Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98338
Title: 基於候選篩選與噪音注入的動態檢索增強生成架構
An Adaptive RAG Framework using Candidate Pruning and Noise Injection
Authors: 游佳民
Chia-Min You
Advisor: 陳建錦
Chien-Chin Chen
Keyword: 檢索增強生成,大型語言模型,資訊檢索,
Retrieval-Augmented Generation,Large Language Model,Information Retrieval,
Publication Year : 2025
Degree: 碩士
Abstract: 檢索增強生成 (Retrieval-Augmented Generation, RAG) 通過提供外部知識庫,大幅增強了大型語言模型的能力。然而,傳統的架構通常會檢索固定數量的相關文章,導致實作時出現一些問題:過少的文章可能會遺漏關鍵資訊,而過多的文章則可能引入干擾文章並使大型語言模型的輸入過長。為了解決這些問題,我們提出了一個全新的框架,此框架能夠實現動態的外部知識文章組成。首先,透過實施候選篩選模組來動態篩選檢索到的候選文章集合。再來,受先前研究的啟發,我們引入了噪音注入模組,通過系統性地加入隨機文章,來形成最終的參考文章集合。我們在六個知名的資料集上進行了實驗,結果發現,我們提出的框架在準確性方面持續優於傳統的架構。我們的研究結果突顯了動態的外部知識文章組成的優勢,並為構建更有效的 RAG 系統提供了實用的解決方案。
Retrieval-Augmented Generation (RAG) significantly enhances Large Language Models (LLMs) by providing external knowledge base. However, traditional RAG typically retrieve fixed number (top-k) of articles, often struggle with some problems: too few articles may miss crucial information, while too many can introduce distractors and overwhelm the LLM. To address these limitations, we propose a novel framework that enables an adaptive reference articles formulation of RAG. Our approach moves beyond the fixed top-k paradigm by implementing candidate pruning module to dynamically filtering a retrieved candidate articles set. Furthermore, inspired by prior work, we introduce another module for noise injection through the systematic inclusion of random articles. We conduct experiments on six well-known datasets, demonstrating that our proposed framework consistently outperforms traditional top-k RAG baselines in terms of generation accuracy. Our findings highlight the significant benefits of adaptive context formulation and offer practical solution for building more effective RAG systems.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98338
DOI: 10.6342/NTU202502131
Fulltext Rights: 同意授權(全球公開)
metadata.dc.date.embargo-lift: 2030-07-24
Appears in Collections:資訊管理學系

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
  Until 2030-07-24
5.91 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved