Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 社會科學院
  3. 經濟學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98315
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝志昇zh_TW
dc.contributor.advisorChih-Sheng Hsiehen
dc.contributor.author葉秀軒zh_TW
dc.contributor.authorHsiu-Hsuan Yehen
dc.date.accessioned2025-08-01T16:11:16Z-
dc.date.available2025-08-02-
dc.date.copyright2025-08-01-
dc.date.issued2025-
dc.date.submitted2025-07-30-
dc.identifier.citationArmstrong, Caitrin, Ate Poorthuis, Matthew Zook, Derek Ruths, and Thomas Soehl. 2021. "Challenges when identifying migration from geo-located Twitter data." EPJ Data Science, 10(1): 1.
Ayesha, Buddhi, Bhagya Jeewanthi, Charith Chitraranjan, Amal Shehan Perera, and Amal S Kumarage. 2019. "User localization based on call detail record." 411–423, Springer.
Baker, Andrew C, David F Larcker, and Charles CY Wang. 2022. "How much should we trust staggered difference-in-differences estimates?" Journal of Financial Economics, 144(2): 370–395.
Barwick, Panle Jia, Yanyan Liu, Eleonora Patacchini, and Qi Wu. 2023. "Information, Mobile Communication, and Referral Effects." American Economic Review, 113(5): 1170–1207.
Blumenstock, Joshua E. 2012. "Inferring patterns of internal migration from mobile phone call records: evidence from Rwanda." Information Technology for Development, 18(2): 107–125.
Blumenstock, Joshua E, Guanghua Chi, and Xu Tan. 2025. "Migration and the value of social networks." Review of Economic Studies, 92(1): 97–128.
Blumenstock, Joshua, Gabriel Cadamuro, and Robert On. 2015. "Predicting poverty and wealth from mobile phone metadata." Science, 350(6264): 1073–1076.
Borusyak, Kirill, Xavier Jaravel, and Jann Spiess. 2024. "Revisiting event-study designs: robust and efficient estimation." Review of Economic Studies, 91(6): 3253–3285.
Boustan, Leah Platt, Price V Fishback, and Shawn Kantor. 2010. "The effect of internal migration on local labor markets: American cities during the Great Depression." Journal of Labor Economics, 28(4): 719–746.
Bryan, Gharad, and Melanie Morten. 2019. "The aggregate productivity effects of internal migration: Evidence from Indonesia." Journal of Political Economy, 127(5): 2229–2268.
Büchel, Konstantin, Maximilian V Ehrlich, Diego Puga, and Elisabet Viladecans-Marsal. 2020. "Calling from the outside: The role of networks in residential mobility." Journal of urban economics, 119: 103277.
Callaway, Brantly, and Pedro HC Sant'Anna. 2021. "Difference-in-differences with multiple time periods." Journal of econometrics, 225(2): 200–230.
Chi, Guanghua, Fengyang Lin, Guangqing Chi, and Joshua Blumenstock. 2020. "A general approach to detecting migration events in digital trace data." PloS one, 15(10): e0239408.
Cho, Eunjoon, Seth A Myers, and Jure Leskovec. 2011. "Friendship and mobility: user movement in location-based social networks." 1082–1090.
Cui, Yilan, Xing Xie, and Yi Liu. 2018. "Social media and mobility landscape: Uncovering spatial patterns of urban human mobility with multi source data." Frontiers of Environmental Science & Engineering, 12: 1–14.
De Chaisemartin, Clément, and Xavier d'Haultfoeuille. 2023. "Two-way fixed effects and differences-in-differences with heterogeneous treatment effects: A survey." The econometrics journal, 26(3): C1–C30.
Dias, Viren, Lasantha Fernando, Yusen Lin, Vanessa Frias-Martinez, and Louiqa Raschid. 2022. "Framework to Study Migration Decisions Using Call Detail Record (CDR) Data." IEEE Transactions on Computational Social Systems, 10(5): 2725–2738.
Domínguez, Daniel Rodríguez, Rebeca P Díaz Redondo, Ana Fernández Vilas, and Mohamed Ben Khalifa. 2017. "Sensing the city with Instagram: Clustering geolocated data for outlier detection." Expert systems with applications, 78: 319–333.
Eagle, Nathan, Michael Macy, and Rob Claxton. 2010. "Network diversity and economic development." Science, 328(5981): 1029–1031.
Ebrahimpour, Zeinab, Wanggen Wan, José Luis Velázquez García, Ofelia Cervantes, and Li Hou. 2020. "Analyzing social-geographic human mobility patterns using large-scale social media data." ISPRS International Journal of Geo-Information, 9(2): 125.
Espíndola, Aquino L, Jaylson J Silveira, and TJP Penna. 2006. "A Harris-Todaro agent-based model to rural-urban migration." Brazilian journal of physics, 36: 603–609.
Ester, Martin, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. "A density-based algorithm for discovering clusters in large spatial databases with noise." Vol. 96, 226–231.
Garrett, Shedrick L, Kaitlyn Burnell, Emma L Armstrong-Carter, Mitchell J Prinstein, and Eva H Telzer. 2023. "Linking video chatting, phone calling, text messaging, and social media with peers to adolescent connectedness." Journal of Research on Adolescence, 33(4): 1222–1234.
Gonzalez, Marta C, Cesar A Hidalgo, and Albert-Laszlo Barabasi. 2008. "Understanding individual human mobility patterns." nature, 453(7196): 779–782.
Goodman-Bacon, Andrew. 2021. "Difference-in-differences with variation in treatment timing." Journal of econometrics, 225(2): 254–277.
Hartigan, John A. 1975. Clustering algorithms. John Wiley & Sons, Inc.
Hawelka, Bartosz, Izabela Sitko, Euro Beinat, Stanislav Sobolevsky, Pavlos Kazakopoulos, and Carlo Ratti. 2014. "Geo-located Twitter as proxy for global mobility patterns." Cartography and geographic information science, 41(3): 260–271.
Hunt, Gary L, and Richard E Mueller. 2004. "North American migration: returns to skill, border effects, and mobility costs." Review of Economics and Statistics, 86(4): 988–1007.
Imbert, Clement, Marion Seror, Yifan Zhang, and Yanos Zylberberg. 2022. "Migrants and firms: Evidence from china." American Economic Review, 112(6): 1885–1914.
Isaacman, Sibren, Richard Becker, Ramón Cáceres, Stephen Kobourov, Margaret Martonosi, James Rowland, and Alexander Varshavsky. 2011. "Identifying important places in people's lives from cellular network data." 133–151, Springer.
Jabbar, MA, and S Suharjito. 2020. "Fraud detection call detail record using machine learning in telecommunications company." Adv. sci. technol. eng. syst. j., 5: 63–69.
Jurdak, Raja, Kun Zhao, Jiajun Liu, Maurice AbouJaoude, Mark Cameron, and David Newth. 2015. "Understanding human mobility from Twitter." PloS one, 10(7): e0131469.
Karahoca, ADEM, and Ali Kara. 2006. "Comparing clustering techniques for telecom churn management." 27–29.
Lai, Shengjie, Elisabeth zu Erbach-Schoenberg, Carla Pezzulo, Nick W Ruktanonchai, Alessandro Sorichetta, Jessica Steele, Tracey Li, Claire A Dooley, and Andrew J Tatem. 2019. "Exploring the use of mobile phone data for national migration statistics." Palgrave communications, 5(1): 1–10.
Luo, Feixiong, Guofeng Cao, Kevin Mulligan, and Xiang Li. 2016. "Explore spatiotemporal and demographic characteristics of human mobility via Twitter: A case study of Chicago." Applied Geography, 70: 11–25.
Luo, Xusen, Yunyao Zhou, Yifu Yang, and Shuyun Wu. 2020. "Research on home and work locations based on mobile phone data." Vol. 1486, 052013, IOP Publishing.
Márquez-Barja, Johann, Carlos T Calafate, Juan-Carlos Cano, and Pietro Manzoni. 2011. "An overview of vertical handover techniques: Algorithms, protocols and tools." Computer communications, 34(8): 985–997.
Onnela, J-P, Jari Saramäki, Jorkki Hyvönen, György Szabó, David Lazer, Kimmo Kaski, János Kertész, and A-L Barabási. 2007. "Structure and tie strengths in mobile communication networks." Proceedings of the national academy of sciences, 104(18): 7332–7336.
Pappalardo, Luca, Filippo Simini, Salvatore Rinzivillo, Dino Pedreschi, Fosca Giannotti, and Albert-László Barabási. 2015. "Returners and explorers dichotomy in human mobility." Nature communications, 6(1): 8166.
Pappalardo, Luca, Maarten Vanhoof, Lorenzo Gabrielli, Zbigniew Smoreda, Dino Pedreschi, and Fosca Giannotti. 2016. "An analytical framework to nowcast well-being using mobile phone data." International Journal of Data Science and Analytics, 2: 75–92.
Phithakkitnukoon, Santi. 2022. "Inferring and Modeling Migration Flows Using Mobile Phone CDR Data." In Urban Informatics Using Mobile Network Data: Travel Behavior Research Perspectives. 75–101. Springer.
Phithakkitnukoon, Santi, Zbigniew Smoreda, and Patrick Olivier. 2012. "Socio-geography of human mobility: A study using longitudinal mobile phone data." PloS one, 7(6): e39253.
Ranjan, Gyan, Hui Zang, Zhi-Li Zhang, and Jean Bolot. 2012. "Are call detail records biased for sampling human mobility?" ACM SIGMOBILE Mobile Computing and Communications Review, 16(3): 33–44.
Roth, Jonathan, Pedro HC Sant'Anna, Alyssa Bilinski, and John Poe. 2023. "What's trending in difference-in-differences? A synthesis of the recent econometrics literature." Journal of Econometrics, 235(2): 2218–2244.
Sahai, Harshil, and Michael Bailey. 2022. "Social networks and spatial mobility: Evidence from Facebook in India." arXiv preprint arXiv:2203.05595.
Shi, Jieming, Nikos Mamoulis, Dingming Wu, and David W Cheung. 2014. "Density-based place clustering in geo-social networks." 99–110.
Song, Chaoming, Zehui Qu, Nicholas Blumm, and Albert-László Barabási. 2010. "Limits of predictability in human mobility." Science, 327(5968): 1018–1021.
Sun, Liyang, and Sarah Abraham. 2021. "Estimating dynamic treatment effects in event studies with heterogeneous treatment effects." Journal of econometrics, 225(2): 175–199.
Tongsinoot, Lumpsum, and Veera Muangsin. 2017. "Exploring home and work locations in a city from mobile phone data." 123–129, IEEE.
Wang-Lu, Huaxin, and Octasiano Miguel Valerio Mendoza. 2023. "Job prospects and labour mobility in China." The Journal of International Trade & Economic Development, 32(7): 991–1034.
Wesolowski, Amy, Caroline O Buckee, Kenth Engø-Monsen, and Charlotte Jessica Eland Metcalf. 2016. "Connecting mobility to infectious diseases: the promise and limits of mobile phone data." The Journal of infectious diseases, 214(suppl_4): S414–S420.
Yang, Peiyu, Tongyu Zhu, Xuejin Wan, and Xuejiao Wang. 2014. "Identifying significant places using multi-day call detail records." 360–366, IEEE.
Yuan, Yihong, Martin Raubal, and Yu Liu. 2012. "Correlating mobile phone usage and travel behavior–A case study of Harbin, China." Computers, Environment and Urban Systems, 36(2): 118–130.
Zagheni, Emilio, Venkata Rama Kiran Garimella, Ingmar Weber, and Bogdan State. 2014. "Inferring international and internal migration patterns from twitter data." 439–444.
Zhao, Zhiyuan, Shih-Lung Shaw, Ling Yin, Zhixiang Fang, Xiping Yang, Fan Zhang, and Sheng Wu. 2019. "The effect of temporal sampling intervals on typical human mobility indicators obtained from mobile phone location data." International Journal of Geographical Information Science, 33(7): 1471–1495.
Zhao, Ziliang, Shih-Lung Shaw, Yang Xu, Feng Lu, Jie Chen, and Ling Yin. 2016. "Understanding the bias of call detail records in human mobility research." International Journal of Geographical Information Science, 30(9): 1738–1762.
Zhou, Xiangkai, Linlin You, Shuqi Zhong, and Ming Cai. 2024. "From cell tower location to user location: Understanding the spatial uncertainty of mobile phone network data in human mobility research." Computers, Environment and Urban Systems, 111: 102130.
Zreikat, Aymen I, Khalid Al-Begain, and Kevin Smith. 2004. "A comparative capacity/coverage analysis for CDMA cell in different propagation environments." Wireless Personal Communications, 28(3): 205–231.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98315-
dc.description.abstract我們使用大量匿名通話記錄,用以研究居住地變遷與智慧型手機採用對移動與通訊行為的影響。資料涵蓋每月超過十五億通話,涉及超過五十萬個電話號碼,而時間涵蓋2013年8月至2014年5月。

