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Abstract

We use over 1.5 billion anonymized call records per month spanning from August
2013 to May 2014, where more than 500,000 phone numbers are involved, to study the
impacts of residential shifts (events of changing home locations) and smartphone adoption

on mobility and communication behaviors.

We find significant time-variant effects for residential relocations. Migrants tend to
call more frequently, engage in more diverse contact relationships, and primarily inter-
act with existing distant friends during relocation periods. These effects quickly fade to
original levels or continuously evolve toward negative states, such as less diverse inter-
actions or shorter contact distances. From a mobility perspective, residential relocations
cause users to have larger exploration areas and highly unpredictable movement patterns,

though these effects also shift to more predictable movement over time.

The notable upward shifts (nearly static) in mobility patterns after smartphone adop-
tion are likely due to technological assistance in unfamiliar environments. For example,

movement unpredictability increases along with relatively clearer directional preferences.

Our work provides evidence-based policy implications that mobile and transportation
infrastructure needs are worth considering during periods when large-scale population

displacements or mobile technology upgrades occur.

Keywords: Spatio-temporal Analysis, Telecommunications, Residential Shifts, Smart-

phone Adoption, Mobility Patterns, Communication Behavior

111 doi:10.6342/NTU202502893


http://dx.doi.org/10.6342/NTU202502893

Contents

Page

Acknowledgements i
W ii
Abstract iii
Contents iv
List of Figures vii
List of Tables ix
Chapter 1 Introduction 1
Chapter 2 Literature Review 5
2.1  Residential Shifts and Internal Migration . . . . ... ... ... .. 5

2.2 Home Location Estimation through CDRs . . . . . . .. .. ... .. 6

2.3 Detection of Residential Shifts throughCDRs . . . . . ... ... .. 8
Chapter 3 Data and Methods 10
3.1 Datasets . . . . . . . . .. 10

32 Notations . . . . . . v v vt e e 11

33 Home Location Estimation . . . . . .. ... ... ... ....... 12

3.3.1 Spatial Clustering . . . . . . . ... ... ... ... ... ..., 15

3.3.2 Temporal Filtering . . . . ... ... ... ... .......... 16

v doi:10.6342/NTU202502893


http://dx.doi.org/10.6342/NTU202502893

34
3.5
3.6
3.6.1
3.6.2
3.7
3.8
Chapter 4
4.1
4.2
4.3
Chapter 5
5.1
52
53

References

Identification of Residential Shift and Its Timing . . . . . .7 .. ..
Detection of Smartphone Adoption . . . . . . ... ... ... ..
Construction of Outcome Variables . . . . ... .. ... ... ..
Mobile Communication Network Features . . . . . ... ... ...
Human Mobility Features . . . . . . .. ... ... ... ......
Empirical Strategy . . . . . . ... ...
Group-Time ATT . . . . . . . . . . .. . . .
Results
Outcomes of Interest . . . . . . . . . ... ... ... ... ...
Residential Shifts . . . . . ... ... ... oL
Smartphone Adoption . . . . . ... ... ... ... ...
Discussion
Summary . . . ...
Limitations . . . . . . . . . . Lo

Future Work . . . . . . . .

Appendix A — Event-Centered Trends Across Outcomes and Treatments

Appendix B — Preliminary of DiD Estimator

Appendix C — Results of ATT Estimation by Event Time

Appendix D — Group-Specific Event Studies

Appendix E — Implementation Details

E.l

E.2

Parameter Choices of DBSCAN . . . . . . . . . . ... ... ....

Temporal Filtering . . . . . . . ... ... ... ... ........

v doi:10.6342/NTU202502893

41

41

42

46

48

48

48

50

51

59

72

75

78

83


http://dx.doi.org/10.6342/NTU202502893

E.3  Residential Shifts . . . . . ... .. ... ... 0o 86
E.4  Smartphone Adoption . . . . ... ... .. L0, 89

E.5  Selection of Anticipation Parameter . . . . . ... ... ... ... 91

vi doi:10.6342/NTU202502893


http://dx.doi.org/10.6342/NTU202502893

List of Figures

Figure 3.1 Pipeline for Estimating A Phone User’s Home Locations . . . . . 12

Figure 3.2  Visualization of Proposed Two-stage Home Locations Estimation . 17

Figure 3.3  Pipeline of Constructing Contact Distance . . . . . ... ... .. 26
Figure 3.4 Comparison of Mobility Feature Values . . . . . ... ... ... 29
Figure 4.1 Aggregated Event Study of Residential Shifts . . . .. ... ... 43

Figure 4.2 Contact Ratio of Pre-Treatment Friends in Post-Treatment Periods 44

Figure 4.3 Aggregate Event Study of Smartphone Adoption . . . . . . .. .. 46
Figure A.1 Total Duration by Treatment (Residential Shifts) Status . . . . . . 60
Figure A.2 Contact Distance by Treatment (Residential Shifts) Status . . . . . 61
Figure A.3 Contact Entropy by Treatment (Residential Shifts) Status . . . . . 62
Figure A.4 Radius of Gyration by Treatment (Residential Shifts) Status . . . . 63
Figure A.5 Movement Entropy by Treatment (Residential Shifts) Status . . . . 64
Figure A.6 Eccentricity by Treatment (Residential Shifts) Status . . . . . . . 65
Figure A.7 Total Duration by Treatment (Smartphone Adoption) Status . . . . 66
Figure A.8 Contact Distance by Treatment (Smartphone Adoption) Status . . 67
Figure A.9 Contact Entropy by Treatment (Smartphone Adoption) Status . . . 68

Figure A.10 Radius of Gyration by Treatment (Smartphone Adoption) Status . 69
Figure A.11 Movement Entropy by Treatment (Smartphone Adoption) Status . 70
Figure A.12 Eccentricity by Treatment (Smartphone Adoption) Status . . . . . 71
Figure D.13 Group-Specific Event Study: Residential Shifts on Communication 79

Figure D.14 Group-Specific Event Study: Residential Shifts on Mobility . . . . 80

vil doi:10.6342/NTU202502893


http://dx.doi.org/10.6342/NTU202502893

Figure D.15 Group-Specific Event Study: Smartphone Adoption on Commu-
nication
Figure D.16 Group-Specific Event Study: Smartphone Adoption on Mobility . | 82
Figure E.17 Number of Phone Users Upgrading to Smartphones by Month'. -. .~ 89
Figure E.18 Aggregate Event Study of Residential Shifts with No Anticipation 93
Figure E.19 Aggregate Event Study of Smartphone Adoption with No Antici-

viil doi:10.6342/NTU202502893


http://dx.doi.org/10.6342/NTU202502893

List of Tables

Table 3.1 An example of geotagged CDRs . . . . . . .. ... ... ..... 10

Table C.1 Results of ATT (Residential Shifts) Estimation by Event Time . . . 76

Table C.2 Results of ATT (Smartphone Adoption) Estimation by Event Time . 77

Table E.3  Statistics of Migrants by the Month of Migration . . . . . ... .. 86
Table E.4 Balance of Pre-Treatment (Residential Shifts) Covariates . . . . . . 88
Table E.5 Balance of Pre-Treatment (Smartphone Adoption) Covariates . . . 90

1X doi:10.6342/NTU202502893


http://dx.doi.org/10.6342/NTU202502893

Chapter 1 Introduction

We employ call detailed records (CDRs) to study human mobility patterns and mo-
bile communication behavior. Individuals move and interact with others on a daily basis,
and CDRs record mobility and communication behaviors at nearly the individual level—
that is, observation units are phone numbers rather than actual phone users—facilitating
flexible aggregations across multiple hierarchies based on practitioners’ needs for answer-
ing various research questions. Macro patterns of mobility and communication behaviors
revealed in CDRs can provide significant policy implications across multiple domains.
For instance, mobility patterns derived from CDRs can inform urban transportation plan-
ning by revealing commuting flows (Phithakkitnukoon, Smoreda and Olivier (2012)) and
peak travel times (Tongsinoot and Muangsin (2017)), enabling policymakers to optimize
public transit routes and schedules. During public health emergencies, CDR mobility data
can help design targeted lockdowns by estimating transmission flows (Wesolowski et al.
(2016)) or identifying high-risk residential neighborhoods for restrictions while keeping
essential services and supply chains operational. Additionally, phone usage patterns can
identify digital divides and socioeconomic disparities (Onnela et al. (2007), Blumenstock,
Cadamuro and On (2015)) in mobile service usage, helping governments decide where to

build better networks and support underserved communities.

We summarize mobility and mobile communication behaviors using six features,

1 doi:10.6342/NTU202502893
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with each behavior characterized by three features. For mobility, we curate radius of
gyration (Gonzalez, Hidalgo and Barabasi (2008), Ranjan et al. (2012), Pappalardo et al.
(2015)), movement entropy (Eagle, Macy and Claxton (2010), Song et al..(2010), Pap-
palardo et al. (2016)) and eccentricity (Yuan, Raubal and Liu (2012), Zhao et al. (2019)),
which seeks to measure the spatial dispersion of travel, the diversity of human movement,
and how closely the spatial distribution of locations resembles an ellipse, respectively. To
characterize mobile communication patterns, we construct total call duration, contact en-
tropy (Eagle, Macy and Claxton (2010), Pappalardo et al. (2016)), and contact distance,
which quantify the differentials in relationship intensities across contacts, the diversity of

mobile interactions, and the spatial reach of social interactions, respectively.

While we did not invent these features, we improved them by incorporating the load
sharing mechanism that is prevalent in the telecommunication industry, containing two
components: load balancing (Ayesha et al. (2019)) and handover (Marquez-Barja et al.
(2011)). Two issues arise with the load sharing mechanism. First, the telecom base sta-
tion handling a call event may not always be the closest one to the user (Yuan, Raubal and
Liu (2012)). Second, a single call communication can generate multiple call records due
to the change of telecom base station processing that call. Ignoring the load sharing mech-
anism can introduce biases when inferring users’ significant locations based on the staying
frequency and the intensities of social ties characterized by mobile communication. There-
fore, we make methodological contributions by proposing that the randomness of mobile
interactions should be modeled using relative call duration rather than the number of calls,
and that the randomness of location stays should be modeled using the relative number of
days a particular base station handles calls rather than the total number of call events it

processes. Besides, we also apply DBSCAN, a machine learning clustering algorithm, to
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mitigate localization errors (Ayesha et al. (2019)), thereby improving the robustness of

home location estimation.

CDRs are already heavily utilized in human mobility research (Gonzalez, Hidalgo
and Barabasi (2008), Song et al. (2010), Wesolowski et al. (2016)) and social network
analysis (Onnela et al. (2007), Cho, Myers and Leskovec (2011), Barwick et al. (2023)).
However, the majority of research focuses on modeling statistical properties of these be-
havioral features or examining correlations between social networks and mobility. We
delve into a novel research topic that examines micro-level interactions instead of in-
specting correlations between macro patterns while still providing aggregate implications.
Specifically, we identify significant treatments that substantially influence mobility and
communication behaviors, followed by treatment effect identification that examines how
effects on behavioral features unfold over time through a difference-in-differences (DiD)

design with multiple periods and variation in treatment timing.

The two treatments are residential shifts and smartphone adoption, and the treatment
effect dynamics are estimated through an approach proposed by Callaway and Sant’ Anna
(2021), which is robust to heterogeneous effects over time and across treatment-timing
groups. We found that there is a temporary surge in total call duration and contact distance
during the month of relocation, arising from migrants’ attempts to contact geographically
distant social connections. Moreover, during this same period, migrants engage in more
diversified social interactions, however, following the completion of relocation, migrants
tend to spend less time on mobile communication with less diversified interactions. On the
other hand, radius of gyration substantially increases contemporaneously with the com-
pletion of residential relocation, while the effect quickly fades in the following months.

Mobility characteristics transition from highly unpredictable spatial appearances with spa-
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tial stretching along a fixed direction to predictable patterns with roughly circular spatial
distribution. The effects of smartphone adoption are nearly constant over time, and the
changes are positive. The most notable influence is the increase in total call duration,

while movement entropy, eccentricity, and contact entropy all show modest increases.

The estimation results help interpret anomalous events when using CDRs to monitor
mobility and communication behaviors during periods or in regions experiencing large
immigrant influxes or significant technology adoption, both commonly seen in develop-
ing countries. Moreover, our work also suggests that policy awareness should increase
regarding the need for mobile and transportation infrastructure when significant popu-
lation displacement or mobile technology updates occur. Examples of population dis-
placement include refugee resettlement programs (e.g., around 1 million Syrian refugees
who fled civil war and resettled in Germany during 2015-2016), natural disaster reloca-
tions (e.g., about 15 million people resettled within China following the 2008 Wenchuan
earthquake), or environmental displacement due to industrial pollution (e.g., 833 families
relocated from Love Canal, New York during 1978-1980 due to toxic chemical contami-
nation). Mobile technology updates contain network infrastructure upgrades (2G to 3G to

4G to 5G), and GPS-enabled services adoption.

