Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98319
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱有花zh_TW
dc.contributor.advisorYou-Hua Chuen
dc.contributor.author歐柏昇zh_TW
dc.contributor.authorPo-Sheng Ouen
dc.date.accessioned2025-08-01T16:12:16Z-
dc.date.available2025-08-02-
dc.date.copyright2025-08-01-
dc.date.issued2025-
dc.date.submitted2025-07-30-
dc.identifier.citationAbbott, D. C., & Lucy, L. B. 1985, ApJ, 288, 679
Abbott, D. C. 1982, ApJ, 263, 723
Agertz, O., & Kravtsov, A. V. 2015, ApJ, 804, 18
Arnett, D. 1991, ApJ, 383, 295. doi:10.1086/170786
Asplund, M., Grevesse, N., Sauval, A. J., et al. 2009, ARA&A, 47, 481
Baraffe, I. & El Eid, M. F. 1991, A&A, 245, 548
Beasor, E. R., Smith, N., & Jencson, J. E. 2025, ApJ, The Red Supergiant Progenitor Luminosity Problem, 979, 2, 117. doi:10.3847/1538-4357/ad8f3f
Beasor, E. R., Davies, B., & Smith, N. 2021, ApJ, 922, 55. doi:10.3847/1538-4357/ac2574
Beasor, E. R., Davies, B., Smith, N., et al. 2020, MNRAS, 492, 5994. doi:10.1093/mnras/staa255
Beasor, E. R., & Davies, B. 2018, MNRAS, 475, 55
Björklund, R., Sundqvist, J. O., Singh, S. M., et al. 2022, arXiv:2203.08218
Beers, T. C., & Christlieb, N. 2005, ARA&A, 43, 531
Bloecker, T. 1995, A&A, Stellar evolution of low and intermediate-mass stars. I. Mass loss on the AGB and its consequences for stellar evolution., 297, 727.
Bouret, J.-C., Lanz, T., Hillier, D. J., et al. 2015, MNRAS, 449, 1545
Brocato, E. & Castellani, V. 1993, ApJ, 410, 99. doi:10.1086/172729
Brunish, W. M. & Truran, J. W. 1982, ApJS, 49, 447. doi:10.1086/190806
Castor, J. I., Abbott, D. C., & Klein, R. I. 1975, ApJ, 195, 157
Chen, K.-J., Woosley, S. E., & Whalen, D. J. 2020, ApJ, 893, 99. doi:10.3847/1538-4357/ab7db0
Choi, J., Dotter, A., Conroy, C., et al. 2016, ApJ, 823, 102. doi:10.3847/0004-637X/823/2/102
Chu, Y.-H. 2008, Massive Stars as Cosmic Engines, 250, 341. doi: 10.1017/S1743921308020681
Da Costa, G. S., Bessell, M. S., Mackey, A. D., et al. 2019, MNRAS, 489, 5900
Dale, J. E. 2015, NewAR, 68, 1
Decin, L. 2021, ARA&A, 59, 337. doi:10.1146/annurev-astro-090120-033712
de Jager, C., Nieuwenhuijzen, H., & van der Hucht, K. A. 1988, A&AS, 72, 259
Duchêne, G., & Kraus, A. 2013, ARA&A, 51, 269
Dwarkadas, V. V. 2005, ApJ, 630, 892
Eggleton, P. P. & Cannon, R. C. 1991, ApJ, A Conjecture Regarding the Evolution of Dwarf Stars into Red Giants, 383, 757. doi:10.1086/170833
Ekström, S., Georgy, C., Eggenberger, P., et al. 2012, A&A, 537, A146. doi:10.1051/0004-6361/201117751
El Eid, M. F., The, L.-S., & Meyer, B. S. 2009, SSRv, 147, 1. doi:10.1007/s11214-009-9517-6
Elias, J. H., Frogel, J. A., & Humphreys, R. M. 1985, ApJS, 57, 91. doi:10.1086/190997
Emerick, A., Bryan, G. L., & Mac Low, M.-M. 2019, MNRAS, 482, 1304
Faulkner, J. 2005, The Scientific Legacy of Fred Hoyle, Red giants: then and now, 149.
Fichtner, Y. A., Grassitelli, L., Romano-Díaz, E., et al. 2022, MNRAS, 512, 4573. doi: 10.1093/mnras/stac785
Fierlinger, K. M., Burkert, A., Ntormousi, E., et al. 2016, MNRAS, 456, 710
Freyer, T., Hensler, G., & Yorke, H. W. 2003, ApJ, 594, 888
Garcia, M., Evans, C. J., Bestenlehner, J. M., et al. 2021, Experimental Astronomy, 51, 887. doi:10.1007/s10686-021-09785-x
Georgy, C. 2012, A&A, 538, L8
Goldman, S. R., van Loon, J. T., Zijlstra, A. A., et al. 2017, MNRAS, 465, 403
Groh, J. H., Ekström, S., Georgy, C., et al. 2019, A&A, 627, A24
Hayashi, C. & Hoshi, R. 1961, PASJ, 13, 442
Henyey, L., Vardya, M. S., & Bodenheimer, P. 1965, ApJ, 142, 841
Hirschi, R. 2007, A&A, 461, 571
Hopkins, P. F., Wetzel, A., Wheeler, C., et al. 2022, MNRAS. doi:10.1093/mnras/stac3489
Hopkins, P. F., Wetzel, A., Kereš, D., et al. 2018, MNRAS, 480, 800
Hopkins, P. F., Kereš, D., Oñorbe, J., et al. 2014, MNRAS, 445, 581
Humphreys, R. M., Helmel, G., Jones, T. J., et al. 2020, AJ, 160, 145. doi:10.3847/1538-3881/abab15
Humphreys, R. M., & Davidson, K. 1994, PASP, 106, 1025
Humphreys, R. M. 1979, ApJS, 39, 389. doi:10.1086/190578
Humphreys, R. M. 1979, ApJ, 231, 384. doi:10.1086/157201
Iben, I. 1993, ApJ, On Why Intermediate-Mass Stars Become Giants after the Exhaustion of Hydrogen in Their Cores, 415, 767. doi:10.1086/173200
Iben, I. 1991, ApJS, 76, 55. doi:10.1086/191565
Iglesias, C. A., & Rogers, F. J. 1996, ApJ, 464, 943