我們發現居住地搬遷具有顯著的時間變異效應。遷徙者在搬遷期間傾向於更頻繁地通話,建立更多元的聯絡關係,且主要與原本身處遠距的朋友互動。然而,這些效應會迅速消退回原本水準,或持續發展為負向趨勢,例如互動對象變得較不多元,或聯絡距離縮短。從移動行為的角度來看,搬遷會導致使用者的活動範圍擴大,並出現較難預測的移動模式,儘管這些效應隨時間也會逐漸趨於穩定並變得可預測。

在採用智慧型手機後,移動模式出現明顯(近乎靜態)的上升變化,可能是因為科技在陌生環境中提供協助。例如,移動的不確定性上升,同時出現較明確的方向偏好。

本研究顯示,針對此行為變化,在大規模遷移或手機科技升級的範疇下,政策應更加關注行動與交通建設的需求。
zh_TW
dc.description.abstractWe use over 1.5 billion anonymized call records per month spanning from August 2013 to May 2014, where more than 500,000 phone numbers are involved, to study the impacts of residential shifts (events of changing home locations) and smartphone adoption on mobility and communication behaviors.

We find significant time-variant effects for residential relocations. Migrants tend to call more frequently, engage in more diverse contact relationships, and primarily interact with existing distant friends during relocation periods. These effects quickly fade to original levels or continuously evolve toward negative states, such as less diverse interactions or shorter contact distances. From a mobility perspective, residential relocations cause users to have larger exploration areas and highly unpredictable movement patterns, though these effects also shift to more predictable movement over time.

The notable upward shifts (nearly static) in mobility patterns after smartphone adoption are likely due to technological assistance in unfamiliar environments. For example, movement unpredictability increases along with relatively clearer directional preferences.

Our work provides evidence-based policy implications that mobile and transportation infrastructure needs are worth considering during periods when large-scale population displacements or mobile technology upgrades occur.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-01T16:11:16Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-01T16:11:16Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i

摘要 ii

Abstract iii

Contents iv

List of Figures vii

List of Tables ix

Chapter 1 Introduction 1

Chapter 2 Literature Review 5

2.1 Residential Shifts and Internal Migration 5

2.2 Home Location Estimation through CDRs 6

2.3 Detection of Residential Shifts through CDRs 8

Chapter 3 Data and Methods 10

3.1 Datasets 10

3.2 Notations 11

3.3 Home Location Estimation 12

3.3.1 Spatial Clustering 15

3.3.2 Temporal Filtering 16

3.4 Identification of Residential Shift and Its Timing 20

3.5 Detection of Smartphone Adoption 22

3.6 Construction of Outcome Variables 23

3.6.1 Mobile Communication Network Features 24

3.6.2 Human Mobility Features 27

3.7 Empirical Strategy 32

3.8 Group-Time ATT 34

Chapter 4 Results 41

4.1 Outcomes of Interest 41

4.2 Residential Shifts 42

4.3 Smartphone Adoption 46

Chapter 5 Discussion 48

5.1 Summary 48

5.2 Limitations 48

5.3 Future Work 50

References 51

Appendix A — Event-Centered Trends Across Outcomes and Treatments 59

Appendix B — Preliminary of DiD Estimator 72

Appendix C — Results of ATT Estimation by Event Time 75

Appendix D — Group-Specific Event Studies 78

Appendix E — Implementation Details 83

E.1 Parameter Choices of DBSCAN 83

E.2 Temporal Filtering 85

E.3 Residential Shifts 86

E.4 Smartphone Adoption 89

E.5 Selection of Anticipation Parameter 91
-
dc.language.isoen-
dc.subject時空分析zh_TW
dc.subject電信網路zh_TW
dc.subject居住遷移zh_TW
dc.subject智慧型手機使用zh_TW
dc.subject移動行為zh_TW
dc.subject通訊模式zh_TW
dc.subjectResidential Shiftsen
dc.subjectSpatio-temporal Analysisen
dc.subjectCommunication Behavioren
dc.subjectMobility Patternsen
dc.subjectSmartphone Adoptionen
dc.subjectTelecommunicationsen
dc.title電信數據之時空分析:居住地遷移與智慧型手機使用對移動行為與通訊模式之影響zh_TW
dc.titleSpatio-temporal Analysis of Telecommunications Data: Effects of Residential Shifts and Smartphone Adoption on Mobility Patterns and Communication Behavioren
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee楊子霆;詹大千;楊睿中zh_TW
dc.contributor.oralexamcommitteeTzu-Ting Yang;Ta-Chien Chan;Jui-Chung Yangen
dc.subject.keyword時空分析,電信網路,居住遷移,智慧型手機使用,移動行為,通訊模式,zh_TW
dc.subject.keywordSpatio-temporal Analysis,Telecommunications,Residential Shifts,Smartphone Adoption,Mobility Patterns,Communication Behavior,en
dc.relation.page94-
dc.identifier.doi10.6342/NTU202502893-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-31-
dc.contributor.author-college社會科學院-
dc.contributor.author-dept經濟學系-
dc.date.embargo-lift2025-08-02-
顯示於系所單位:經濟學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf17.46 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved