dc.subject | GaON | en |
| dc.title | 氣-液-固反應機制下之氮氧化鎵奈米結構成長特性研究 | zh_TW |
| dc.title | Study on the Growth Characteristics of Vapor-Liquid-Solid Reacted Gallium Oxynitride Nanostructures | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王維新;李峻霣;葉伯淳 | zh_TW |
| dc.contributor.oralexamcommittee | Way-Seen Wang;Jiun-Yun Li;Po-Chun Yeh | en |
| dc.subject.keyword | 氣-液-固反應機制,氮氧化鎵,摻䥲之氮化鎵, | zh_TW |
| dc.subject.keyword | V-L-S mechanism,GaON,Eu doped GaN, | en |
| dc.relation.page | 75 | - |
| dc.identifier.doi | 10.6342/NTU202502532 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-31 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2025-08-06 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 4.68 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