Iglesias, C. A. & Rogers, F. J. 1993, ApJ, Radiative Opacities for Carbon- and Oxygen-rich Mixtures, 412, 752. doi:10.1086/172958
Jermyn, A. S., Bauer, E. B., Schwab, J., et al. 2023, ApJS, Modules for Experiments in Stellar Astrophysics (MESA): Time-dependent Convection, Energy Conservation, Automatic Differentiation, and Infrastructure, 265, 1, 15. doi:10.3847/1538-4365/acae8d
Jørgensen, A. C. S., Mosumgaard, J. R., Weiss, A., et al. 2018, MNRAS, 481, L35. doi:
10.1093/mnrasl/sly152
Kippenhahn, R., Weigert, A., & Weiss, A. 2012, Stellar Structure and Evolution. ISBN: 978-3-642-30304-3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.. doi: 10.1007/978-3-642-30304-3
Kippenhahn, R., Ruschenplatt, G., & Thomas, H.-C. 1980, A&A, The time scale of thermohaline mixing in stars, 91, 1-2, 175.
Krause, M., Fierlinger, K., Diehl, R., et al. 2013, A&A, 550, A49
Kroupa, P. 2001, MNRAS, 322, 231. doi:10.1046/j.1365-8711.2001.04022.x
Lamers, H. J. G. L. M., Snow, T. P., & Lindholm, D. M. 1995, ApJ, 455, 269. doi:10.1086/176575
Langer, N. 2012, ARA&A, 50, 107
Lauterborn, D. 1970, A&A, Evolution with mass exchange of case C for a binary system of total mass 7 M sun., 7, 150.
Leitherer, C., Robert, C., & Drissen, L. 1992, ApJ, 401, 596
Levesque, E. M. 2017, Astrophysics of Red Supergiants, by Levesque, Emily M.. ISBN: 978-0-7503-1329-2. IOP ebooks. Bristol, UK: IOP Publishing, 2017. doi:10.1088/978-0-7503-1329-2
Levesque, E. M., Massey, P., Olsen, K. A. G., et al. 2006, ApJ, 645, 1102. doi:10.1086/504417
Limongi, M. 2017, Handbook of Supernovae, 513
Lucy, L. B., & Solomon, P. M. 1970, ApJ, 159, 879
Maeda, K., Hattori, T., Milisavljevic, D., et al. 2015, ApJ, 807, 35
Maeder, A. 2009, Physics, Formation and Evolution of Rotating Stars: , Astronomy and Astrophysics Library. ISBN 978-3-540-76948-4. Springer Berlin Heidelberg, 2009. doi:10.1007/978-3-540-76949-1
Marinacci, F., Sales, L. V., Vogelsberger, M., et al. 2019, MNRAS, 489, 4233
Massey, P. & Olsen, K. A. G. 2003, AJ, 126, 2867. doi:10.1086/379558
Mauron, N., & Josselin, E. 2011, A&A, 526, A156
Meynet, G. & Maeder, A. 2000, A&A, Stellar evolution with rotation. V. Changes in all the outputs of massive star models, 361, 101. doi:10.48550/arXiv.astro-ph/0006404
Meynet, G., Maeder, A., Schaller, G., et al. 1994, A&AS, 103, 97
Miller Bertolami, M. M. 2022, ApJ, A Red Giants’ Toy Story, 941, 2, 149. doi:10.3847/1538-4357/ac98c1
Mokiem, M. R., de Koter, A., Vink, J. S., et al. 2007, A&A, 473, 603
Moriya, T. J. 2021, MNRAS, 503, L28. doi:10.1093/mnrasl/slab018
Moriya, T. J., Förster, F., Yoon, S.-C., et al. 2018, MNRAS, 476, 2840. doi:10.1093/mnras/sty475
Moriya, T. J., Yoon, S.-C., Gräfener, G., & Blinnikov, S. I. 2017, MNRAS, 469, L108
Moriya, T., Tominaga, N., Blinnikov, S. I., et al. 2011, MNRAS, 415, 199. doi:10.1111/j.1365-2966.2011.18689.x
Morozova, V., Piro, A. L., & Valenti, S. 2018, ApJ, 858, 15. doi:10.3847/1538-4357/aab9a6
Mosumgaard, J. R., Ball, W. H., Silva Aguirre, V., et al. 2018, MNRAS, 478, 5650. doi:10.1093/mnras/sty1442
Mowlavi, N., Meynet, G., Maeder, A., et al. 1998, A&A, 335, 573
Nieuwenhuijzen, H. & de Jager, C. 1990, A&A, 231, 134
Nugis, T., & Lamers, H. J. G. L. M. 2002, A&A, 389, 162
Nugis, T., & Lamers, H. J. G. L. M. 2000, A&A, 360, 227
Ou, P.-S., Chen, K.-J., Chu, Y.-H., et al. 2023, ApJ, 944, 34. doi:10.3847/1538-4357/aca96e
Ou, P.-S., Chu, Y.-H., Maggi, P., et al. 2018, ApJ, 863, 137
Owocki, S. P., Hirai, R., Podsiadlowski, P., et al. 2019, MNRAS, 485, 988. doi:10.1093/mnras/stz461
Owocki, S. P., Townsend, R. H. D., & Quataert, E. 2017, MNRAS, 472, 3749
Pauldrach, A. W. A., & Puls, J. 1990, A&A, 237, 409
Patnaude, D. J., Lee, S.-H., Slane, P. O., et al. 2017, ApJ, 849, 109
Paxton, B., Smolec, R., Schwab, J., et al. 2019, ApJS, 243, 10
Paxton, B., Schwab, J., Bauer, E. B., et al. 2018, ApJS, 234, 34
Paxton, B., Marchant, P., Schwab, J., et al. 2015, ApJS, 220, 15
Paxton, B., Cantiello, M., Arras, P., et al. 2013, ApJS, 208, 4
Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJS, 192, 3
Pillepich, A., Springel, V., Nelson, D., et al. 2018, MNRAS, 473, 4077
Podsiadlowski, P., Joss, P. C., & Hsu, J. J. L. 1992, ApJ, Presupernova Evolution in Massive Interacting Binaries, 391, 246. doi:10.1086/171341