The remaining content is structured as follows. Chapter two provides a literature
review on internal migration and estimating home locations and identifying residential
shifts through CDRs. Chapter three introduces our data sources, how we identify residen-
tial shifts and smartphone adoption, and how various behavioral features are constructed.
Chapter four explains how we assure the existence of anticipation and numerous intuitions
from the estimation results. Finally, Chapter five delves into the summary, limitations, and

future work of this study.
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Chapter 2 Literature Review

2.1 Residential Shifts and Internal Migration

CDRs is a collection of geotagged phone call records (Table 3.1) over a period of
time. Although the observation units are phone numbers rather than actual phone users,
we will proceed to use phone users as the sample units since, on average, people have 1.2
phone devices. By looking at individual level, we can trace phone users’ geographical ap-
pearances with temporal dimension. Based on the spatial patterns distributed on the map,
we can estimate their significant locations, such as their residential coordinates and work-
place location. Besides, the temporal dimension offers a particularly exciting opportunity:
we can identify events of residential shifts, depicting migration flows that were previously

impossible to capture at such scale and precision through traditional census-based survey.

This type of human movement is referred to as internal migration, unlike interna-
tional migration, and it signifies population flow that occurs within a country. Internal
migration is a phenomenon that has captured economists’ attention for over a century.
This strand of literature often involves modeling migration decisions (Hunt and Mueller
(2004), Espindola, Silveira and Penna (2006), Wang-Lu and Valerio Mendoza (2023))
or inspecting the impacts of migration on the destination region (Boustan, Fishback and
Kantor (2010), Bryan and Morten (2019), Imbert et al. (2022)).

5 doi:10.6342/NTU202502893
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Our CDRs are collected from Sichuan province, China, and the sample periods covers
from August 2013 to May 2014. In China, most of the discussion on internal migration
is concentrated on the rural-urban migration on the prefecture level with the reason of
finding better jobs or seeking education opportunities. Nonetheless, we don’t stress on
any particular context of internal migration and focus on the detection of residential shifts

and their influences on human behaviors.

One of our methodological contributions is identifying large-scale inter-prefecture
migration flows through novel data sources. Specifically, we employ CDRs and develop
a systematic pipeline with two stages to identify individuals changing their residential lo-
cations, revealing the internal migration flows across prefectures. Utilizing CDRs to iden-
tify internal migration flow has several advantages. First, CDRs capture mobility patterns
for virtually all mobile phone users in a region, including populations often underrepre-
sented in conventional surveys such as transient residents, undocumented individuals, and
those reluctant to participate in formal governmental data collection. Second, CDRs pro-
vide continuous temporal coverage rather than the periodic snapshots offered by censuses,
enabling the detection of short-term or seasonal relocations. Third, this approach is also
cost-effective compared to the large amount of money and human resources devoted to
completing a census, as telecommunication companies automatically collect these phone

records for billing purposes.

2.2 Home Location Estimation through CDRs

It is important to clarify that the coordinates attached to each phone call record don’t

precisely represent the exact geographical position of either the caller or callee. Rather,
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they are the coordinates of the telecom base station handling the call, which serve asa
spatial approximation for the phone user’s position while initiating or receiving phone

calls. The approximation is not always accurate due to the load balancing mechanism.

Most of the studies estimate home locations through CDRs by selecting the locations
of the telecom base station that handles the call events most frequently over the whole
sample period (Cho, Myers and Leskovec (2011), Phithakkitnukoon, Smoreda and Olivier
(2012)), weekly (Barwick et al. (2023)), or monthly (Phithakkitnukoon (2022)) from the
nighttime call records. This simple approach seems to be acceptable for people who have
a large amount of phone call records. However, for those who have limited observations of
call events, the simple approach is not reliable. A more robust approach would be running
a spatial clustering algorithm over a set of telecom base stations’ locations (Isaacman
et al. (2011), Yang et al. (2014), Ayesha et al. (2019)). As mentioned, our estimation
strategy of residential location encompasses two stages, and the first stage recognizes
the clustered patterns and leverage DBSCAN (Ester et al. (1996)), a renowned machine
learning algorithm in the clustering domain, to uncover them. Note that Ayesha et al.

(2019) also leveraged DBSCAN to estimate home locations.

DBSCAN’s flexibility has made it a popular choice for analyzing spatial patterns
(Yang et al. (2014), Shi et al. (2014), Dominguez et al. (2017)) and mobile communication
behaviors (Karahoca and Kara (2006), Jabbar and Suharjito (2020)). We inherit this idea,
including it in our two-staged approach, which carries the specific goal of identifying res-
idential shifts. Our approach makes this identification feasible by incorporating temporal
information following the spatial clustering process. Even more recent developments in
significant location inference (Tongsinoot and Muangsin (2017), Luo et al. (2020)) don’t

explicitly consider the situation where people might change their home locations.
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2.3 Detection of Residential Shifts through CDRs

Several studies have already taken advantage of CDRs to identify residential reloca-
tion. Although most of the works on home location inference are not designed for detect-
ing home location shifts in that they often estimate one location over the whole sample
period. However, we can still apply these approaches on multiple fixed-size time win-
dow (Blumenstock (2012), Phithakkitnukoon (2022), Blumenstock, Chi and Tan (2025)),
e.g., daily, weekly, or monthly, or between two time periods (Lai et al. (2019), Dias et al.
(2022)) and if more than one home location is found, we can consider it as a residential
shift. Phithakkitnukoon (2022) is the case where they apply the simple approach on each
month to detect residential shifts while Dias et al. (2022) adopt Isaacman et al. (2011)’s
home location estimation method on January to March 2013 and July to September 2013,
respectively. This strategy for inferring residential shift requires several predefined pa-
rameters, such as the minimum time span of each residential location to exclude short-term
visits or distance threshold to define the separation of two home locations. Hence, a heavy

procedure of sensitive analysis is required to select the appropriate parameters.

Biichel et al. (2020) also utilize CDRs to identify residential shift and benefits from
high-quality data billing addresses, making residential estimation extremely precise and
identification of migrants is simply based on whether individuals change their residential
locations. However, as such data is not available in most scenarios, thereby failing to be

widely applicable.

Chi et al. (2020) is a closely related work. They abandon the first stage by clustering
coordinates of telecom base stations if they are in the same administrative district (e.g.,

prefectures in China). Furthermore, they apply the clustering algorithm on time axis for
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each district to identify contiguous time segments and further merge segments tailored to
a particular district if no other segments from the other district are found in the same time
window defined by the target merging segments. At the last step, they allow for overlap

between segments from different districts to form home locations at different periods.

Our two-stage approach provides fine spatial resolution through first-stage spatial
clustering, though this isn’t strictly necessary for cross-district migration flows. The sec-
ond stage uses temporal filtering—simpler than temporal clustering—that identifies home
clusters by assuming the largest cluster is most likely to be one of the "home” clusters as
people won’t change their home locations too often. However, their second stage may be

more robust as it allows for overlap between clusters.

Our approach stands out for being universal, efficient, and comprehensive. It re-
lies solely on CDRs, requiring no additional information. There is only one parameter:
the maximum distance between two locations to be considered neighbors, and since we
follow the literature on internal migration in China by focusing on the inter-prefecture
migration flows, sensitivity analysis of this parameter is not strictly necessary. Further-
more, we unveil inherent spatial-temporal patterns by utilizing the unsupervised clustering

algorithm and maximally exploiting the full range of temporal information.
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Chapter 3 Data and Methods

3.1 Datasets

Table 3.1: An example of geotagged CDRs

Client Number Duration Start Time End Time Calling Number Called Number Cell ID
66ak2s5v 62.0 2013-08-31 09:32:08  2013-08-31 09:33:10 66ak2s5v moyl2k57 3649
Itzkksuv 148.0 2013-08-3109:33:55  2013-08-31 09:36:23 Itzkksuv hjoOksut 3B56
njo45k8v 46.0 2013-08-3109:36:03  2013-08-31 09:36:49 8yro82d5 njo45k8v 394C

Notes: All phone numbers are anonymized. Cell IDs are the IDs of the telecom base stations handling call
events for client numbers, which are either calling numbers or called numbers. We have a dataset which
records the geographical coordinates of cell IDs.

We have three datasets: CDRs, coordinates of telecom base stations, and one that
contains phone users’ profile features, such as age, gender, phone brand, service type, etc.
Three datasets are provided by China Telecom, one of the three telecommunications ser-
vice providers in China. Call records are located in Sichuan Province, and the majority
of them are located in Deyang Prefecture. By joining call records with coordinate data
on cell IDs and then grouping by user phone numbers, we can obtain a set of geographic
locations associated to each phone user from August 2013 to May 2014, which serve as
the location approximation of users. User profile data is uncommonly available due to
privacy issues but critical for selecting samples of interest in CDR-based analysis. When

constructing various mobility and mobile communication features or estimating residen-
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tial coordinates, we want the samples to be consistently observable throughout the whole
sample period, i.e., they don’t cancel or register service in the middle of the sample period,

to avoid spurious analysis due to too many missing records.

The cleaning of CDRs involves removing records where (i) both the calling or called
number is not mobile phone numbers, (ii) both the start or end time is not valid timestamps,
and (ii1) the duration of calls is less than or equal to 0. For user profile data, we remove
client numbers in profile data whose ID card numbers are not in the correct specification.
After the cleaning, we have 0.5 to 0.6 billion call records per month and 348,241 client

numbers whose profile features are available in each month.

3.2 Notations

Denote V' as a set of the phone users, B as a set of telecom base stations and 7' =
M x D x H as a set of timestamps where M is a set of calendar months spanning from

Aug 2013 to May 2014, D :={1,2,...,31} and H is a set of all possibles times in a day.

Definition 3.2.1 (Call Detailed Records). CDRs denoted by R is a collection of phone
calls, which are 4-tuples, containing information of the caller, recipient, timestamp, and

telecom base station that services the call. It’s defined as:

R:={(i,j,t,b) € VXV xT x B | i calls j at timestamp ¢ and the call is serviced by b}.

Definition 3.2.2 (A User’s Nighttime Call Records Serviced by a Telecom Base Station).
Given CDRs R, we can filter call events that are either made or received by a user ¢ and

serviced by a telecom base station b during nighttime. Note that the definition of nighttime
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follows Barwick et al. (2023). It’s denoted by nght and defined as:

Rzifht := {r € R | there exists t € T'where t > 10 p.m. and ¢t <.7 a.m.

and j € V suchthatr € {(7,7,b,t),(j,7,0,1)}}.

Definition 3.2.3 (A Set of Timestamps of a User’s Nighttime Call Records Serviced by

night

a Telecom Base Station). A subset 7} ,” C T is a collection of timestamps associated to

R?jbght, and it’s defined as:
nght := {t € T'| there exists j € V such that either (7, j,¢,b) or (j,4,t,b) € nght}.

Definition 3.2.4 (A Subset of Telecom Base Stations Connected to a User during Night-
time). A subset B} ' B of telecom base stations connected to a user i € V during

nighttime is defined as:
BM".— {b e B |thereexists j € Vandt € T

such that either (4, j, t,b) or (j,1,t,b) € nght}.

3.3 Home Location Estimation

Figure 3.1: Pipeline for Estimating A Phone User’s Home Locations

‘tempor‘al & l'teﬁng

nigh‘t-‘time user's user's mgwt— users' home - user's home
CDRs movement time clusters clustes) location(s)
Trojectories

spatial clus‘teﬁv\s centers of clusters

This section aims at introducing how phone users’ home locations are estimated, and
Figure 3.1 presents all the steps for completing the task. Before directly diving into how
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our proposed estimation works, we provide a brief preliminary introduction to the issues
and limitations of using CDRs to locate user locations, which motivates the use of spatial

clustering.

To establish our terminology, we use “call event” to refer to mobile communica-
tion established through a single phone call. However, a call event can generate multiple
call records due to changes in telecom base stations resulting from load sharing mech-
anisms. We term this mismatch between call events and call records the ’load sharing
effect” (Ayesha et al. (2019)). Throughout this text, we use the terms “’telecom base sta-

tion”, ”telecom station”, and “’base station” interchangeably, all referring to the mobile

infrastructure that routes phone calls.

The load sharing mechanism is triggered under two primary circumstances: when
there is a need to balance traffic among adjacent base stations (load balancing) or when a
phone user moves across different service areas of base stations (handover). We redefine
the ”load sharing” concept introduced in Ayesha et al. (2019), as their definition appears
more similar to ’load balancing”. We propose that ”load sharing” should encompass a
broader scope, including the sharing mechanisms observed in handover scenarios. Since
our analysis focuses on non-sequential mobility patterns—prioritizing spatial character-
istics of where users stay or visit rather than temporal movement sequences—the load

balancing aspect becomes particularly relevant.

A direct way to characterize the load balancing is that the telecom station handling
a call record is not necessarily the closest one to the actual location where the call event
occurs. It is important to note that ”locations” refer to geographic coordinates through-

out this text. Specifically, stay locations refer to the exact location where a call event
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is initiated. This location is unobservable and differs from all locations of base stations
associated with the call records relevant to that call event. We refer to the base station lo-
cations as ~observed locations,” which serve as spatial approximations of the true stay lo-
cations. Multiple observed locations can be associated with a single stay location through
two mechanisms: (i) load balancing (as discussed above) and (ii) repeated usage patterns,
where users frequently make calls from the same stay location, generating multiple ob-

served locations that correspond to the same underlying stay location.

From an analytical standpoint, characterizing the mobility behavior revealed in CDRs
requires reconstructing stay locations from observed locations. This reconstruction chal-
lenge, combined with our focus on spatial characteristics rather than sequential move-
ment patterns, naturally motivates the application of spatial clustering techniques to group

nearby observed locations.

Home location estimation represents a specific application of stay location recon-
struction, where we focus on identifying residential places using exclusively nighttime
call records. During nighttime hours, users may have multiple stay locations, and spa-
tial clustering allows us to identify sets of observed locations that form nighttime clusters
around potential home location candidates. The challenge then becomes filtering true ”
home clusters” from the broader set of nighttime clusters, which we accomplish through
a temporal filtering scheme introduced in Section 3.3.2. Our proposed approach therefore

operates in two stages: spatial pattern aggregation followed by temporal filtering.
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3.3.1 Spatial Clustering

Our choice of spatial clustering algorithm is DBSCAN and we apply. DBSCAN to
each phone user over a set of observed locations.! As mentioned, observed locations refer
to base station coordinates and connect to an injective function loc : B — R? which maps
each base station b € B to its geographic coordinates loc(b) = (lony, lat,) where lon,
and lat, represent the longitude and latitude of telecom base station b, respectively. Our
choice of DBSCAN is based on the fact that it does not require predefining the number
of clusters, unlike K-means, offering greater flexibility in identifying natural clusters of

observed locations that correspond to underlying stay locations.

Recall that multiple observed locations can be associated with a single stay location
through two mechanisms: (i) load balancing effects where the handling base station is
not the closest to the call records and (i1) repeated usage patterns where users frequently
make calls from the same stay location. Spatial clustering leverages this relationship by
grouping nearby observed locations that likely correspond to the same underlying stay
location. For nighttime clusters specifically, each cluster represents a set of observed
locations that corresponds to a single home location candidate (the unobservable true stay

location).

Definition 3.3.1 (A Nighttime Cluster for a User). The k-th nighttime cluster C’; i,fht is

obtained through the application of DBSCAN, and defined by:

CIE" = {b € BM"™" | for all by, b, € CI¥" where m # n,

(loc(by,), loc(by,)) satisfy DBSCAN clustering }

"We apply scikit-learn’s implementation of DBSCAN to each phone user.
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Note that, we set the two parameters of DBSCAN: min_samples and éps to 1 and'5
(km), respectively. For the discussions on the parameter choices, please refer to the section
of Parameter Choices of DBSCAN. Besides, we further denote C"*" = {C"8", CI5™, ... }

as a set of nighttime clusters for user .

3.3.2 Temporal Filtering

After the procedure of spatial clustering, we can zoom out the level of spatial analysis
from locations to clusters so the issues arising from the load sharing mechanism are now
resolved. Therefore, we define the new notations for both subsets of CDRs and timestamps

based on C"€", which previously defined while considering BJ"¢".

Definition 3.3.2 (A User’s Nighttime Call Records Serviced by a Nighttime Cluster). For

mght e Cpight
i

a cluster C; , a set of call records serviced by C} 1 s defined as:

mght L U Rm ight

beCE

Definition 3.3.3 (A Set of Timestamps of a User’s Nighttime Call Records Serviced by A

Nighttime Cluster). For a cluster C; e e O the timestamps of nght is defined as:

mght - night
= U "

beCrE

The second stage of the home location estimation is to apply the temporal filtering
trick, aiming at obtaining home clusters from a set of nighttime clusters, and the home
clusters are leveraged to estimate users’ home locations. Furthermore, the purpose is to
keep those clusters that are temporal representative, processing substantial calls, which

are evaluated through the measure of “temporal size”.
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Function 3.3.1 (A Measure of Temporal Size of a Set of Timestamps). The measure of

temporal size of a subset T C T of timestamps is defined as a measure p 27 — N where

w(T) = |{(m,d) € M x D | there exists h € H such that (m,d,h) € T}.  (3.1)

Let us elaborate more on the definition of a representative cluster. We define a cluster
to be representative if the temporal spans associated with each cluster are non-overlapping.
An example can be found in Figure 3.2 where the 0-th cluster (black) doesn’t temporally
overlap with the 1-st cluster (green) in the lower plot. Therefore, each home cluster should
correspond to a separate life period where the person lived in a particular location. More-
over, the identified home clusters are temporally sequential and mutually exclusive—when
one residential period ends, the next begins, with no overlap between them. This some-
how defines the temporal clusters and creates a clear timeline of residential history where

each home cluster represents a distinct home era” in chronological order.

Figure 3.2: Visualization of Proposed Two-stage Home Locations Estimation

Spatial Clusters

1] .
3 cee B cme o

T T T T
104.3 104.4 104.5 104.6

Temporal Clusters

04 oo on cmmmmm cxsmensus

datetime

Notes: The upper plot’s x and y axis represent the longitude and latitude, respectively.
The lower plot shows the temporal span of each cluster where the x axis represents the
timestamp and the y axis represents the cluster index. The point is colored by the cluster
index. In this plot, the user are identifed to change the home location within green cluster
(cluster index 1) to the black one (cluster index 0).
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Before defining the overlap, we need to define objects associated to two distinct clus-
ters that can be identified to be overlapping with each other. The object is the service time
intervals, which are continuous time intervals starting from the first time that a cluster

services calls and ending at the last time that a cluster services calls.

Function 3.3.2 (The First & Last Timestamp of a Set of Timestamps). Consider a set of
timestamps 7 C T, the first and the last timestamps of which can be obtained by the

following functions.
st o 5 ¢y = min{t € T}.

tast T o YT = mle{t e T}

Definition 3.3.4 (A Nighttime Cluster’s Service Time Interval). A continuous time inter-

val associated to a nighttime cluster C} e OMEM §s defined as: [tﬁ“t(ﬁ,ight), last (T,

1y

which represents that the cluster C; i,fht services nighttime phone calls for client 7 during

this period.

Definition 3.3.5 (Temporal Overlappness between Two Nighttime Clusters). Consider

two nighttime clusters, C™€" O™ they overlap with each other temporally means there
g 2,1 2,2 Yy p p y

exists t € 7" such that ¢ is in both service time intervals of C; = and o ight,

With the definition of overlap, our temporal filtering trick is a sequential process,

night .

where we first sort the clusters in C; = in descending order by the temporal sizes defined

by pu(TE") where CIE" € C"", and then we iteratively select the cluster to be the home
cluster that is not temporally overlap with any of the pre-selected home clusters. The
algorithm is shown in Algorithm 1. Note that at the last step of the algorithm, the home

clusters’ start times of service time intervals are well-defined based on the corresponding
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nighttime clusters.

Given the home clusters, we can define the home locations as the centroids of'clusters;
computed by the weighted average of the locations of the base stations in the cluster, where
the weights are the temporal sizes. [saacman et al. (2011) also adopt this weight definition
while they applied the clustering algorithm designed by Hartigan (1975). They argue that
using the number of days instead of the number of calls can reduce the influence of base
stations that were only used for a few days but had a burst of activity on those days. For
example, during a temporary vacation, people might make many phone calls to share their

experiences with their contacts.

Definition 3.3.6 (A User’s Home Location). For a user ¢ € V, the [-th home location
(rc)?fzme is defined by the weighted average over locations {loc(b)}becﬁme of telecom base

stations that are contained in the [-th home cluster Cz‘l’me where the weights are defined

based on the temporal sizes.

Tnight

(8 QLG R NS

night
bec?::lme Zbec’?ﬁlﬂe M(j—;,b )
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3.4 Identification of Residential Shift and Its Timing

Residential shift is identified if a user’s home location changes. Since CDRs record
users’ locations discretely and irregularly, it’s ambiguous to decide the migration timing,
as there may be latency between the actual date where users relocate and the date of the
first timestamp where the second home cluster serves the calls. The determination on the
migration timing is crucial in the design of the DiD with multiple periods as it determines
the pre-treatment and post-treatment periods where the parallel trend assumption is tested,

and the treatment effect dynamics are inspected, respectively.

At first thought, we can define the migration timing as (i) the date of the last times-
tamp where the first home cluster serves the calls, (i) the date of the first timestamp where
the second home cluster serves the calls, or (ii1) the date in the middle of them. We opt for
a conservative approach and select the second option, which guarantees that the chosen
date occurs after migration has already been completed. This decision results in the neces-
sity to consider the violation of ’no anticipation” (Callaway and Sant’” Anna (2021), Sun
and Abraham (2021), Borusyak, Jaravel and Spiess (2024)) because people might start to
collect information for better preparation before migrating to another prefecture, causing
the divergent paths of mobility and mobile communication features between migrants and
non-migrants before a actual migration event takes place. Note that the no anticipation as-
sumption doesn’t require hold in all pre-treatment periods; instead, it’s plausible to assume

it holds until a period before the treatment.

We are discussing treatment effect dynamics on a monthly level from August 2013
to May 2014. Therefore, to establish clean notations, we index the monthly periods from
integer 1 to 10 where August 2013 corresponds to 1, September 2013 corresponds to 2,
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and so on. Furthermore, we denote M := {1,--- , 10} as the set of monthly periods after
indexing. Below we define the treatment group consisting of four subgroups {G,} 4567
as migrants who relocate in different months g and define the never-treated group G-, as
non-migrants. We utilize the symbol oo to indicate a non-migrant will relocate in the far-
away future, i.e., infinity period (Sun and Abraham (2021), Borusyak, Jaravel and Spiess

(2024)).

Definition 3.4.1 (Migrant). A phone user © € V is a migrant associated with the group
G, if (i) user ¢ only changes home locations once during the sample period, (ii) the two
home locations are in different prefectures, and (iii) the migration event occurs in month

g€ {4,5,6,7} C M.

Definition 3.4.2 (Non-Migrant). A phone user € V' is a non-migrant associated with the

group G, if © doesn’t change the home locations throughout the sample period.

Applying these definitions, we identify 1,274 migrants and 291,465 users who do not
shift their residential locations throughout the sample period. For the detailed explanations
on how criterions are set, please refer to the Section E.3 We require migrants to have
only relocated once because among users who have multiple residential shifts, most of
them have only gone through it once, accounting for 99.65%. Besides, longer distance of
residential movements should be more likely to have substantial impacts on mobility and
mobile communication patterns so we restrict our discussions on inter-prefecture migrants.
As Table E.3 demonstrates, we don’t lose too many migrants by restricting the definition

of migrants to those crossing prefectures.
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3.5 Detection of Smartphone Adoption

Aside from residential shifts, our user information data enables us to inspect the
effects of other shift events, specifically upgrading to smartphones. Smartphones have
abundant functionalities that facilitate mobile communication and better assist users in
exploring unfamiliar environments through GPS technology, potentially altering smart-
phone adopters’ mobility patterns. To study the smartphone-adoption shift, we define the

treated and untreated units as follows.

Definition 3.5.1 (Smartphone Adopter). A phone user ¢ € V is a smartphone adopter
associated with group G, if user ¢ (i) changes from a non-smartphone device to a smart-
phone model, (ii) is not observed to switch back to non-smartphone devices throughout
the sample periods, and (iii) the adoption event occurs in month g € {4,5,6,7} C M,

where these months represent the middle of the sample period.

This definition rules out phone users who have multiple cellphones, and constantly
switch between smartphone and non-smartphone devices. As defining migrants, we re-
quire the events to happen in the middle of the sample period to confirm the reliability of

the adoption event, avoiding the observation window bias.

Definition 3.5.2 (Non-Smartphone User). A phone user ¢ € V' is a non-smartphone user
associated with group G, if user ¢ consistently uses non-smartphone devices throughout

the sample periods.

Applying these definitions, we identify 81,949 users who consistently use non-smartphone
devices throughout the sample period and 9,497 users who change from non-smartphone
to smartphone devices. Additionally, 17,717 users are identified as having used both de-
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vice types, while 203,776 users consistently use smartphones. We reuse the notations: G,

and G, to denote the treated and non-treated cohorts.

3.6 Construction of Qutcome Variables

Our outcomes of interest contain two groups: mobile communication and human
mobility features. For each group, we craft three kinds of features to study the effects of

residential shift and smartphone adoption on these outcome variables.

Mobile communication network features are derived from the reciprocated network
and include three kinds of features: call duration, contact entropy, and contact distance.
The contact distance isn’t commonly seen in the related literature, but it contains rich
interpretations of how phone users’ mobile communication network geographies look.
Besides, it’s more complicated to construct compared to the other two as it can’t be directly
derived from the call detailed records. Instead, we need a preliminary home-estimation
procedure, then compute the average geographical distance between a phone user’s home
and the other contacts’ homes. Therefore, it serves as a great extension of our robust home

estimation method presented in Section 3.3.

Mobility features consist of radius of gyration, movement entropy, and eccentricity.
Jointly considering movement entropy and eccentricity offers additional insights, beyond
the “unpredictability” provided by movement entropy alone. Specifically, we can identify
distinct mobility patterns, such as whether users exhibit highly random movements that
are stretched along one direction (high entropy, high eccentricity) versus more predictable
movements that spread evenly across all directions (low entropy and low eccentricity). We

will see interesting evolution in these patterns after migration and upgrading to smartphone
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devices.