Prialnik, D. 2009, An Introduction to the Theory of Stellar Structure and Evolution.
Puls, J., Vink, J. S., & Najarro, F. 2008, A&A Rv, 16, 209
Reimers, D. 1975, Memoires of the Societe Royale des Sciences de Liege, 8, 369
Renzini, A. 2023, MNRAS, Why stars inflate to and deflate from red giant dimensions - II. Replies to critics, 521, 1, 524. doi:10.1093/mnras/stad159
Renzini, A. & Ritossa, C. 1994, ApJ, Four Experiments on Thermal Instabilities in Stellar Envelopes, 433, 293. doi:10.1086/174645
Renzini, A., Greggio, L., Ritossa, C., et al. 1992, ApJ, Why Stars Inflate to and Deflate from Red Giant Dimensions, 400, 280. doi:10.1086/171995
Renzini, A. 1984, Observational Tests of the Stellar Evolution Theory, Selected Topics on the Evolution of Low and Intermediate Mass Stars, 105, 21.
Renzo, M., Ott, C. D., Shore, S. N., & de Mink, S. E. 2017, A&A, 603, A118
Rey-Raposo, R., Dobbs, C., Agertz, O., & Alig, C. 2017, MNRAS, 464, 3536
Ritossa, C. 1996, MNRAS, Physics of the blue-to-red and red-to-blue transitions in the evolution of massive stars - I. From blue to red, 281, 3, 970. doi: 10.1093/ mnras/281.3.970
Rogers, H., & Pittard, J. M. 2013, MNRAS, 431, 1337
Salpeter, E. E. 1955, ApJ, 121, 161
Sana, H., de Mink, S. E., de Koter, A., et al. 2012, Science, 337, 444
Schaller, G., Schaerer, D., Meynet, G., et al. 1992, A&AS, 96, 269
Schaye, J., Crain, R. A., Bower, R. G., et al. 2015, MNRAS, 446, 521
Schootemeijer, A., Langer, N., Grin, N. J., et al. 2019, A&A, 625, A132. doi:10.1051/0004-6361/201935046
Seaton, M. J. 2005, MNRAS, Opacity Project data on CD for mean opacities and radiative accelerations, 362, 1, L1. doi:10.1111/j.1365-2966.2005.00019.x
Shaviv, N. J. 2000, ApJL, 532, L137
Smartt, S. J. 2015, PASA, 32, e016
Smartt, S. J. 2009, ARA&A, 47, 63. doi:10.1146/annurev-astro-082708-101737
Smith, N. 2014, ARA&A, 52, 487
Smith, N., & Owocki, S. P. 2006, ApJL, 645, L45
Springel, V., Pakmor, R., Pillepich, A., et al. 2018, MNRAS, 475, 676
Stinson, G., Seth, A., Katz, N., et al. 2006, MNRAS, 373, 1074
Sugimoto, D. & Fujimoto, M. Y. 2000, ApJ, Why Stars Become Red Giants, 538, 2, 837. doi:10.1086/309150
Taam, R. E., & Sandquist, E. L. 2000, ARA&A, 38, 113
Tailo, M., Milone, A. P., Lagioia, E. P., et al. 2021, MNRAS, 503, 694. doi:10.1093/mnras/stab568
Tailo, M., Milone, A. P., Lagioia, E. P., et al. 2020, MNRAS, 498, 5745. doi:10.1093/mnras/staa2639
Tailo, M., D’Antona, F., Vesperini, E., et al. 2015, Nature, 523, 318. doi:10.1038/nature14516
Trampedach, R., Stein, R. F., Christensen-Dalsgaard, J., et al. 2014, MNRAS, 445, 4366. doi:10.1093/mnras/stu2084
Trampedach, R., Stein, R. F., Christensen-Dalsgaard, J., et al. 2014, MNRAS, 442, 805. doi:10.1093/mnras/stu889
Trampedach, R., Asplund, M., Collet, R., et al. 2013, ApJ, 769, 18. doi:10.1088/0004-637X/769/1/18
Tramper, F. 2014, Ph.D. Thesis,
Tramper, F., Sana, H., de Koter, A., & Kaper, L. 2011, ApJL, 741, L8
van Loon, J. T. 2010, Hot and Cool: Bridging Gaps in Massive Star Evolution, 425, 279
van Loon, J. T., Cioni, M.-R. L., Zijlstra, A. A., & Loup, C. 2005, A&A, 438, 273
Vink, J. S. 2022, ARA&A, 60, 203. doi:10.1146/annurev-astro-052920-094949
Vink, J. S. 2018, A&A, 619, A54
Vink, J. S., Heger, A., Krumholz, M. R., et al. 2015, Highlights of Astronomy, 16, 51. doi:10.1017/S1743921314004657
Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 2001, A&A, 369, 574
Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 2000, A&A, 362, 295
Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 1999, A&A, 350, 181
Walch, S., & Naab, T. 2015, MNRAS, 451, 2757
Wang, L., Dutton, A. A., Stinson, G. S., et al. 2015, MNRAS, 454, 83
Whitworth, A. P. 1989, MNRAS, Why red giants are giant., 236, 505. doi:10.1093/mnras/236.3.505
Willson, L. A. 2000, ARA&A, 38, 573
Yong, D., Norris, J. E., Bessell, M. S., et al. 2013, ApJ, 762, 26
Yoon, S.-C., Woosley, S. E., & Langer, N. 2010, ApJ, 725, 940. doi:10.1088/0004-637X/725/1/940
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98319-
dc.description.abstract紅超巨星是演化晚期的大質量恆星,膨脹至約1000倍太陽半徑,具有顯著的質量散失,且為核心坍縮超新星的常見前身星,對於周遭星際介質影響巨大。雖然紅超巨星階段在恆星演化模型中總是能夠再現,其物理起源長期存在爭論,至今仍不清楚。透過恆星模型的建造與分析,本論文全面探討恆星天文物理中長期存在的一個問題:「為何恆星會演化成為紅巨星或紅超巨星?」

首先,本研究使用MESA程式建構約2,000個恆星演化模型,探討不同質量與不同金屬量之大質量恆星演化,並從這組模型中發現了一個臨界金屬量——唯有金屬量Z>~0.001的恆星可演化為紅超巨星,並歷經龐大的質量散失。這些模型亦用來計算恆星回饋,並與宇宙學模擬中常用的經驗式比較。

本文進一步分析MESA模型,探討何種機制決定恆星能否演化為紅超巨星。結果顯示一個修正版的「鏡像原理」:恆星外層的移動方向始終與其內部邊界的移動方向相反。此內部邊界由氫燃燒殼層的外緣所定義。根據此鏡像原理,本文建立出一套通用的判準及演化路線圖,判斷恆星能否演化為紅巨星或紅超巨星。此外,當恆星演化至接近紅巨星或紅超巨星時,可找到一個劇烈的結構轉變階段。

為深入考察紅巨星及紅超巨星的物理,本文以數值方法解出穩態恆星結構方程組。結果證實恆星外層的穩態解符合修正版之鏡像原理,並顯示紅巨星及紅超巨星不但對應於恆星外層膨脹的極限半徑,亦為結構上獨特的階段,與較緻密恆星的結構截然不同。這些穩態解也合理解釋,巨星及超巨星分為紅色及藍色兩個分支。