What’s more, entropy-based variables can be viewed as measures-of diversity, in
addition to unpredictability. Employing entropy as a measure of diversity captures an-
other aspect beyond quantity increases, e.g., interacting with more friends or visiting more
places. Entropy says diversity should also be credited to the randomness. That is, calling
the same number of friends with equal frequency demonstrates a sign of diversity. Besides,
we can measure the diversity while eliminating the variation in quantity by normalizing it

(dividing by log(N'), where N can be the total number of contacts/locations).

3.6.1 Mobile Communication Network Features

We haven’t formally defined what the mobile communication network is. Basically,
the nodes of the network are defined as phone users and edges are defined as reciprocated

calls that occur on weekdays, which are further defined as follows.

Definition 3.6.1 (A Reciporated Call). A call record r € R where r = (i, j, t,b) for some
i,j € V.t € T and b € B is reciprocated if there exists ¢ € T and ' € B such that

(j,i,t', /) € R.

Note that the mobile communication network is a kind of directed network—i.e., for
example, a user ¢ calls j and 5 calls ¢ are considered as two edges, whereas this would
be considered as a single edge in an undirected graph. Besides, the edges are weighted
by the underlying call duration (in minutes). Since mobile communication is directed,
we can naturally build relevant features based on distinct communication directions. To
avoid redundantly defining the same features for both incoming and outgoing calls, we

will illustrate the feature definitions using outgoing calls as examples.
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After constructing the mobile communication network by month, directional call du-
ration for a user « € V' in a given month m € M is computed by separately aggregating
incoming and outgoing calls’ duration. Contact entropy is constructed based on the Shan-
non entropy normalized by the logarithm of the number of contacts for a user ¢ in a given
month m. Normalization is necessary as it accounts for differences in network size across
phone users, thereby leading to clearer interpretation of the regression coefficients. Intu-
itively, increasing unnormalized entropy by 0.3 doesn’t mean the same thing for a user

with 10 friends versus one with 50 friends.

Definition 3.6.2 (Outgoing Contact Entropy). The outgoing contact entropy cef™ (where

,m

ce stands for contact entropy) for user ¢ in month m is defined by:

- - ngviot‘% ﬁi,j,m log(ﬁi,j,m)
ce; = :
o log(|Vinl)
where
Vi = {j € V | user ¢ has once called user j in month m} (3.2)
and
~ Wi, j.m
Pijom = =" (3.3)

Zke\/’i"‘;}l Wi k,m
with w; ; ., being the weight of edge from user ¢ to user j in month m. Note that the weight

is defined as the total call duration rather than number of phone calls.

Employing call duration as weights for social ties is not a common practice, and
Eagle, Macy and Claxton (2010) and Pappalardo et al. (2016) defined contact entropy
based on the number of phone calls. Nevertheless, as previously mentioned, we recognize
that due to load sharing mechanisms, phone calls might change their served base station,

thereby generating multiple call records when actually only a single call is taking place.
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Figure 3.3: Pipeline of Constructing Contact Distance
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Figure 3.3 demonstrates how to construct the contact distance for user ¢ in month m.
Note that the estimation of home location is necessary in our situation as we do not have the
geographical locations of both the caller and recipient for each call; instead, only a single
location is attached to each phone call—specifically from one telecom base station (see
Table 3.1). Therefore, we impute these locations using the corresponding home locations
obtained through our proposed estimation approach. Furthermore, as the home location
for a given month is estimated through CDRs, the estimation will fail for some months that
lack CDRs. We employ forward imputation followed by backward imputation to address
this issue. Forward imputation means using month m — 1 to impute month m’s home
location (if month m doesn’t have any CDR), while backward imputation uses month

m + 1 to impute month m’s home location.

out
7,m

Definition 3.6.3 (Outgoing Contact Distance). The outgoing contact distance cd;" (where

cd stands for contact distance) for user ¢ in month m is defined by:

out _ ~
cd;y, = g Dij.m - d(home; ,,,, home; )

i€V
where V% and p; j .., is defined in Equation 3.2 and 3.3, respectively. d is the measure
of geographic distance between two coordinates, and home; ,,, represents the home coor-

dinates for user ¢ in month m.
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Appendix A — Event-Centered Trends Across Outcomes and Treatments demon-
strates time series for two groups of features, showing the mean for the treated group
against that of the untreated group, with all data points subtracted from the mean in the ref-
erence period. This allows us to better examine the outcome trends in both pre-treatment

and post-treatment periods.

3.6.2 Human Mobility Features

Numerous studies have used CDRs to analyze human mobility patterns. We largely
follow the literature in constructing mobility features but determine the weight of a telecom
base station for a phone user by temporal size (see Equation 3.1) rather than call count,
which corrects distortion caused by load sharing mechanisms. We use notations similar

to those in Section 3.2 to avoid redundant redefinition.

There are two key differences. First, we now use CDRs from weekdays, including
both daytime and nighttime records. Second, we add a monthly dimension, constructing
features on a monthly basis. For example, B; ,,, C B denotes the collection of telecom base
stations that handled calls for user ¢ in month m, R, ,,,, C R represents call records that
are related to user ¢ in month m and associated with base station b € B, ,,,, and T} ,,, , C T

denotes timestamps connected to R; ,,, p.

Human mobility features are derived purely from CDRs, with the locations of telecom
base stations serving as proxies for visited places. Therefore, all geographic information

is represented by a location matrix Lj7), defined as follows.

Definition 3.6.4 (Geographic Location Matrix). A geographic location matrix Ligf;; €
RIBim!*2 contains all visited coordinates for user i in month m, where the two columns
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record the longitude and latitude, respectively, of each telecom base station b € B;,.
Besides, we denote (If})), € R* as the row of L7}’ that corresponds to telecom base
station b € B; ,,, which contains the longitude and latitude information of that telecom

base station.

Mobility features often lay on the foundation of empirical probability distribution
over the visited locations (rows of the location matrix). As mentioned, we consider a new
weighting scheme where the weight for each b € B, ,, is defined as the temporal size

1(T;mp), and therefore, the corresponding empirical probability is given by:

ALl ,U(E,m,b)
Dy = (3.4)
e Ty
in contrast to the traditional approach:
Tim
T (3.5)

pi,m,b - )
Zb’eBi m |Ti,m,b’|
which is based on the count of call events.

Note that mobility features constructed using the temporal-size-based sample prob-
ability ﬁfifm,b will be named with the prefix ”temporal-size-weighted,” while those that
depend on count-based sample probability ﬁ;{m’b will be named with the prefix ”count-
weighted.” For instance, count-weighted eccentricity versus temporal-size-weighted ec-

centricity.

In the following text, we will operate on the empirical probability vector p;,, €
RIBim| where each entry p; ., corresponds to the empirical probability of base station

b € B,,, and can be computed using either the temporal size approach (ﬁi‘ mp) or the

T

traditional call count approach (p; ,, ,)-
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Figure 3.4: Comparison of Mobility Feature Values
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Notes: For radius of gyration and eccentricity, we visualize daily movement trajectories of
four phone users throughout August 2013. Regarding entropy, we examine the distribution
of telecom base station usage for two phone users during the same period, where the y-
axis (p) represents the proportion of total days on which each base station was activated,
calculated as the number of days a station served calls divided by the total number of such
days across all stations.

Geographic distance (geodesic distance) on the Earth’s surface differs from Euclidean

distance calculated directly from longitude-latitude coordinates, as the former accounts

for spherical geometry while the latter assumes a flat coordinate space. To make spatial
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statistical analysis meaningful, we employ the Azimuthal Equidistant (AEQD) projection’

centered at the geographic mean (rc)fiz of locations, which is given by:

(re)8 = (L5 Py € R2. (3.6)

i,m 2,m

This projection makes variance-covariance matrices computed on the projected coordi-
nates geographically interpretable, as they accurately reflect the spatial spread of locations
around the centroid. Besides, we denote L; ,,, ({; ), and (r.); ,, as the projected location

matrix, coordinates of a telecom base station b, and the centroid, respectively.

After completing the preliminary setup, we can now construct mobility features that
aim to measure: (i) how large the activity area is (radius of gyration), (ii) how unpre-
dictable spatial movement patterns are (movement entropy), and (iii) to what extent the
activity area spreads in an elliptical shape (eccentricity), which indicates whether a user
visits locations primarily along a fixed direction. See Figure 3.4 for a comprehensive

understanding of what these metrics actually mean.

Definition 3.6.5 (Radius of Gyration). The radius of gyration (r,); ., for user ¢ in month

m 1s defined by:

(rg)i,m = Dimb - H(li,m)b - (TC)LmHQ'

Notably, it takes the form of a root-mean-square distance, as it’s borrowed from
physics, and the intuition is that we are thinking of users as orbiting around the center

of mass (7c);m.

2The projection is obtained through the Python package pyproj. We choose AEQD over UTM to en-
sure that the Euclidean distance from any location contained in a location matrix to the centroid equals the
geodesic distance. While UTM provides approximately correct Euclidean distances for all locations, we
only require accuracy for distances to the centroid. Additionally, UTM zones are limited to 6° of longi-
tude, but Sichuan spans approximately 11.6°, which would require multiple zones and result in non-uniform
projections across users. Note that with AEQD using individual projection centers, all users’ results are
expressed in the same units (kilometers), ensuring comparability.
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Definition 3.6.6 (Movement Entropy). The movement entropy me; ,,,, where me stands

for movement entropy, for user ¢ in month m is defined by:

- ZbeBi,m Di.m.b 10€(Diim,b)
meé;m =

Definition 3.6.7 (Eccentricity). Given iim is the sample variance-covariance matrix of

L; m, eccentricity ecc; ,,,, where ecc stands for eccentricity, for user 7 in month m is defined

)\im 2
€CCim = \/1 — (—2>
7 Nim,1

where A, ,,, 1 1s the major eigenvalue of YJ; ,,, and A, ,,, o 1s the minor one.

as:

The sample variance-covariance matrix iim is constructed in two steps. First, com-
pute the demeaned location matrix Ei,m =L — lﬂ;’m where 1 € RIBiml is a vector
of ones and /i, ,, is the sample mean, which is equivalent to (r.); . Then, the sample

variance-covariance matrix is defined by:

A

Ei,m = Ki,m (ig,mDiag(ﬁi,m)f/i,m)

where Diag(p; ,,,) is the diagonal matrix with the probability weights p; ,,, on its diagonal,

and k; ,,, 1s the bias-correction factor, where

ZbGBi’m N(Ti,m,b)
<ZbeBi,m /'L(Ti,m,b)) -1

£ M
lfpi,m,b - p@m’b?

ZbeBz‘,m |Ti,m,b|
L (ZbEB,- |Ti,m,b‘)_1

i,m

otherwise.
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3.7 Empirical Strategy

Appendix B — Preliminary of DiD Estimator has a brief introduction on the canoni-
cal 2 x 2 DiD design, which involves exactly two groups and two time periods. To examine
treatment effect dynamics over multiple periods, we generalize the double comparison ap-
proach by selecting a baseline reference period—which corresponds to ¢ — 1 in the 2 x 2
DiD case—and then applying the DiD methodology to estimate treatment effects for each
subsequent period relative to this reference point. DiD with multiple periods is also called
event study, and we use these terms interchangeably. Conventionally, practitioners will
utilize the two-way fixed effects specification to facilitate the estimation of average treat-
ment effect on the treated in each period. Furthermore, the canonical 2 x 2 setup assumes
static treatment timing, where all treated units receive treatment simultaneously. How-
ever, our empirical setting are different in the sense that treatment units become treated
at different periods. This variation in treatment timing introduces additional complexity,

and several econometrics tools have proposed to address this issue.

In the Definition 3.4.1 and 3.5.1, we include treatment units with staggered treatment
adoption to avoid contemporaneous confounders, leading to a robust estimation. How-
ever, the design of DiD with multiple periods and staggered treatment adoption, through
two-way fixed effect specification may be biased due to the forbidden comparison (this
term also used by Roth et al. (2023) and De Chaisemartin and d Haultfoeuille (2023)).
That is, comparing the latter treated units to the early treated units, in the context of time-
variant treatment effects (Goodman-Bacon (2021), Sun and Abraham (2021), Baker, Lar-
cker and Wang (2022)). Through inspecting how mobility and mobile communication fea-
tures evolve after residential shift (see Figure from A.1 to A.6) and smartphone adoption
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(see Figure from A.7 to A.12), we can observe the non-static treatment effect dynamics,

resulting in the inapplicability of two-way fixed effects models.

Consequently, we follow the estimation approach proposed by Callaway and Sant’
Anna (2021), which estimates the ATT dynamics for each treatment-timing cohort inde-
pendently with the valid control group, thereby avoiding the issue of forbidden compari-
son. They name the ATT specific to a period and treatment-timing cohort as group-time
ATT where the group is defined as the treatment-timing cohort. Therefore, in the follow-
ing text, ”groups” refers to treatment-timing cohorts while ’cohorts” aside from groups,

the control units are included as a single cohort.

Aside from Callaway and Sant’” Anna (2021), many other econometric tools have
been proposed to solve the issue as to the forbidden comparison, and Roth et al. (2023) and
De Chaisemartin and d°  Haultfoeuille (2023) both provide comprehensive introduction
and briefly summarize the differences across various approaches. We choose Callaway
and Sant” Anna (2021) over other alternatives as it’s considered to be more flexible in
(1) the selection of valid control units, (ii) the aggregation of estimated treatment effects

across cohorts and periods, and (iii) the assumption on parallel trends.

As mentioned, the key point of dealing with the time-variant treatment effects with
staggered treatment adoption is to employ valid control units. Callaway and Sant’ Anna
(2021) is flexible in the selection of valid control units in the sense that they allow either
the never-treated units or the not-yet-treated units to be control units depending on the
practitioners’ need. However, others’ control units (e.g., Sun and Abraham (2021) and
Borusyak, Jaravel and Spiess (2024)) encompass of both never-treated and not-yet treated

units, and don’t have the freedom to choose either of them. Despite flexible, Callaway
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and Sant” Anna (2021) suggest employing the early-treated samples as the comparison
only if the never-treated units are unavailable or limited in size. In our situation where
only a small fraction of samples decides to change their homes or start using smartphones,

never-treated samples are quite suitable as the comparison.

Callaway and Sant’ Anna (2021) aim at estimating ATT for each group and period,
and therefore, researcher has the full customizability to aggregate them across groups and
periods to obtain a summary ATT. Additionally, they incorporate covariates on which
the parallel trends assumption (hereafter PTA) conditions, which should be reasonable
when the unconditional PTA is violated because groups differ in observable characteris-
tics that affect outcome trends. Nevertheless, conditional PTA introduces additional layer
of complexity for estimation, so we will first start from the unconditional version for es-
timation, and if we clearly see the patterns of violation, we will move to incorporate the
pre-treatment covariates, adopting the conditional PTA. Furthermore, the anticipation is
allowed, which is particularly useful when discussing the impacts of residential shift as
mobility or mobile communication features might start to change prior to the actual relo-

cation timing.

3.8 Group-Time ATT

Before introducing the group-time ATT, we need to set up the potential outcome
framework first to let it have a clear definition. Since we include treatment units with
four different treatment timings ({4,5,6,7} C M), for each user 4, in each month m €
M, there will be 5 potential outcomes: Y; ,,,(00), Y; . (4), Yim(5), Yim(6), and Y; (7).
Y m(00) is the potential outcome in month m for user 7 if ¢ has never received the treat-
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ment throughout the sample period. Y; ,,,(g) where g € {4,5,6,7} C M is the potential
outcome in month m for user 7 if 4 is treated in month g (i.e., ¢ € G,).- For each user i
and month m, only 1 potential outcome can be realized, becoming observable. Hence,
the connection between potential outcomes and the observed outcome Y ,, is established

(Callaway and Sant’ Anna (2021), Sun and Abraham (2021)) as follows:

where G 4 is a binary variable defined as:

1, 1ifi e Gy, i.e., i receives the treatment in month g
Gig =

0, otherwise.
Besides, we define an additional binary variable for indicating whether ¢ is in the never-

treated cohort g.:

1, ifi e Gy
Gioo:

0, otherwise.

Anticipation is a critical topic when estimating the ATT as it determines which pre-
treatment period is considered as the reference to correctly assess treatment effects. Let &
be the number of anticipation months, and for cohort G,, g — § becomes the cutoff value
(note that if 6 = 0, the cutoff value is g, which returns to the conventional setting) and
treatment effect dynamics are inspected for each month m > g — 9, as treatment effects
are expected to let Y; ,,,(g) deviate from Y; ,,,(c0) starting at any timing m after g — d. This
also implies:

Yim(g) = Yim(c0) (3.8)
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forall : € G, and m < g — ¢ (modified from the Assumption 5 in Roth et al. (2023))..If

we jointly consider the Equation 3.7 and 3.8, we can further derive:

forall© € G;and m < g—9. With these potential outcome notations, it’s time to define the

group-time ATT, which is ATT for a specific treatment-timing group in a specific priod.

Definition 3.8.1 (Group-Time ATT). The ATT specific to treatment-timing cohort G, in

month m € M is defined as:

ATT(g,m) = ElYi(g) = Yim(o0) | Giy = 1],

which is the expected difference between potential outcomes in month m for cohort G,,.

As user ¢ belongs to the cohort G, by equation 3.7, we know Y; ,,,(g) is observable

and equivalent to Y; ,,,. Therefore, the group-time ATT can be rewritten as:

ATT(g,m) =E[Yin — Yim(00) | Gig = 1]

=E[Y,. | Giyg = 1] = E[Y, n(00) | Giy = 1], (3.10)

which is the difference between the expected observed outcome Y; ,,, with respect to cohort
G, and the expected potential outcome in month m that would occur if they have never

been exposed to the treatment.

Note that notations in Definition 3.8.1 are a little bit different from Callaway and
Sant’ Anna (2021) in the way that they denote the period as ¢ and causal parameter as

ATT(g,t) while we use m to emphasize the monthly periods. Besides, we also replace
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the 0 with co used by Sun and Abraham (2021) and Borusyak, Jaravel and Spiess (2024)
to align the meaning of never-treated units, which become treated at some point in the

infinite future.

Given the anticipation months 9, and considering a treatment-timing cohort G,,, for
eachm > g — 0, Y;,,(c0) is unobservable. Therefore, we need an assumption to make

ATT(g, m) identifiable for month m > g — ¢, and that’s where PTA comes into play.

Definition 3.8.2 (Parallel Trend Assumption). Given the number of anticipation months

J, for each G, where g € {4,5,6,7} and m > g — 4, the following equality is assumed:

E[YLM(OO) - Y;,m—l(oo) | Gig = 1] = E[Y;m(oo) - Y;,m—l(oo) | Gioo = 1. (3.11)

That is, for all group G, and month m > g — 4, the trend in the counterfactual
untreated outcome measured between month m and m — 1 should be expectedly identical
between group G, and the never-treated cohort G, for all G,. It’s an assumption as objects
in the equality are potential outcomes Y; ,,,(00), which are clearly unobservable in the post-
treatment periods for all G,. As mentioned, we will impose the unconditional PTA first,

and switch to the conditional version if needed.

The parallel trend assumption stated in Definition 3.8.2 is employed in the canonical
2 x 2 DiD design, and it’s necessary to extend it for the multiple periods case, which is

given by:

E[Yim(00) = Yig-s-1(00) | Gig = 1] = E[Yim(00) = Yig5-1(00) [ Gime = 1]. (3.12)

Equation 3.12 can be obtained from Equation 3.11 by adding all parallel trend equality
in post-treatment periods and by the end, Y; ,_s_;(c0) appears, which is observable since
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Yig—s-1(00) = Yi,_s_1. As mentioned in Roth et al. (2023), for the ATT in the longer

periods after treatment to be identifiable, a stronger assumption needs to-be imposed.

With equation 3.12, E[Y; ,,,(c0) | G;, = 1] becomes identifiable:

E[YZ,m(OO) | Gig = 1] = E[K,g%—l(oo) | Gig = 1]
+ E[Yzm(oo) | Gig = 1] - ]E[Y;,g—é—l(oo) | Gig= 1]
= E[Yi,g—5—1 | Gi,g = 1]

+EE[Y;,m(OO) | Gi,oo - 1] - E[Y;y—é—l(oo) | Gipo = 11

due to parallel trends

— ]E[}/i,g—ﬁ—l | Gi,g - ]-] + E[)/z,m - Y;,g—6—1 ’ Gi,oo - 1]

(3.13)

Then, group-time ATT can be derived by:

ATT(g,m) =E[Y;m | Giyg = 1] = E[Yim(c0) | Giy = 1]
=E[Yim | Gig = 1]
- E[E,gféfl ‘ Gi,g = 1] - E[Y;,m - Y;,gféfl ‘ Gi,oo = 1]

= E[Y;,m - Yvi,gféfl ’ Gi,g = 1} - E[Y;,m - Yvi,gftsfl ’ Gi,oo = 1] (314)

By Equation 3.14, we can simply estimate AT'T'(g, m) through its sample analogue. The
simplicity credits to the unconditional PTA, and for how to incorporate conditional PTA,
please refer to Callaway and Sant” Anna (2021). Note that statistical inference relies on

the bootstrap procedure for standard error estimation.

It is important to note that PTA is extremely crucial for identification, as the ATT

becomes unidentifiable without it. This raises the question whether there exists a method
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to test this assumption. Typically, the assumption’s plausibility is evaluated in the pre-
treatment periods in an event study design. As in pre-treatment periods, the potential
outcome of the never-treated Y; ,,(c0) is observable for all user ¢, and if the.PTA holds in
the pre-treatment periods, it might be relatively reasonable to claim that the parallel trend

might also hold in post-treatment periods.

That’s the reason why we plot the treated group’s trajectories of mean outcomes cen-
tered at the reference period g — 0 — 1, along with those of the control group. In all
figures in Appendix A — Event-Centered Trends Across Outcomes and Treatments, we
can see that the treated group’s re-centered mean outcomes’ trajectories highly overlaps
with those associated to the control group’s trajectory in the pre-treatment periods. How-
ever, exceptions occur in specific treatment-timing cohorts for certain outcomes, raising

some concerns about the plausibility of the PTA.

Moreover, given that the treatment is not confounded, and anticipation effects are cor-
rectly accounted for, if PTA holds, the estimated ATT in pre-treatment periods should be
statistically insignificant. The intuition is that the treatment shouldn’t take effects during
pre-treatment periods and under PTA, treated units’ outcome changes should be identical
to the comparison group’s changes over the same periods, yielding insignificant ATT es-
timation. Therefore, by examining the estimation results in pre-treatment periods, we can

assess whether the PTA holds during the pre-treatment periods.
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After estimating the group-time ATT, we can recover the traditional event study
through the following aggregation scheme provided by Callaway and Sant’ Anna(2021),

which demonstrates the ATT after e month of the treatment:

7
0(e) = > P(Gig =1)ATT(g,g + €)l]g + e <= 10] (3.15)

g=4

where P(G;, = 1) is the group size of cohort G, and 1[g + ¢ <= 10] is an indicator
function that equals to 1 if g + e <= 10 and 0 otherwise. Note that 10, representing May
2014, is the maximum month in our sample period. Moreover, we restrict e to be from -3
to 3 to let the difference of 6(e) be the correct interpretation of treatment effect dynamics.
The Intuition is within this event time interval, the share of group size of each treatment-
timing cohort is fixed. For example, when e = 4, the outcomes of cohort G; are missing
and when e = —4, the outcomes of cohort G, are missing. For more details, please refer

to the Equation 3.5 in Callaway and Sant’ Anna (2021).
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Chapter 4 Results

4.1 Outcomes of Interest

Although we can construct the mobile communication network features based on two
directions of mobile communication—incoming and outgoing—we will focus on the out-
going direction as the variation in outgoing-based features may be more sensitive to the
factors directly linked to the treated units themselves. Moreover, through observing Fig-
ures in Appendix A — Event-Centered Trends Across Outcomes and Treatments, where
various outcomes’ paths during the whole sample period are plotted, we can see that the
evolution patterns typically don’t have dramatical differences between outgoing and in-
coming communication. Therefore, when discussing the treatment effects of both resi-
dential shift and smartphone adoption, we will consider only the outgoing-based mobile
communication features. For mobility features, although we propose a new weighting
scheme to address the issue of spurious importance of telecom base stations for phone
users, arising from the load sharing mechanism, it seems that mobility features’ differ-
ences between two construction methods based on distinct weighting schemes are subtle
(see Appendix A — Event-Centered Trends Across Outcomes and Treatments). Hence,
we will adopt our proposed weighting scheme based on the concept of temporal size to

compute the mobility features. All in all, outcomes consists of two groups: mobility fea-
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tures and mobile communication network features, and there are three outcomes in each
group. The total of six outcomes focuses on capturing different aspects-of human’s mo-

bility and mobile communication behavior.

4.2 Residential Shifts

In the current and next section, we are going to analyze the estimation results of
ATT with the delicately determined anticipation parameter (see Selection of Anticipation
Parameter) and the assumption of unconditional PTA. To understand the magnitudes of
the estimated effects, we will naively employ the mean outcome of the control group in
September 2013 as the baseline for the context of residential shifts, while for smartphone
adoption, the baseline will be that of October 2013. The confidence interval is constructed
based on the 95% significance level. We first analyze heterogeneous treatment effects
across time periods. Specifically, we will approach with a hierarchical manner starting
from the discussion of static versus time-variant treatment effects. The static treatment
effect means the outcome is persistently shifted without fading back to the baseline level.
In such situation, attribution includes upward or downward shift. For the time-variant one,
we can characterize it to be either transient or smoothly decaying. A transient treatment
effect over time represents an effect that instantly bounces back and forth to the baseline,
while smoothly decaying is the other case, where the effect gradually fades away. Then, we
can discuss the heterogeneous effect across treatment-timing groups by inspecting whether

only few groups exhibit distinct patterns.

At the very first glance, we can see that the residential shift brings about time-variant

effects on both mobile communication network (upper panel) and mobility features (lower
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Figure 4.1: Aggregated Event Study of Residential Shifts
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panel), and effects fall back to or approach to the baseline level one month after relocations

begin.

For the mobile communication behavior, anticipation for residential relocation is lim-
ited and observable only in outgoing contact entropy. The pre-treatment shift in outgoing
contact entropy might be result from notifying forthcoming relocation with friends that are
less frequently contacted. However, from Figure D.13, we can see that this phenomenon

only emerges in the treated units who migrate in February 2014 (group 7).

Intuitively, residential relocations expose mobile phone users to unfamiliar environ-
ments, resulting in a temporary surge in total call duration during the month of relocation.
Relative to the baseline mean of 89.7 minutes, migrants experience a 19 minute (21%) in-
crease in outgoing call duration, and a 13 km (189%) increase in outgoing contact distance
relative to the baseline mean of 6.9 km as they seek to connect with geographically distant
social connections. Moreover, during this same period, migrants engage in more diver-
sified social interactions, with entropy increasing by 0.10 units (a 17% increase from the
baseline of 0.60), likely due to the formation of new social connections at the destination or
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contact with those with whom they engaged less frequently prior to the relocation Never-
theless, following the completion of relocation, migrants tend to spend less time on mobile
communication with less diversified interactions. By the third month post-relocation, total
call duration decreases by 5.1 minutes (a 6% reduction from the 89.7-minute baseline) and
contact entropy falls by 0.04 units (a 7% decrease from the baseline of 0.60), indicating a

return toward more concentrated communication patterns.

Figure 4.2: Contact Ratio of Pre-Treatment Friends in Post-Treatment Periods
migration month: 2013-11-01 migration month: 2013-12-01
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Notes: The blue line is the contact ratio of pre-treatment friends while the red line addi-
tionally require those in the same origin prefecture.

In Figure 4.2, we analyze the composition of migrants’ contacts in post relocation
periods. We define a new variable called contact ratio, and the contact ratio of a user in a
given month measures the proportion of the users’ call duration with friends with whom
they are already connected versus all friends contacted in the corresponding month. In
the above plot, we present the monthly contact ratio series obtained by averaging across
all users in each given month. We also separately plot the contact ratios for migrants who
relocate in different months though they seem to behave very similarly.
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We can confirm that, in the early periods of post-migration, migrants tend to connect
with those old friends with whom are already connected prior to the migration events.
Typically, in the same months of changing residential places, around 80% of contacts are
pre-treatment friends, but they are not necessarily in the same prefectures from which
migrants come. Specifically, roughly 40% of these pre-treatment friends reside in the
migrants’ origin prefecture. These facts support the hypothesis that the sudden surge in
mobile communication during the period of migration is due to connections with existing
friendships. Moreover, the drastic increase in contact distance also suggests that migrants

move away from their friends rather than toward them.

For mobility patterns, the evidence of anticipation behavior is even more solidified,
with moderate upward shift. The spatial coverage of movement activity measured through
the metric of radius of gyration substantially increases contemporaneously with the com-
pletion of residential relocation, expanding by 36.6 km (a 412% increase from the 8.9 km
baseline) while the effect quickly fades back in the following months. This substantial
increase includes the component of traveling distance between the origin and destination
locations during the relocation process. Movement entropy and eccentricity evolve in an
extreme pattern where migrants instantly transit from highly unpredictable spatial appear-
ances with spatial stretching along a fixed direction to predictable patterns with roughly
circular spatial distribution. This is characterized by a dramatic shift from 0.32 above
the entropy baseline of 0.67 (a 47% increase) and 0.32 above the eccentricity baseline of
0.82 (a 39% increase) during relocation month, to -0.06 (9% below baseline) and -0.08
(10% below baseline) respectively by the third month post-relocation. The intuition is that
when moving to a new environment, a migrant might be actively exploring but have lim-

ited knowledge, resulting in exploration along a fixed axis. As time passes, exploration
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patterns settle down, and they mainly visit a few places located in various directions, cre-

ating a more balanced and predictable spatial distribution.

Both groups of features seem to be continuously evolving to negative states. Tobetter
understand the evolving paths of various features across treatment-timing groups, please

refer to Appendix D — Group-Specific Event Studies.

4.3 Smartphone Adoption

Figure 4.3: Aggregate Event Study of Smartphone Adoption

Unlike the residential shift, we expect no anticipation for smartphone adoption. We
clearly see that the effects are nearly static over time and the shifts are positive, but the
magnitude is relatively small compared to the residential shift. By inspecting ATT dynam-
ics across different groups demonstrated in both Figure D.15 and D.16, we can confirm

that there is no heterogeneous effect across groups.

Relative to the non-smartphone users’ baseline in October 2013, smartphone adop-
tion leads to immediate behavioral changes. The most notable influence is the increase
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in radius of gyration by 1.4 km (a 21% increase from the 6.8 km baseline). There are
also modest shifts in movement entropy (0.10 units, 16% increase from the 0.62 baseline)
and eccentricity (0.10 units, 13% increase from the 0.78 baseline), along with smaller in-
creases in contact entropy of 0.06 units (10% increase from the 0.57 baseline) and call

duration of 4.0 minutes (9% increase from the 44.8 minutes baseline).

The shifts in movement entropy and eccentricity likely reflect the integration of geo-
graphical technologies, such as online maps, facilitating exploration of unfamiliar places.
Interestingly, this pattern is identical to that observed during residential relocations, where
individuals moving to new environments exhibit increased movement entropy (exploring
behavior) coupled with increased eccentricity (fixed directional preference). This find-
ing additionally confirms the systematic ”exploring pattern of individuals” where users
do not tend to explore randomly but rather follow structured exploration along preferred
directions, suggesting that smartphone adoption triggers similar exploratory behaviors as

physical relocation to unfamiliar territories.

It seems counterintuitive that after upgrading to smartphone devices, users increase
their call duration as they might have better access to the internet and switch to using
mobile communication apps like WeChat. Our explanation is that our examination of
effect dynamics is on a monthly basis, which is short-term, and these users originally used
non-smartphones, which might suggest that they don’t have a strong preference for the
internet and tend to utilize phone calls to contact their friends. Therefore, after upgrading
to smartphones, in the short run, they might still mainly rely on phone calls rather than
the internet to interact with their friends. Besides, we believe that mobile infrastructure
was not well implemented back in 2013 when 4G technology was not widely spread.

Therefore, phone calls still served as a major tunnel for remote social interactions.
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Chapter S Discussion

5.1 Summary

Firstly, our methodological contributions is based on the incorporation of load sharing
mechanisms. Specifically, we redesign the home location estimation approach, residen-
tial shift identification, and human mobility and mobile communication network features
that are commonly used when utilizing CDRs to analyze these behaviors. Moreover, we
present a new research topic that derives treatments from CDRs or user profile information
and examines the dynamics of treatment effects on two common behaviors, going beyond
conventional correlation studies utilizing CDRs. Finally, investigations into the impacts
of residential shifts and smartphone adoption on mobility and communication behavior
provide rich policy insights. For instance, our findings suggest policymakers should in-
crease awareness of telecommunication infrastructure and urban transportation planning

during large-scale population displacement and mobile technology transitions.

5.2 Limitations

A notable limitation in utilizing CDRs for home/work location inference and mobility
pattern analysis is the inherent sampling bias present in the data. CDRs only capture spatial

48 doi:10.6342/NTU202502893


http://dx.doi.org/10.6342/NTU202502893

information at discrete moments when individuals initiate or receive telecommunications,
thereby providing an incomplete representation of their complete spatial-temporal trajec-
tory. This selective sampling characteristic potentially introduces bias into.our inference
methodologies. However, according to empirical investigations by Ranjan et al. (2012)
and Zhao et al. (2016), while movement entropy estimates may exhibit either upward or
downward bias depending on context, metrics such as radius of gyration and home/work
location inferences demonstrate robust reliability. By extension, we posit that eccentricity
measurements remain relatively unbiased, as they share fundamental characteristics with
radius of gyration—specifically, both metrics aim to capture the geographical shape de-
fined by the visited locations. Furthermore, the mobile communication network features
we derive are specifically designed to quantify distinct contact behaviors, rendering them
methodologically appropriate for our analytical framework despite the aforementioned

sampling considerations.

Another limitation is that individuals, especially younger generations, have recently
started engaging social media platforms more frequently to connect with friends and mak-
ing fewer phone calls (Garrett et al. (2023)), which may deteriorate the quality of utilizing
CDRs for home/work location inference and mobility pattern analysis. While this limi-
tation does not affect our study since our sample period spans from 2013 to 2014, when
social media platforms were not yet widespread, it raises questions about the validity of
utilizing CDRs for more contemporary mobility and communication studies. In fact, there
is a growing body of research attempting to leverage geolocated posts on various social
media platforms, such as Facebook (Sahai and Bailey (2022)), Twitter (Zagheni et al.
(2014), Hawelka et al. (2014), Jurdak et al. (2015), Luo et al. (2016)), and Weibo(Cui,

Xie and Liu (2018), Ebrahimpour et al. (2020)), to study migration and human mobility
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patterns. Nevertheless, we still believe CDRs have their own advantages. First, in devel-
oping countries where network infrastructures are not well-developed, people still rely on
phone calls to communicate with their family and friends. Second, people often use so-
cial media to share their travel experiences, resulting in important locations inferred from
geolocated posts that potentially yield systematic biases. As stated in Armstrong et al.
(2021), utilizing tweets to infer migration populations yields high misclassification rates.
Finally, mobile communication is a more fundamental contact behavior, potentially lead-
ing to higher coverage of different age groups and reducing income bias due to unequal
access to the internet, as Facebook users are often located in high-income regions in India

(Sahai and Bailey (2022)).

5.3 Future Work

The main goal of this paper is to quantify the effects of residential shifts and smart-
phone adoption on behavioral features. We apply the estimation method proposed by Call-
away and Sant’ Anna (2021) and rely on the parallel trends assumption to identify treatment
effects that are robust to heterogeneous treatment effects across time and treatment-timing
groups. However, we acknowledge that we did not rigorously test for endogeneity, as both
treatments are self-selected. For example, although we include multiple treatment-timing
groups, our short-term sample periods cannot fully avoid contemporaneous factors at the
annual level that affect treatment adoption and outcomes simultaneously. Future research
should consider instrumental variable approaches to address these endogeneity concerns

more rigorously.
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Appendix A — Event-Centered Trends

Across Outcomes and Treatments

In this section of appendix, we attach all outcomes’ mean trajectories over time across
two groups of features: mobility and mobile communication network features, and two
types of treatments: residential shift and smartphone adoption. These plots should serve
as the motivation to discuss the treatment effects as we can clearly observe the substantial
and sudden changes after the exposure to treatments across treated groups. Besides, they
also validate the plausibility of applying the DiD framework as through examining the
outcome trends, where the comparison is made to the reference period, g — o — 1, we can
see nearly identical unconditional trends between the treated and control groups most of
the time. The trends we refer heavily here are computed through the re-centering scheme

on each sample average outcome E[Y,m | G;, = 1] for cohort G, given §:
Y/m(g) = IAE[Y;,m | Gi,g = 1] - ]E[Y;,g—é—l | Gi,g = 1}

where g € {4,5,6,7} or is equal to co while calculating the control group’s outcome
trends. Therefore, by comparing Y;,(g) to Y;,(co) forall m < g — § — 1, we can assess

on how likely parallel trends hold in the pre-treatment periods.
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Figure A.1: Total Duration by Treatment (Residential Shifts) Status
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Figure A.2: Contact Distance by Treatment (Residential Shifts) Status
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Figure A.3: Contact Entropy by Treatment (Residential Shifts) Status

(a) Outgoing Contact Entropy
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Figure A.4: Radius of Gyration by Treatment (Residential Shifts) Status

(a) Temporal-Size-Weighted Radius of Gyration
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Figure A.5: Movement Entropy by Treatment (Residential Shifts) Status

(a) Temporal-Size-Weighted Movement Entropy
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Figure A.6: Eccentricity by Treatment (Residential Shifts) Status

(a) Temporal-Size-Weighted Eccentricity
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Figure A.7: Total Duration by Treatment (Smartphone Adoption) Status

(a) Outgoing Total Duration
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Figure A.8: Contact Distance by Treatment (Smartphone Adoption) Status

(a) Outgoing Contact Distance
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Figure A.9: Contact Entropy by Treatment (Smartphone Adoption) Status

(a) Outgoing Contact Entropy
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Figure A.10: Radius of Gyration by Treatment (Smartphone Adoption) Status
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Figure A.11: Movement Entropy by Treatment (Smartphone Adoption) Status
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(a) Temporal-Size-Weighted Movement Entropy
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Figure A.12: Eccentricity by Treatment (Smartphone Adoption) Status

(a) Temporal-Size-Weighted Eccentricity
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Appendix B — Preliminary of DiD

Estimator

In this section, we introduce the concept of potential outcome framework and the
average treatment effect on the treated (ATT) to formalize our research question. As a
straightforward and ideal definition, ATT provides clear guidance on what should be es-
timated, and it could be obtained through the DiD design. We will elaborate on what
specific estimation approach we adopt and the corresponding motivations in this section.
Moreover, the estimation approach comes with various possible setups, and we explain

which are the most suitable for us.

As we are interested in the effects of residential shifts and smartphone adoption on
human mobility patterns and mobile communication behaviors, we formalize our research
questions as follows: what are the magnitudes of differences in mobility and communica-
tion behaviors for individuals who receive these treatments compared to a counterfactual
scenario where they never experienced them? The magnitudes of differences are so-called
treatment effects, and treatments in this study are either residential shifts or smartphone
adoption events. Given that many individuals in our sample receive the treatment, it is
natural to focus on average treatment effects rather than individual-level effects. More-

over, since our primary interest lies in understanding how these life events specifically
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impact those who experience them—addressing the counterfactual question ”’what would
have happened if they had not been treated?”—we focus on the treatment effects on the

treated specifically as our primary causal parameter of interest.

ATT can be formalized as follows. Suppose a treatment occurs in period t. ATT is
given by:

where D, is a binary variable indicating whether an individual ¢ is treated, Y; ; is the ob-
served outcome in period ¢, and Y; ;(00) is the counterfactual untreated outcome. Examin-
ing how ATT evolves over time provides an additional dimension for analysis, and given
these motivations, DiD with the design of multiple periods (also known as the event study)

is an ideal econometric approach.

The intuition of DiD is that simply comparing treated and untreated units at a single
point in time may be misleading because these groups might differ in unobservable ways.
Similarly, comparing the same units before and after treatment might confound the treat-
ment effect with general time trends that would have occurred regardless of treatment.
DiD solves this problem by using a double comparison.” Suppose the treatment occurs
in time period ¢, and first, it compares the change in outcomes for the treated group over
time:

E[Y;; — Yy | D; = 1]

Second, it compares this change to the change observed in a control group over the same
period:

EYis =Yg | Di =1 —E[Y;, — Yi1 | Di = 0]
Besides, what makes the DiD design prevalent in empirical study is that it has good theoret-
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ical implication in that if we assume parallel trends in counterfactual untreated outcomes:

]E[Y;at(oo) - Y;,tfl(oo) | Di = 1] - ]E[Y;,t(oo) - Yviﬂpl(OO) ’ l)Z = O],

then the double comparison can recover ATT:

— (E[Yi;1(00) | D; = 1] + E[Y] 4(00) — Vi 1(00) | D; = 1])

S

g

=E[Y;,+(00)| Di=1]

= E[Yi; = Yiia(oo) | Dy = 1] = E[Y;,(00) = ¥iy1(00) | Di = 0]

J/

due to parallel trends

= E[Yis —Yier | Dy = 1] = E[Yiy = Yie1 | Di = 0],

Note that observed outcomes are equivalent to counterfactual untreated outcomes for all
untreated units in both period ¢ — 1 and ¢, and the equivalence also holds for treated units

at period ¢ — 1.

74 doi:10.6342/NTU202502893


http://dx.doi.org/10.6342/NTU202502893

Appendix C — Results of ATT

Estimation by Event Time

Here we present the full ATT estimation results on which Figure 4.1 and Figure 4.3
are based. We discuss the effects of residential shift and smartphone adoption on mobile
communication networks and mobility features. Due to the limited space, we abbreviate
part of the variables’ names as follows: “out” indicates the outgoing direction of mobile
communication from which communication features are derived. “dura” represents the
total duration of all phone calls in a month (measured in minutes). “cd” is the abbreviation
for contact distance, which is the average geographical distance between phone users and
their friends (measured in kilometers). “entr” stands for entropy and there are two types of
entropy: out ce (outgoing contact entropy) and ts. me (temporal-size-weighted movement
entropy), which quantify the unpredictability of mobile contacts and visited locations,
respectively. “ts.” is the short form of temporal-size-weighted, indicating the mobility
features are computed through temporal-size-based weights rather than count-based ones.
“rg” is the abbreviation for radius of gyration (measured in kilometers), which quantifies
how large a user’s activity area is. “ecc” is the eccentricity, measuring the ratio of the first
and second principal components of users’ two-dimensional variance-covariance matrix

of spatial distribution.
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Table C.1: Results of ATT (Residential Shifts) Estimation by Event Time

out dura out cd out ce ts. rg ts. me ts. ecc
ATT(-3) 0.95 —2.77 —0.01 1.45 —0.01 —0.02
(1.86) (1.50) (0.01) (0.92) (0.01) (0.01)
ATT(-2)
ATT(-1) 0.75 1.42 0.03** 6.40*** 0.07*** 0.07***
(1.81) (1.73) (0.01) (1.11) (0.01) (0.01)
ATT(0) 19.18***  13.45"** 0.10*** 36.57 (.32 0.32%**
(2.12) (2.91) (0.01) (1.54) (0.01) (0.01)
ATT(1) 3.15 6.15 0.03* 3.62** 0.06™** 0.06™**
(2.32) (3.40) (0.01) (1.21) (0.02) (0.02)
ATT(2) —2.23 3.09 —0.02 0.37 —0.04** —0.05**
(2.34) (3.32) (0.01) (1.05) (0.02) (0.02)
ATT(3) —5.11* —1.27 —0.04*** —0.22 —0.06"*  —0.08"**
(2.47) (3.08) (0.01) (1.00) (0.01) (0.02)
Num. users 292739 292739 292739 292739 292739 292739
Num. anticipation 1 1 1 1 1 1

***p < 0.001; **p < 0.01; *p < 0.05
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Table C.2: Results of ATT (Smartphone Adoption) Estimation by Event Time

out dura out cd out ce ts. rg ts. me ts. ecc
ATT(-3) 0.76* 0.12 0.01*** 0.06 0.01*** 0.02%**
(0.38) (0.19) (0.00) (0.23) (0.00) (0.00)
ATT(-2) 0.16 0.26 0.01** —0.25 0.00 0.01%
(0.37) (0.16) (0.00) (0.20) (0.00) (0.00)
ATT(-1) 0.00 0.00 0.00 0.00 0.00 0.00
ATT(0) 3.99*** 0.56™* 0.06*** 1.44%** 0.10*** 0.10***
(0.38) (0.18) (0.00) (0.23) (0.00) (0.00)
ATT(1) 10.96*** 1.26™** 0.10%** 2.51%** 0.14*** 0.17***
(0.47) (0.20) (0.00) (0.25) (0.00) (0.01)
ATT(2) 9.40*** 1.15%** 0.09*** 2.15%** 0.12%** 0.14***
(0.50) (0.22) (0.00) (0.23) (0.00) (0.00)
ATT(3) 9.42%** 1.29%** 0.09*** 1.95%** 0.11%** 0.13***
(0.52) (0.25) (0.00) (0.24) (0.00) (0.01)
Num. users 91446 91446 91446 91446 91446 91446
Num. anticipation 0 0 0 0 0 0

***p < 0.001; **p < 0.01; *p < 0.05
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Appendix D — Group-Specific Event

Studies

Applying Callaway and Sant’ Anna (2021)’s approach involves estimating the ATT
for each treatment-timing group and calendar month. Then, a family of causal parameters
of interest can be obtained, which can be aggregated through Equation 3.15 to recover the
event study. In the main text, we present the event-study-like results, which are based on
the aggregated ATT by the number of months after the treatment. One might wonder if
there are heterogeneous treatment effects across different treatment-timing groups so we

include the complete group-time ATT here for further discussions.

Through the following set of figures, we can generally claim that there is no substan-
tial heterogeneous treatment effects across different treatment-timing groups as there is
no particular group exhibit distinct ATT dynamics compared to the others in any of the
outcome. However, there is an exception, which is ATT of residential shift on outgoing
contact distance in group 7 (see Figure D.13). In such case, only group 7 shows a sig-
nificant positive effect contemporaneously with the treatment while all the other groups
exhibit insignificant effects. However, all the others are, in fact, experience a positive
upward shift in outcomes, which coincides with the group 7 and therefore, we can still

somehow confirm the positive effect of residential shift on outgoing contact distance.
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Group-Specific Event Study: Residential Shifts on Mobili

Figure D.14
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Smartphone Adoption on Communication

Group-Specific Event Study:

Figure D.15

1S0d —e- d8ld -o-

1S0d —e- d8ild -eo-

1S0d —e- d8id -eo-

o 6 8 ¢ 9 ¢ v & g | o 6 8 ¢ 9 g v ¢ g | o e 8 ¢ 9 § v & g |
||||||||||||| e --r--F--F--r---73000 |- - - - e --§--F--F--r--F
B e e e R o AN
Pty oo 11 HERER N H
. dnoup . dnouy . dnoup

o 6 8 ¢ 9 ¢ v & T | o 6 8 ¢ 9 ¢ v g 7 | o 6 8 ¢ 9 § v & T |
|||||||||||||||| e--b--r--&--1-1000 Ly S M
* R *.--*--*--.--*--*--I-”m it s
bty oo * IR B! o
9 dnouy 9 dnouy 9 dnouy

o0 6 8 ¢ 9 ¢ v & 2 | o 6 8 ¢ 9 § v & z o 6 8 ¢ 9 § v & z
................ S == --*:*:T:Ti-”w. R S S &
k0500 L1 I
* { * + t 60 2 t f t t . oL
G dnouy G dnouy G dnouy

o 6 8 ¢ 9 ¢ v & T | o 6 8 ¢ 9 § v g g | o 6 8 ¢ 9 § v g T |
...................... L 3 000 - T - -------------------:-v:w-- 0
} { { * 7 i . e
SRR SRR SRR SEIR O :

¢ dnoup

Adouajua 10e1U09 Bulobino

¢ dnouy

aouejlsIp Joeyuod buiobino

¢ dnouy

uoinjelnp |ejo} Buiobino

doi:10.6342/NTU202502893

81


http://dx.doi.org/10.6342/NTU202502893

Figure D.16: Group-Specific Event Study: Smartphone Adoption on Mobility
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Appendix E — Implementation Details

E.1 Parameter Choices of DBSCAN

While most cases involve multiple observed locations forming a cluster around the
home location candidate, it is possible that only a single observed location is associated
with a home location candidate, particularly in areas with sparse base station coverage. To
account for this case, we set the min_samples parameter to one. Another parameter, eps,
which defines the maximum distance for two observed locations to be considered neigh-
bors within a cluster, is set to 5 km with distances calculated using Vincenty’s formulae.
This parameter choice is motivated by the heterogeneous nature of effective service radii

of base stations across our study regions.

Since effective service radii provide informative insights into the neighboring dis-
tances between consecutive base stations, they serve as appropriate prior knowledge for
determining the eps value. Theoretically, neighboring distances should be less than the
sum of two consecutive base stations’ effective service radii. Therefore, eps should be
greater than the maximum of all neighboring distances approximated by the sum of con-
secutive base stations’ effective service radii but shouldn’t be excessively large, as an
overly large value might cause the algorithm to incorrectly merge two distinct clusters

into one. Nevertheless, we believe that individuals will stay at home most of the time, so
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the distance between clusters should be relatively large to mitigate the issue of misidenti-

fication of clusters.

Our study regions including Deyang, Chongqing, and other prefectures:in Sichuan
Province encompass diverse geographic regions, including urban, suburban, and rural ar-
eas, and typically, the service radii in urban areas is smaller than those in rural areas
(Zreikat, Al-Begain and Smith (2004)). Zhou et al. (2024) provides an overview of re-
cent research that utilizes CDRs to locate individuals’ positions across various regions,
including a particular discussion on spatial resolution, which is partially related to base
stations’ service radii. The overview states that the average service radius in urban regions
(Shanghai, Nanjing, and Guiyang) is less than 1 km, while our study regions have much
more complicated compositions. Therefore, the 5 km threshold represents an aggressive
lower bound, which aims to account for the larger service radii characteristic of rural and
suburban regions while maintaining meaningful spatial clustering in dense urban regions.
Besides, choosing a relatively large eps value addresses a key trade-off: while smaller val-
ues would reduce localization accuracy in rural regions, larger values risk merging distinct
urban clusters. However, this risk can be potentially mitigated because individuals spend
most time at home locations, and our weighted-average estimation across telecom stations
(based on usage frequency) ensures that wrongly-included stations receive low weights in

the final home estimation.
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E.2 Temporal Filtering

Algorithm 1 Home Cluster Estimation

Input: C/'&"
Output: CPome
candidates < sort C'

7

. Chome ¢ [candidates[1]]

mEh in descending order by the temporal size

1

2

3:

4: forall j =2, .- length(candidates) do
5:  isolate < true

6:  candidate < candidates|;]

7

8:  forallk=1,--- length(Cr™) do

9

: if candidate temporally overlaps with C"™[k] then
10: isolate < false

11: break

12: end if

13:  end for

14:

15:  if isolate = true and the temporal size of candidate > 2 then
16: insert candidate into Com®

17:  endif

18: end for

19:

20: sort C'™ in ascending order by the start time of service time interval
21: return Chome

Theorem E.2.1. For the algorithm 1, where each user © € V has a nighttime cluster
set CM&" with |C™€"| elements, the time complexity is O (Ziev (@ ight|2> and the space

complexity is O (Ziev |C«;1ight|>.

Proof. For the time complexity, consider the worst case scenario where for all user ¢, all
nighttime clusters are temporally non-overlapping with one another. The algorithm will
iterate for

_ e -1

o night |2
) = o(jer

1+2+...+(lCM — 1)

times for each user i. Aggregating over all users gives the total time complexity of
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O (Ziev |C? ight|2>. For the space complexity, under the worst case scenario, the size

of Chome s identical to |C"®"| for each user i. Therefore, the total space required is

o (ZiEV |C;ight|>- L
E.3 Residential Shifts
Table E.3: Statistics of Migrants by the Month of Migration
Count of Migrants Migration Distance
month all inter-pref. ratio (%) all inter-pref. ratio (%)
Aug. 2013 2434 2006 82.42 134.8 157.11 116.55
Sep. 2013 974 797 81.83 135.82 159.25 117.25
Oct. 2013 451 311 68.96 119.01 158.83 133.46
Nov. 2013 363 247 68.04 101.0 137.35 135.99
Dec. 2013 305 231 75.74 132.15 164.7 124.63
Jan. 2014 448 338 75.45 128.04 160.78 125.57
Feb. 2014 594 458 77.1 116.56 142.44 122.2
Mar. 2014 594 443 74.58 118.48 148.91 125.68
Apr. 2014 675 519 76.89 129.55 160.28 123.72
May 2014 1520 1222 80.39 127.37 151.29 118.78

Notes: The column all represents the count of migrants and migration distance are computed on the phone

users who satisfy the first requirement of migrants. Therefore, they don’t necessarily change their home

locations to another prefecture. The column, inter-pref., means statistics are computed on the phone users

who satisfy the first and second requirement of migrants. Moreover, the unit of distance is in kilometers.

The treatment timing varies across users who have once changed their residential

locations, but we select those who migrate in the middle of the sample period, i.e., g €

{4,5,6,7}. For these users, we have higher confidence level to safely classify them as

migrants in that the temporal sizes of the two home clusters are comparable. For example,

if the residential shift takes place in September 2013, then the first cluster’s temporal size

is about a month while the second cluster’s temporal size is very likely to be greater than a

month with a maximum of 9 months. In this case, the two home clusters are obviously not
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comparable in terms of the temporal sizes, so we are less confident to classify this user:as
a migrant because the first cluster may be a short visit, and the first timestamp associated
with the second home cluster might be even earlier, outside the sample period. We call
this kind of issue observation window bias, which results from the pre-determined ob-
servation time frame where the accumulation of information for inference is insufficient.
Referring to Table E.3, it seems that there are many users relocating in the early and late
period of the sample period, highlighting the importance to restrict the definition of mi-
grants to those relocate in the middle of the sample period. Besides, restricting migrants
to those who relocate in the middle of the sample period doesn’t substantially distort the
origin-destination distribution, as the KL-divergence is about 0.35, which is calculated by
comparing the origin-destination distribution of inter-prefecture migrants who migrate in

the middle of the sample period to that of migrants who migrate in all months.

We can define some parameters to rule out users who have incomparable temporal
sizes of home clusters, for example, requiring the temporal sizes of the home clusters or
even the ratio between them to be greater than thresholds. Nonetheless, as aforemen-
tioned, it’s not necessary to define such parameters. We can simply follow the patterns
of the data and conduct restrictive sample selection to validate the robustness of the re-
sults. Moreover, even if these parameters are defined, they are not employed to reduce
methodological error—like other existing methods to identify residential shift mentioned

in Section 2.1. Rather, it’s a decision on how much we should trust the patterns
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Table E.4: Balance of Pre-Treatment (Residential Shifts) Covariates

Variable Non-Migrant Migrant Difference p-value

Panel A: Inter-Prefecture Migrants, Any

age 40.87 36.67 -4.2 0.0
male flag 0.66 0.68 0.02 0.0001
born in Deyang flag 0.82 0.65 -0.17 0.0
(max) phone price 954.72 1059.87 105.15 0.0
(max) smartphone flag 0.65 0.77 0.12 0.0

Panel B: Inter-Prefecture Migrants, Middle Period

age 40.87 35.56 -5.31 0.0
male flag 0.66 0.71 0.05 0.0001
born in Deyang flag 0.82 0.61 -0.21 0.0
(max) phone price 954.72 1011.0 56.28  0.0234
(max) smartphone flag 0.65 0.74 0.09 0.0

Notes: (i) Panel A presents statistics for phone users who meet the first two requirements of the migrant
definition outlined in Definition 3.4.1 without restricting the migration timeframe, while Panel B analyzes
data based on the complete migrant definition, limiting inter-prefecture migrants to those who migrated be-
tween November 2013 and February 2014. (ii) The variables include: male flag, a binary indicator of user
gender; born in Deyang flag, a binary variable indicating whether the user was born in Deyang prefecture;
and (max) phone price, and (max) smartphone flag, which are time-variant variables constructed using data
before November 2013 to examine pre-treatment covariates. (iii) Since phone users may have changed de-
vices or own multiple phone devices between August 2013 and October 2013,(max) phone price represents
the highest price among all phones a user owned during this period, and (max) smartphone flag indicates
whether a user ever owned a smartphone during this period.

Table E.4 presents the sample statistics of our final selection on migrants, compared
to the non-migrant groups. We can see that migrants’ characteristics differ slightly be-
tween the complete migrant sample and the subsample including only those who migrate
in the middle of sample period. The differences in demographic features compared to
non-migrants are larger for the subsample migrants than for the complete migrant sam-
ple, while the differences in phone-related characteristics compared to non-migrants are

smaller for the subsample migrants.
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Examining Panel B more closely, as we define the treatment group for analysis:as
those who migrate across prefectures during the middle of the sample period. Compared
to non-migrants, these migrants tend to be younger and have a higher probability of be-
ing male, with a lower likelihood of being born in Deyang city. Furthermore, they own
slightly better phone devices and a higher fraction of them use smartphones. Although the
imbalance of pre-treatment covariates is significant, the scale of differences seems to be

small.

E.4 Smartphone Adoption

Figure E.17: Number of Phone Users Upgrading to Smartphones by Month

4000
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The above figure shows the counts of smartphone adopters for each month. Gen-
erally, there are few differences across months, except a notable increase in September

2013, owing to the observation window bias.

Table E.5 shows that smartphone adopters who upgrade during middle periods are
largely similar to those upgrading during any month of the sample period, with the excep-
tion of owning slightly less expensive devices. This pattern may result from observation
window bias. Panel A includes users who switch to smartphones during early sample
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periods, but we lack sufficient observation periods to verify their consistent use of non-

smartphone devices before adoption.

The definition of ”changers” in Panel B of Table E.5 corresponds to our formal def-
inition of smartphone adopters presented in Definition 3.5.1. We can see that smartphone
adopters are slightly younger, marginally more likely to be born outside Deyang prefecture
(by approximately 2%), and own more expensive non-smartphone phone devices (before
adoption) compared to non-smartphone users. Besides, the age composition of the two
groups shows no significant difference. Similar to the situation in residential shifts, the

imbalance seems to be not obvious.

Table E.5: Balance of Pre-Treatment (Smartphone Adoption) Covariates

Variable Non-Changers Changers Difference p-value

Panel A: Smartphone Adopters, Any

age 44.7 41.68 -3.02 0.0
male flag 0.66 0.65 0.0 0.5039
born in Deyang flag 0.86 0.83 -0.03 0.0
(max) phone price 409.9 706.11 296.22 0.0

Panel B: Smartphone Adopters, Middle Periods

age 44.7 41.84 -2.86 0.0
male flag 0.66 0.66 0.0 0.8563
born in Deyang flag 0.86 0.83 -0.02 0.0
(max) phone price 409.9 501.75 91.85 0.0

Notes: (i) The Changers refers to the smartphone adopters and non-changers mean non-smartphone users.
(1) The Panel A compares pre-treatment covariates between smartphone adopters (upgrading in any month)
and non-smartphone users. Panel B examines the same comparison but restricts smartphone adopters to
those upgrading between November 2013 and February 2014. (iii) The pre-treatment covariates are crafted
in the same way with Table E.4.
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E.S5 Selection of Anticipation Parameter

In this section, we explain how we determine the anticipation parameter 9, which is
the number of months allowed for anticipation. As we aim to identify effects of residential
shift and smartphone adoption on two groups of outcomes—mobility and mobile commu-
nication network features—it is plausible for migrants to change their mobility and mobile
communication behavior prior to their relocations, as explained previously. However, it’s
subtle whether users will anticipate upgrading their devices to smartphones. Therefore,
we will primarily focus on the residential shift as an illustration example and apply the

strategy developed in this section on both treatment contexts.

To select the correct horizon of §, we initiate a warm-up estimation for the group-
time ATT by applying the Callaway and Sant” Anna (2021)’s method implemented in
the did R package.! Several critical settings include setting the anticipation argument to
0, corresponding to &6 = 0 and the base period argument to “varying”. Moreover, we
rely on the conditional parallel trend assumption and the never-treated control units. By
setting the anticipation argument to 0, the post-treatment estimation on group-time ATT is
referred to the one period (month) prior to residential shift, and the “varying” base period
allows the group-time ATT to be estimated in the reference period, unlike the conventional

event study design?.

In traditional event study, outcomes in both post-treatment and pre-treatment periods
are compared to the reference period, which is the one period prior to the treatment if there

is no anticipation. Therefore, the reference period cannot compare to itself, resulting in

The did R package, to which both authors of the paper, Callaway and Sant’ Anna (2021), have been
contributing.
The did R package allows the event study design by setting base_period to “universal”.
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the failure of estimation. Nonetheless, “varying” base period means that for each period
before the treatment, the group-time ATT is estimated through iteratively changing the
reference period. That is, to estimate the ATT in one month prior to the treatment, which

is usually the reference period, the two periods prior is employed as reference.

“Varying” base period is plausible in pre-treatment periods as it relies on the PTA
specific to two-period DiD (see Equation 3.11), which involves the short difference, i.e.,
Y m — Yim—1, instead of the long difference Y; ,,, — Y; ;,_s_1 utilized in the post-treatment
estimation of DiD with multiple periods (see Equation 3.12) within each treatment group’s
estimation of ATT dynamics. The motivation for the long difference is that Y; ,,,_1(c0) is
still unobservable in post-treatment periods if m — 1 £ n — § — 1 whereas this does not

hold in the pre-treatment periods. Therefore, the short difference is sufficed and applied.

The reason why we specifically want the group-time ATT to be estimable in the ref-
erence period g — & — 1 is that it is the most likely period for treatment cohorts to anticipate.
Furthermore, iteratively changing the reference period allows us to more easily observe
the jump in the plot of group-time ATT dynamics during the pre-treatment period, thereby
hypothesizing the occurrence of the anticipation behavior. Moreover, It’s relatively com-
putationally efficient compared to conventional event study in that we only need one es-
timation procedure by setting base period to “varying” to have complete ATT estimation
in all pre-treatment periods. Nevertheless, since event study can’t estimate ATT in the
reference period, we may need to try out different anticipation values, running several

estimation procedures to find the right one.

One can view the estimation of ATT in the pre-treatment periods as the placebo test,

which aims to answer a hypothetical question: what is the treatment effects if the users
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pretendedly receive the treatment prior to the real treatment timing? If the treatment is not
confounded, anticipation parameter ¢ is correctly specified, and PTA holds, the placebo

test should yield an insignificant ATT.

Figure E.18: Aggregate Event Study of Residential Shifts with No Anticipation

20

In Figure E.18, we plot the warmup estimation results of group-time ATT of resi-
dential shift on two groups of features. We can see that the group-time ATT is very often
significantly different from 0 in the one-month prior to the residential shift and the ATT
in period g — 1 (event time -1) is in the same direction with the period g (event time 0).
Note that we employ the 95% confidence bands. Therefore, we think that the number
of months for anticipation J should be set to one when discussing treatment effects of

residential shift.

Note that for some outcomes, such as outgoing duration and contact distance, it
doesn’t make sense to claim the existence of anticipation as ATT in event time -1 (pe-
riod g — 1) denoted as ATT(—1) is insignificant. However, it won’t affect the estimation
of post-treatment effect on these outcomes when requiring the anticipation months to be
one, i.e., g — 2 is referenced. This is because as the “varying” base_period let ATT(—1)
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be obtained by referencing period g — 2, and as the plot shows, ATT'(—1) is'insignificant,
which means the difference, E[Y; ,_1 — Y, | G;, = 1] is equivalent to the parallel

trend. Therefore, it will be differenced outby E[Y; ;1 — Y, ;2 | Gi o = 1]

Nevertheless, the situation is not symmetric for outcomes other than outgoing dura-
tion and contact distance when we incorrectly set § = 0 while the true value is 6 = 1.
This asymmetry arises because Y; ,_; contains an ATT component, and differencing other
periods’ outcomes against this contaminated baseline distorts the ATT estimates in those
periods. Specifically, the ATT in other periods will be underestimated when treatment

effects across periods have the same sign, but amplified when they have opposite signs.

Regarding the treatment of smartphone adoption, it seems to be unfair to claim the
existence of anticipation, and through the plot, we don’t find the evidence of pre-treatment

shifts in outcomes, therefore we will set d to 0.

Figure E.19: Aggregate Event Study of Smartphone Adoption with No Anticipation
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