接著,為進一步探討臨界金屬量的物理起源,本研究利用更大量的模型組,測試多個物理參數的效應。結果顯示,對於給定的恆星質量,在主序終點時存在一個半徑閾值——唯有半徑超過此閾值的恆星可演化為紅超巨星。金屬量之所以影響演化結果,是藉由影響不透明度及核反應,因而改變恆星半徑,於是決定恆星能否在主序終點達到紅超巨星形成的半徑閾值。

本文藉由數值方法解出恆星結構與演化,建立一套完整的物理框架,解釋恆星外層朝向紅巨星及紅超巨星階段的演化。此框架不僅在理論上提供後主序星演化機制的理解,亦能說明觀測上巨星及超巨星在赫羅圖的分布。此外,臨界金屬量的確認及恆星回饋的計算,則對早期宇宙的貧金屬星演化有深遠意義。
zh_TW
dc.description.abstractRed supergiants (RSGs) are evolved massive stars that expand to ~1,000 solar radii, exhibit substantial mass loss, and are common progenitors of core-collapse supernovae, significantly shaping their surrounding interstellar environments. Although the RSG phase is consistently reproduced in stellar evolution models, its physical origin has been long debated and remains unclear. Through the construction and analysis of stellar models, this thesis provides a comprehensive investigation into a longstanding question in stellar astrophysics: why do stars evolve into red giants (RGs) or RSGs?

As a first step, a grid of approximately 2,000 stellar evolution models is computed using the MESA code to explore the evolution of massive stars across a wide range of masses and metallicities. From this grid, a critical metallicity is identified: only stars with Z>~0.001 evolve into RSGs and undergo substantial mass loss. These models are also used to calculate stellar feedback, which is compared with prescriptions commonly adopted in cosmological simulations.

To explore the mechanism that determines whether a star evolves into the RSG phase, further analysis of MESA models suggests a refined version of the “mirror principle”: the stellar envelope consistently moves in the opposite direction to its inner boundary, defined by the outer edge of the hydrogen-burning shell. This principle leads to general criteria and an evolutionary roadmap for determining whether a star will evolve into an RG or RSG. Moreover, a dramatic structural transition is identified as stars approach the RG/RSG phase.

To further investigate the underlying physics of the RG/RSG phase, steady-state stellar structure equations are solved numerically. The resulting envelope solutions validate the refined mirror principle and show that the RG/RSG phase corresponds to both a limiting radius for envelope expansion and a distinct structural phase, markedly different from that of more compact stars. These solutions also naturally explain the bifurcation between red and blue branches of giants and supergiants.

The physical origin of the critical metallicity is further investigated using extended grids of models designed to test the effects of various physical parameters. The results reveal a threshold radius at the terminal-age main sequence (TAMS) for a given stellar mass; only stars exceeding this radius evolve into RSGs. Metallicity governs the evolution outcome by influencing stellar radius through its effects on opacity and nuclear burning, thereby determining whether the threshold TAMS radius for RSG formation is reached.

By numerically solving stellar structure and evolution, this thesis establishes a comprehensive physical framework for explaining envelope expansion toward the RG/RSG phase. This framework not only offers theoretical insight into the evolutionary mechanisms of post-main-sequence stars, but also accounts for the observed distribution of giant and supergiant stars on the Hertzsprung–Russell diagram. The identification of a critical metallicity and the computation of stellar feedback further provide implications for the evolution of metal-poor stars in the early universe.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-01T16:12:16Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-01T16:12:16Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 .................................................. iii
摘要 ............................................. v
Abstract .................................................. vii
Contents ............................................. xi
List of Figures .......................................... xv
List of Tables .......................................... xix

Chapter 1 Critical Metallicity of Cool Supergiant Formation and Mass Loss ......... 1
1.1 Introduction .................................................................. 2
1.2 Methodology ................................................................... 5
1.2.1 MESA Code ................................................................ 5
1.2.2 Physical Processes ....................................................... 5
1.2.3 Mass-Loss Prescriptions ................................................. 6
1.2.4 Stellar Evolution Simulations ........................................... 8
1.3 Stellar Evolution and Mass Loss Rate ......................................... 9
1.3.1 Stellar Evolution ......................................................... 9
1.3.2 Evolution of Mass Loss Rate ............................................ 11
1.4 Total Mass Loss and Metallicity ............................................ 13
1.4.1 Initial Mass and Metallicity Dependence of Mass Loss ................... 14
1.4.2 Critical Metallicity ................................................... 15
1.4.3 Mass Loss from Different Wind Schemes ................................. 16
1.4.4 Cool Supergiants and the Critical Metallicity ......................... 18
1.5 Feedback from Stellar Winds ................................................ 22
1.5.1 Kinetic Energy Released by Winds ...................................... 22
1.5.2 Wind Feedback from a Star Cluster ..................................... 24
1.6 Discussions ................................................................ 27
1.6.1 Two Effects of Metallicity on RSG Evolution ............................ 27
1.6.2 Possible Uncertainties ................................................. 29
1.6.2.1 From stellar models ............................................... 29
1.6.2.2 From mass-loss prescriptions ..................................... 32
1.6.3 Implications of the Critical Metallicity ............................... 34
1.7 Conclusions ................................................................ 36
Appendix A: Wind Prescriptions .................................................... 37

Chapter 2 Expansion Mechanism Toward Red Giants and Supergiants .................. 49
2.1 Introduction ................................................................ 50
2.2 Methods ..................................................................... 52
2.2.1 Grid of different masses and metallicities ............................. 52
2.2.2 Experiments with 25 M⊙ stars .......................................... 53
2.3 Physical Conditions for Transition to Red Supergiants ...................... 54
2.3.1 Energy Budget .......................................................... 55
2.3.2 The Mirror Principle ................................................... 59
2.3.3 Role of Envelope Base Luminosity ...................................... 62
2.4 General Criteria for Stars to Turn Red ..................................... 65
2.4.1 Across Different Masses and Metallicities .............................. 65
2.4.1.1 Examples of 5, 15, and 25 M⊙ ...................................... 66
2.4.1.2 Relationship Across the Full Grid ................................. 67
2.4.2 Roadmap Toward Red Giants or Supergiants .............................. 69
2.5 Physics of the Mirror Principle ............................................ 70
2.6 Effects of Envelope Properties ............................................. 72
2.6.1 Role of Opacity ........................................................ 72
2.6.2 Structural Transition into the RG/RSG Phase ............................ 74
2.7 Discussions and Conclusions ................................................ 76

Chapter 3 Steady-State Solutions of Supergiant Stellar Structure ................. 91
3.1 Introduction ................................................................ 92
3.2 Methods ..................................................................... 94
3.2.1 Polytropic models ...................................................... 97
3.2.2 Realistic models ....................................................... 98
3.3 Results from Polytropic Models ............................................ 101
3.4 Results from Realistic Models ............................................ 105
3.4.1 Transition Toward the RG/RSG Phase ................................... 106
3.4.2 Origin of the RG/RSG Solution ........................................ 109
3.4.3 Red and Blue Solutions ................................................ 114
3.5 Discussions ................................................................ 115
3.6 Conclusions ................................................................ 116

Chapter 4 Physical Mechanism of the Critical Metallicity ......................... 125
4.1 Introduction ............................................................... 126
4.2 Models ...................................................................... 128
4.3 Experiments on Opacity and Nuclear Reaction Rates ......................... 132
4.3.1 Grid (b): Metallicity and Opacity ..................................... 132
4.3.2 Grid (c): H-burning Rates and Opacity ................................. 133
4.3.3 Grid (d): Shell H-burning Rate and Opacity ............................ 135
4.3.4 Grid (e): He-burning Rate and Opacity ................................ 137
4.4 Direct Indicator for RSG Formation ........................................ 137
4.4.1 RSG Threshold at Constant Mass ....................................... 138
4.4.2 TAMS Radii for Different Masses ...................................... 140
4.5 Metallicity Effect on Stellar Radius ...................................... 142
4.5.1 Evolutionary Tracks .................................................. 142
4.5.2 Homology Relation .................................................... 144
4.6 Supergiant Evolution Pathways ............................................. 148
4.7 Envelope Expansion and Core Condition ..................................... 152
4.8 Discussions and Conclusions ............................................... 156

References ........................................................................ 171
-
dc.language.isoen-
dc.subject紅巨星zh_TW
dc.subject紅超巨星zh_TW
dc.subject質量散失zh_TW
dc.subject恆星物理zh_TW
dc.subject恆星演化zh_TW
dc.subjectRed supergiant starsen
dc.subjectRed giant starsen
dc.subjectMass lossen
dc.subjectStellar physicsen
dc.subjectStellar evolutionen
dc.title紅超巨星的物理起源及其質量散失zh_TW
dc.titleThe Physical Origin of Red Supergiants and Their Mass Lossen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.coadvisor陳科榮zh_TW
dc.contributor.coadvisorKe-Jung Chenen
dc.contributor.oralexamcommittee潘國全;陳文屏;胡家瑜;辜品高zh_TW
dc.contributor.oralexamcommitteeKuo-Chuan Pan;Wen-Ping Chen;Chia-Yu Hu;Pin-Gao Guen
dc.subject.keyword紅超巨星,紅巨星,恆星演化,恆星物理,質量散失,zh_TW
dc.subject.keywordRed supergiant stars,Red giant stars,Stellar evolution,Stellar physics,Mass loss,en
dc.relation.page181-
dc.identifier.doi10.6342/NTU202502529-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-01-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
dc.date.embargo-lift2025-08-02-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf9.93 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved