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摘要

我們使用大量匿名通話記錄，用以研究居住地變遷與智慧型手機採用對移動

與通訊行為的影響。資料涵蓋每月超過十五億通話，涉及超過五十萬個電話號碼，

而時間涵蓋 2013年 8月至 2014年 5月。

我們發現居住地搬遷具有顯著的時間變異效應。遷徙者在搬遷期間傾向於更

頻繁地通話，建立更多元的聯絡關係，且主要與原本身處遠距的朋友互動。然而，

這些效應會迅速消退回原本水準，或持續發展為負向趨勢，例如互動對象變得較

不多元，或聯絡距離縮短。從移動行為的角度來看，搬遷會導致使用者的活動範

圍擴大，並出現較難預測的移動模式，儘管這些效應隨時間也會逐漸趨於穩定並

變得可預測。

在採用智慧型手機後，移動模式出現明顯（近乎靜態）的上升變化，可能是

因為科技在陌生環境中提供協助。例如，移動的不確定性上升，同時出現較明確

的方向偏好。

本研究顯示，針對此行為變化，在大規模遷移或手機科技升級的範疇下，政

策應更加關注行動與交通建設的需求。

關鍵字：時空分析、電信網路、居住遷移、智慧型手機使用、移動行為、通訊模

式
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Abstract

We use over 1.5 billion anonymized call records per month spanning from August

2013 to May 2014, where more than 500,000 phone numbers are involved, to study the

impacts of residential shifts (events of changing home locations) and smartphone adoption

on mobility and communication behaviors.

We find significant time-variant effects for residential relocations. Migrants tend to

call more frequently, engage in more diverse contact relationships, and primarily inter-

act with existing distant friends during relocation periods. These effects quickly fade to

original levels or continuously evolve toward negative states, such as less diverse inter-

actions or shorter contact distances. From a mobility perspective, residential relocations

cause users to have larger exploration areas and highly unpredictable movement patterns,

though these effects also shift to more predictable movement over time.

The notable upward shifts (nearly static) in mobility patterns after smartphone adop-

tion are likely due to technological assistance in unfamiliar environments. For example,

movement unpredictability increases along with relatively clearer directional preferences.

Our work provides evidence-based policy implications that mobile and transportation

infrastructure needs are worth considering during periods when large-scale population

displacements or mobile technology upgrades occur.

Keywords: Spatio-temporal Analysis, Telecommunications, Residential Shifts, Smart-

phone Adoption, Mobility Patterns, Communication Behavior
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Chapter 1 Introduction

We employ call detailed records (CDRs) to study human mobility patterns and mo-

bile communication behavior. Individuals move and interact with others on a daily basis,

and CDRs record mobility and communication behaviors at nearly the individual level—

that is, observation units are phone numbers rather than actual phone users—facilitating

flexible aggregations across multiple hierarchies based on practitioners’ needs for answer-

ing various research questions. Macro patterns of mobility and communication behaviors

revealed in CDRs can provide significant policy implications across multiple domains.

For instance, mobility patterns derived from CDRs can inform urban transportation plan-

ning by revealing commuting flows (Phithakkitnukoon, Smoreda and Olivier (2012)) and

peak travel times (Tongsinoot and Muangsin (2017)), enabling policymakers to optimize

public transit routes and schedules. During public health emergencies, CDRmobility data

can help design targeted lockdowns by estimating transmission flows (Wesolowski et al.

(2016)) or identifying high-risk residential neighborhoods for restrictions while keeping

essential services and supply chains operational. Additionally, phone usage patterns can

identify digital divides and socioeconomic disparities (Onnela et al. (2007), Blumenstock,

Cadamuro and On (2015)) in mobile service usage, helping governments decide where to

build better networks and support underserved communities.

We summarize mobility and mobile communication behaviors using six features,

1
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with each behavior characterized by three features. For mobility, we curate radius of

gyration (Gonzalez, Hidalgo and Barabasi (2008), Ranjan et al. (2012), Pappalardo et al.

(2015)), movement entropy (Eagle, Macy and Claxton (2010), Song et al. (2010), Pap-

palardo et al. (2016)) and eccentricity (Yuan, Raubal and Liu (2012), Zhao et al. (2019)),

which seeks to measure the spatial dispersion of travel, the diversity of human movement,

and how closely the spatial distribution of locations resembles an ellipse, respectively. To

characterize mobile communication patterns, we construct total call duration, contact en-

tropy (Eagle, Macy and Claxton (2010), Pappalardo et al. (2016)), and contact distance,

which quantify the differentials in relationship intensities across contacts, the diversity of

mobile interactions, and the spatial reach of social interactions, respectively.

While we did not invent these features, we improved them by incorporating the load

sharing mechanism that is prevalent in the telecommunication industry, containing two

components: load balancing (Ayesha et al. (2019)) and handover (Márquez-Barja et al.

(2011)). Two issues arise with the load sharing mechanism. First, the telecom base sta-

tion handling a call event may not always be the closest one to the user (Yuan, Raubal and

Liu (2012)). Second, a single call communication can generate multiple call records due

to the change of telecom base station processing that call. Ignoring the load sharing mech-

anism can introduce biases when inferring users’ significant locations based on the staying

frequency and the intensities of social ties characterized bymobile communication. There-

fore, we make methodological contributions by proposing that the randomness of mobile

interactions should be modeled using relative call duration rather than the number of calls,

and that the randomness of location stays should be modeled using the relative number of

days a particular base station handles calls rather than the total number of call events it

processes. Besides, we also apply DBSCAN, a machine learning clustering algorithm, to

2
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mitigate localization errors (Ayesha et al. (2019)), thereby improving the robustness of

home location estimation.

CDRs are already heavily utilized in human mobility research (Gonzalez, Hidalgo

and Barabasi (2008), Song et al. (2010), Wesolowski et al. (2016)) and social network

analysis (Onnela et al. (2007), Cho, Myers and Leskovec (2011), Barwick et al. (2023)).

However, the majority of research focuses on modeling statistical properties of these be-

havioral features or examining correlations between social networks and mobility. We

delve into a novel research topic that examines micro-level interactions instead of in-

specting correlations between macro patterns while still providing aggregate implications.

Specifically, we identify significant treatments that substantially influence mobility and

communication behaviors, followed by treatment effect identification that examines how

effects on behavioral features unfold over time through a difference-in-differences (DiD)

design with multiple periods and variation in treatment timing.

The two treatments are residential shifts and smartphone adoption, and the treatment

effect dynamics are estimated through an approach proposed by Callaway and Sant＇Anna

(2021), which is robust to heterogeneous effects over time and across treatment-timing

groups. We found that there is a temporary surge in total call duration and contact distance

during the month of relocation, arising from migrants’ attempts to contact geographically

distant social connections. Moreover, during this same period, migrants engage in more

diversified social interactions, however, following the completion of relocation, migrants

tend to spend less time onmobile communication with less diversified interactions. On the

other hand, radius of gyration substantially increases contemporaneously with the com-

pletion of residential relocation, while the effect quickly fades in the following months.

Mobility characteristics transition from highly unpredictable spatial appearances with spa-

3
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tial stretching along a fixed direction to predictable patterns with roughly circular spatial

distribution. The effects of smartphone adoption are nearly constant over time, and the

changes are positive. The most notable influence is the increase in total call duration,

while movement entropy, eccentricity, and contact entropy all show modest increases.

The estimation results help interpret anomalous events when using CDRs to monitor

mobility and communication behaviors during periods or in regions experiencing large

immigrant influxes or significant technology adoption, both commonly seen in develop-

ing countries. Moreover, our work also suggests that policy awareness should increase

regarding the need for mobile and transportation infrastructure when significant popu-

lation displacement or mobile technology updates occur. Examples of population dis-

placement include refugee resettlement programs (e.g., around 1 million Syrian refugees

who fled civil war and resettled in Germany during 2015-2016), natural disaster reloca-

tions (e.g., about 15 million people resettled within China following the 2008 Wenchuan

earthquake), or environmental displacement due to industrial pollution (e.g., 833 families

relocated from Love Canal, New York during 1978-1980 due to toxic chemical contami-

nation). Mobile technology updates contain network infrastructure upgrades (2G to 3G to

4G to 5G), and GPS-enabled services adoption.

The remaining content is structured as follows. Chapter two provides a literature

review on internal migration and estimating home locations and identifying residential

shifts through CDRs. Chapter three introduces our data sources, how we identify residen-

tial shifts and smartphone adoption, and how various behavioral features are constructed.

Chapter four explains howwe assure the existence of anticipation and numerous intuitions

from the estimation results. Finally, Chapter five delves into the summary, limitations, and

future work of this study.

4
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Chapter 2 Literature Review

2.1 Residential Shifts and Internal Migration

CDRs is a collection of geotagged phone call records (Table 3.1) over a period of

time. Although the observation units are phone numbers rather than actual phone users,

we will proceed to use phone users as the sample units since, on average, people have 1.2

phone devices. By looking at individual level, we can trace phone users’ geographical ap-

pearances with temporal dimension. Based on the spatial patterns distributed on the map,

we can estimate their significant locations, such as their residential coordinates and work-

place location. Besides, the temporal dimension offers a particularly exciting opportunity:

we can identify events of residential shifts, depicting migration flows that were previously

impossible to capture at such scale and precision through traditional census-based survey.

This type of human movement is referred to as internal migration, unlike interna-

tional migration, and it signifies population flow that occurs within a country. Internal

migration is a phenomenon that has captured economists’ attention for over a century.

This strand of literature often involves modeling migration decisions (Hunt and Mueller

(2004), Espíndola, Silveira and Penna (2006), Wang-Lu and Valerio Mendoza (2023))

or inspecting the impacts of migration on the destination region (Boustan, Fishback and

Kantor (2010), Bryan and Morten (2019), Imbert et al. (2022)).

5
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Our CDRs are collected from Sichuan province, China, and the sample periods covers

from August 2013 to May 2014. In China, most of the discussion on internal migration

is concentrated on the rural-urban migration on the prefecture level with the reason of

finding better jobs or seeking education opportunities. Nonetheless, we don’t stress on

any particular context of internal migration and focus on the detection of residential shifts

and their influences on human behaviors.

One of our methodological contributions is identifying large-scale inter-prefecture

migration flows through novel data sources. Specifically, we employ CDRs and develop

a systematic pipeline with two stages to identify individuals changing their residential lo-

cations, revealing the internal migration flows across prefectures. Utilizing CDRs to iden-

tify internal migration flow has several advantages. First, CDRs capture mobility patterns

for virtually all mobile phone users in a region, including populations often underrepre-

sented in conventional surveys such as transient residents, undocumented individuals, and

those reluctant to participate in formal governmental data collection. Second, CDRs pro-

vide continuous temporal coverage rather than the periodic snapshots offered by censuses,

enabling the detection of short-term or seasonal relocations. Third, this approach is also

cost-effective compared to the large amount of money and human resources devoted to

completing a census, as telecommunication companies automatically collect these phone

records for billing purposes.

2.2 Home Location Estimation through CDRs

It is important to clarify that the coordinates attached to each phone call record don’t

precisely represent the exact geographical position of either the caller or callee. Rather,

6
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they are the coordinates of the telecom base station handling the call, which serve as a

spatial approximation for the phone user’s position while initiating or receiving phone

calls. The approximation is not always accurate due to the load balancing mechanism.

Most of the studies estimate home locations through CDRs by selecting the locations

of the telecom base station that handles the call events most frequently over the whole

sample period (Cho, Myers and Leskovec (2011), Phithakkitnukoon, Smoreda and Olivier

(2012)), weekly (Barwick et al. (2023)), or monthly (Phithakkitnukoon (2022)) from the

nighttime call records. This simple approach seems to be acceptable for people who have

a large amount of phone call records. However, for those who have limited observations of

call events, the simple approach is not reliable. A more robust approach would be running

a spatial clustering algorithm over a set of telecom base stations’ locations (Isaacman

et al. (2011), Yang et al. (2014), Ayesha et al. (2019)). As mentioned, our estimation

strategy of residential location encompasses two stages, and the first stage recognizes

the clustered patterns and leverage DBSCAN (Ester et al. (1996)), a renowned machine

learning algorithm in the clustering domain, to uncover them. Note that Ayesha et al.

(2019) also leveraged DBSCAN to estimate home locations.

DBSCAN’s flexibility has made it a popular choice for analyzing spatial patterns

(Yang et al. (2014), Shi et al. (2014), Domínguez et al. (2017)) and mobile communication

behaviors (Karahoca and Kara (2006), Jabbar and Suharjito (2020)). We inherit this idea,

including it in our two-staged approach, which carries the specific goal of identifying res-

idential shifts. Our approach makes this identification feasible by incorporating temporal

information following the spatial clustering process. Even more recent developments in

significant location inference (Tongsinoot and Muangsin (2017), Luo et al. (2020)) don’t

explicitly consider the situation where people might change their home locations.

7
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2.3 Detection of Residential Shifts through CDRs

Several studies have already taken advantage of CDRs to identify residential reloca-

tion. Although most of the works on home location inference are not designed for detect-

ing home location shifts in that they often estimate one location over the whole sample

period. However, we can still apply these approaches on multiple fixed-size time win-

dow (Blumenstock (2012), Phithakkitnukoon (2022), Blumenstock, Chi and Tan (2025)),

e.g., daily, weekly, or monthly, or between two time periods (Lai et al. (2019), Dias et al.

(2022)) and if more than one home location is found, we can consider it as a residential

shift. Phithakkitnukoon (2022) is the case where they apply the simple approach on each

month to detect residential shifts while Dias et al. (2022) adopt Isaacman et al. (2011)’s

home location estimation method on January to March 2013 and July to September 2013,

respectively. This strategy for inferring residential shift requires several predefined pa-

rameters, such as the minimum time span of each residential location to exclude short-term

visits or distance threshold to define the separation of two home locations. Hence, a heavy

procedure of sensitive analysis is required to select the appropriate parameters.

Büchel et al. (2020) also utilize CDRs to identify residential shift and benefits from

high-quality data billing addresses, making residential estimation extremely precise and

identification of migrants is simply based on whether individuals change their residential

locations. However, as such data is not available in most scenarios, thereby failing to be

widely applicable.

Chi et al. (2020) is a closely related work. They abandon the first stage by clustering

coordinates of telecom base stations if they are in the same administrative district (e.g.,

prefectures in China). Furthermore, they apply the clustering algorithm on time axis for

8
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each district to identify contiguous time segments and further merge segments tailored to

a particular district if no other segments from the other district are found in the same time

window defined by the target merging segments. At the last step, they allow for overlap

between segments from different districts to form home locations at different periods.

Our two-stage approach provides fine spatial resolution through first-stage spatial

clustering, though this isn’t strictly necessary for cross-district migration flows. The sec-

ond stage uses temporal filtering—simpler than temporal clustering—that identifies home

clusters by assuming the largest cluster is most likely to be one of the ”home” clusters as

people won’t change their home locations too often. However, their second stage may be

more robust as it allows for overlap between clusters.

Our approach stands out for being universal, efficient, and comprehensive. It re-

lies solely on CDRs, requiring no additional information. There is only one parameter:

the maximum distance between two locations to be considered neighbors, and since we

follow the literature on internal migration in China by focusing on the inter-prefecture

migration flows, sensitivity analysis of this parameter is not strictly necessary. Further-

more, we unveil inherent spatial-temporal patterns by utilizing the unsupervised clustering

algorithm and maximally exploiting the full range of temporal information.
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Chapter 3 Data and Methods

3.1 Datasets

Table 3.1: An example of geotagged CDRs

Client Number Duration Start Time End Time Calling Number Called Number Cell ID

66ak2s5v 62.0 2013-08-31 09:32:08 2013-08-31 09:33:10 66ak2s5v moyl2k57 3649

ltzkksuv 148.0 2013-08-31 09:33:55 2013-08-31 09:36:23 ltzkksuv hjo0ksut 3B56

njo45k8v 46.0 2013-08-31 09:36:03 2013-08-31 09:36:49 8yro82d5 njo45k8v 394C
...

Notes: All phone numbers are anonymized. Cell IDs are the IDs of the telecom base stations handling call
events for client numbers, which are either calling numbers or called numbers. We have a dataset which
records the geographical coordinates of cell IDs.

We have three datasets: CDRs, coordinates of telecom base stations, and one that

contains phone users’ profile features, such as age, gender, phone brand, service type, etc.

Three datasets are provided by China Telecom, one of the three telecommunications ser-

vice providers in China. Call records are located in Sichuan Province, and the majority

of them are located in Deyang Prefecture. By joining call records with coordinate data

on cell IDs and then grouping by user phone numbers, we can obtain a set of geographic

locations associated to each phone user from August 2013 to May 2014, which serve as

the location approximation of users. User profile data is uncommonly available due to

privacy issues but critical for selecting samples of interest in CDR-based analysis. When

constructing various mobility and mobile communication features or estimating residen-
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tial coordinates, we want the samples to be consistently observable throughout the whole

sample period, i.e., they don’t cancel or register service in the middle of the sample period,

to avoid spurious analysis due to too many missing records.

The cleaning of CDRs involves removing records where (i) both the calling or called

number is not mobile phone numbers, (ii) both the start or end time is not valid timestamps,

and (iii) the duration of calls is less than or equal to 0. For user profile data, we remove

client numbers in profile data whose ID card numbers are not in the correct specification.

After the cleaning, we have 0.5 to 0.6 billion call records per month and 348,241 client

numbers whose profile features are available in each month.

3.2 Notations

Denote V as a set of the phone users, B as a set of telecom base stations and T =

M ×D ×H as a set of timestamps where M is a set of calendar months spanning from

Aug 2013 to May 2014, D := {1, 2, ..., 31} and H is a set of all possibles times in a day.

Definition 3.2.1 (Call Detailed Records). CDRs denoted by R is a collection of phone

calls, which are 4-tuples, containing information of the caller, recipient, timestamp, and

telecom base station that services the call. It’s defined as:

R := {(i, j, t, b) ∈ V ×V ×T×B | i calls j at timestamp t and the call is serviced by b}.

Definition 3.2.2 (A User’s Nighttime Call Records Serviced by a Telecom Base Station).

Given CDRs R, we can filter call events that are either made or received by a user i and

serviced by a telecom base station b during nighttime. Note that the definition of nighttime
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follows Barwick et al. (2023). It’s denoted by Rnight
i,b and defined as:

Rnight
i,b := {r ∈ R | there exists t ∈ T where t ≥ 10 p.m. and t ≤ 7 a.m.

and j ∈ V such that r ∈ {(i, j, b, t), (j, i, b, t)}}.

Definition 3.2.3 (A Set of Timestamps of a User’s Nighttime Call Records Serviced by

a Telecom Base Station). A subset T night
i,b ⊂ T is a collection of timestamps associated to

Rnight
i,b , and it’s defined as:

T night
i,b := {t ∈ T | there exists j ∈ V such that either (i, j, t, b) or (j, i, t, b) ∈ Rnight

i,b }.

Definition 3.2.4 (A Subset of Telecom Base Stations Connected to a User during Night-

time). A subset Bnight
i ⊂ B of telecom base stations connected to a user i ∈ V during

nighttime is defined as:

Bnight
i := {b ∈ B | there exists j ∈ V and t ∈ T

such that either (i, j, t, b) or (j, i, t, b) ∈ Rnight
i,b }.

3.3 Home Location Estimation

Figure 3.1: Pipeline for Estimating A Phone User’s Home Locations

This section aims at introducing how phone users’ home locations are estimated, and

Figure 3.1 presents all the steps for completing the task. Before directly diving into how
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our proposed estimation works, we provide a brief preliminary introduction to the issues

and limitations of using CDRs to locate user locations, which motivates the use of spatial

clustering.

To establish our terminology, we use ”call event” to refer to mobile communica-

tion established through a single phone call. However, a call event can generate multiple

call records due to changes in telecom base stations resulting from load sharing mech-

anisms. We term this mismatch between call events and call records the ”load sharing

effect” (Ayesha et al. (2019)). Throughout this text, we use the terms ”telecom base sta-

tion”, ”telecom station”, and ”base station” interchangeably, all referring to the mobile

infrastructure that routes phone calls.

The load sharing mechanism is triggered under two primary circumstances: when

there is a need to balance traffic among adjacent base stations (load balancing) or when a

phone user moves across different service areas of base stations (handover). We redefine

the ”load sharing” concept introduced in Ayesha et al. (2019), as their definition appears

more similar to ”load balancing”. We propose that ”load sharing” should encompass a

broader scope, including the sharing mechanisms observed in handover scenarios. Since

our analysis focuses on non-sequential mobility patterns—prioritizing spatial character-

istics of where users stay or visit rather than temporal movement sequences—the load

balancing aspect becomes particularly relevant.

A direct way to characterize the load balancing is that the telecom station handling

a call record is not necessarily the closest one to the actual location where the call event

occurs. It is important to note that ”locations” refer to geographic coordinates through-

out this text. Specifically, stay locations refer to the exact location where a call event
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is initiated. This location is unobservable and differs from all locations of base stations

associated with the call records relevant to that call event. We refer to the base station lo-

cations as ”observed locations,” which serve as spatial approximations of the true stay lo-

cations. Multiple observed locations can be associated with a single stay location through

two mechanisms: (i) load balancing (as discussed above) and (ii) repeated usage patterns,

where users frequently make calls from the same stay location, generating multiple ob-

served locations that correspond to the same underlying stay location.

From an analytical standpoint, characterizing themobility behavior revealed in CDRs

requires reconstructing stay locations from observed locations. This reconstruction chal-

lenge, combined with our focus on spatial characteristics rather than sequential move-

ment patterns, naturally motivates the application of spatial clustering techniques to group

nearby observed locations.

Home location estimation represents a specific application of stay location recon-

struction, where we focus on identifying residential places using exclusively nighttime

call records. During nighttime hours, users may have multiple stay locations, and spa-

tial clustering allows us to identify sets of observed locations that form nighttime clusters

around potential home location candidates. The challenge then becomes filtering true ”

home clusters” from the broader set of nighttime clusters, which we accomplish through

a temporal filtering scheme introduced in Section 3.3.2. Our proposed approach therefore

operates in two stages: spatial pattern aggregation followed by temporal filtering.
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3.3.1 Spatial Clustering

Our choice of spatial clustering algorithm is DBSCAN and we apply DBSCAN to

each phone user over a set of observed locations.1 As mentioned, observed locations refer

to base station coordinates and connect to an injective function loc : B → R2 which maps

each base station b ∈ B to its geographic coordinates loc(b) = (lonb, latb) where lonb

and latb represent the longitude and latitude of telecom base station b, respectively. Our

choice of DBSCAN is based on the fact that it does not require predefining the number

of clusters, unlike K-means, offering greater flexibility in identifying natural clusters of

observed locations that correspond to underlying stay locations.

Recall that multiple observed locations can be associated with a single stay location

through two mechanisms: (i) load balancing effects where the handling base station is

not the closest to the call records and (ii) repeated usage patterns where users frequently

make calls from the same stay location. Spatial clustering leverages this relationship by

grouping nearby observed locations that likely correspond to the same underlying stay

location. For nighttime clusters specifically, each cluster represents a set of observed

locations that corresponds to a single home location candidate (the unobservable true stay

location).

Definition 3.3.1 (A Nighttime Cluster for a User). The k-th nighttime cluster Cnight
i,k is

obtained through the application of DBSCAN, and defined by:

Cnight
i,k := {b ∈ Bnight

i | for all bm, bn ∈ Cnight
i,k wherem ̸= n,

(loc(bm), loc(bn)) satisfy DBSCAN clustering}

1We apply scikit-learn’s implementation of DBSCAN to each phone user.
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Note that, we set the two parameters of DBSCAN: min_samples and eps to 1 and 5

(km), respectively. For the discussions on the parameter choices, please refer to the section

of Parameter Choices ofDBSCAN.Besides, we further denoteCnight
i = {Cnight

i,1 , Cnight
i,2 , . . . }

as a set of nighttime clusters for user i.

3.3.2 Temporal Filtering

After the procedure of spatial clustering, we can zoom out the level of spatial analysis

from locations to clusters so the issues arising from the load sharing mechanism are now

resolved. Therefore, we define the new notations for both subsets of CDRs and timestamps

based on Cnight
i , which previously defined while considering Bnight

i .

Definition 3.3.2 (A User’s Nighttime Call Records Serviced by a Nighttime Cluster). For

a cluster Cnight
i,k ∈ Cnight

i , a set of call records serviced by Cnight
i,k is defined as:

Rnight
i,k :=

⋃

b∈Cnight
i,k

Rnight
i,b .

Definition 3.3.3 (A Set of Timestamps of a User’s Nighttime Call Records Serviced by A

Nighttime Cluster). For a cluster Cnight
i,k ∈ Cnight

i , the timestamps ofRnight
i,k is defined as:

T night
i,k :=

⋃

b∈Cnight
i,k

T night
i,b .

The second stage of the home location estimation is to apply the temporal filtering

trick, aiming at obtaining home clusters from a set of nighttime clusters, and the home

clusters are leveraged to estimate users’ home locations. Furthermore, the purpose is to

keep those clusters that are temporal representative, processing substantial calls, which

are evaluated through the measure of ”temporal size”.
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Function 3.3.1 (A Measure of Temporal Size of a Set of Timestamps). The measure of

temporal size of a subset T̃ ⊂ T of timestamps is defined as a measure µ : 2T → N where

µ(T̃ ) = |{(m, d) ∈M ×D | there exists h ∈ H such that (m, d, h) ∈ T̃}|. (3.1)

Let us elaborate more on the definition of a representative cluster. We define a cluster

to be representative if the temporal spans associated with each cluster are non-overlapping.

An example can be found in Figure 3.2 where the 0-th cluster (black) doesn’t temporally

overlap with the 1-st cluster (green) in the lower plot. Therefore, each home cluster should

correspond to a separate life period where the person lived in a particular location. More-

over, the identified home clusters are temporally sequential and mutually exclusive–when

one residential period ends, the next begins, with no overlap between them. This some-

how defines the temporal clusters and creates a clear timeline of residential history where

each home cluster represents a distinct ”home era” in chronological order.

Figure 3.2: Visualization of Proposed Two-stage Home Locations Estimation

Notes: The upper plot’s x and y axis represent the longitude and latitude, respectively.
The lower plot shows the temporal span of each cluster where the x axis represents the
timestamp and the y axis represents the cluster index. The point is colored by the cluster
index. In this plot, the user are identifed to change the home location within green cluster
(cluster index 1) to the black one (cluster index 0).
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Before defining the overlap, we need to define objects associated to two distinct clus-

ters that can be identified to be overlapping with each other. The object is the service time

intervals, which are continuous time intervals starting from the first time that a cluster

services calls and ending at the last time that a cluster services calls.

Function 3.3.2 (The First & Last Timestamp of a Set of Timestamps). Consider a set of

timestamps T̃ ⊂ T , the first and the last timestamps of which can be obtained by the

following functions.

tfirst : 2T → T, tfirst(T̃ ) = min
t
{t ∈ T̃}.

tlast : 2T → T, tlast(T̃ ) = max
t
{t ∈ T̃}.

Definition 3.3.4 (A Nighttime Cluster’s Service Time Interval). A continuous time inter-

val associated to a nighttime clusterCnight
i,k ∈ Cnight

i is defined as: [tfirst(T night
i,k ), tlast(T night

i,k )],

which represents that the cluster Cnight
i,k services nighttime phone calls for client i during

this period.

Definition 3.3.5 (Temporal Overlappness between Two Nighttime Clusters). Consider

two nighttime clusters, Cnight
i,1 , Cnight

i,2 , they overlap with each other temporally means there

exists t ∈ T such that t is in both service time intervals of Cnight
i,1 and Cnight

i,2 .

With the definition of overlap, our temporal filtering trick is a sequential process,

where we first sort the clusters in Cnight
i in descending order by the temporal sizes defined

by µ(T night
i,k )where Cnight

i,k ∈ Cnight
i , and then we iteratively select the cluster to be the home

cluster that is not temporally overlap with any of the pre-selected home clusters. The

algorithm is shown in Algorithm 1. Note that at the last step of the algorithm, the home

clusters’ start times of service time intervals are well-defined based on the corresponding
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nighttime clusters.

Given the home clusters, we can define the home locations as the centroids of clusters,

computed by the weighted average of the locations of the base stations in the cluster, where

the weights are the temporal sizes. Isaacman et al. (2011) also adopt this weight definition

while they applied the clustering algorithm designed by Hartigan (1975). They argue that

using the number of days instead of the number of calls can reduce the influence of base

stations that were only used for a few days but had a burst of activity on those days. For

example, during a temporary vacation, people might make many phone calls to share their

experiences with their contacts.

Definition 3.3.6 (A User’s Home Location). For a user i ∈ V , the l-th home location

(rc)homei,l is defined by the weighted average over locations {loc(b)}b∈Chome
i,l

of telecom base

stations that are contained in the l-th home cluster Chome
i,l where the weights are defined

based on the temporal sizes.

(rc)
home
i,l =

∑

b∈Chome
i,l

µ(T night
i,b )

∑
b∈Chome

i,l
µ(T night

i,b )
loc(b)
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3.4 Identification of Residential Shift and Its Timing

Residential shift is identified if a user’s home location changes. Since CDRs record

users’ locations discretely and irregularly, it’s ambiguous to decide the migration timing,

as there may be latency between the actual date where users relocate and the date of the

first timestamp where the second home cluster serves the calls. The determination on the

migration timing is crucial in the design of the DiD with multiple periods as it determines

the pre-treatment and post-treatment periods where the parallel trend assumption is tested,

and the treatment effect dynamics are inspected, respectively.

At first thought, we can define the migration timing as (i) the date of the last times-

tamp where the first home cluster serves the calls, (ii) the date of the first timestamp where

the second home cluster serves the calls, or (iii) the date in the middle of them. We opt for

a conservative approach and select the second option, which guarantees that the chosen

date occurs after migration has already been completed. This decision results in the neces-

sity to consider the violation of ”no anticipation” (Callaway and Sant＇Anna (2021), Sun

and Abraham (2021), Borusyak, Jaravel and Spiess (2024)) because people might start to

collect information for better preparation before migrating to another prefecture, causing

the divergent paths of mobility and mobile communication features between migrants and

non-migrants before a actual migration event takes place. Note that the no anticipation as-

sumption doesn’t require hold in all pre-treatment periods; instead, it’s plausible to assume

it holds until a period before the treatment.

We are discussing treatment effect dynamics on a monthly level from August 2013

to May 2014. Therefore, to establish clean notations, we index the monthly periods from

integer 1 to 10 where August 2013 corresponds to 1, September 2013 corresponds to 2,
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and so on. Furthermore, we denoteM := {1, · · · , 10} as the set of monthly periods after

indexing. Below we define the treatment group consisting of four subgroups {Gg}g=4,5,6,7

as migrants who relocate in different months g and define the never-treated group G∞ as

non-migrants. We utilize the symbol∞ to indicate a non-migrant will relocate in the far-

away future, i.e., infinity period (Sun and Abraham (2021), Borusyak, Jaravel and Spiess

(2024)).

Definition 3.4.1 (Migrant). A phone user i ∈ V is a migrant associated with the group

Gg if (i) user i only changes home locations once during the sample period, (ii) the two

home locations are in different prefectures, and (iii) the migration event occurs in month

g ∈ {4, 5, 6, 7} ⊂M.

Definition 3.4.2 (Non-Migrant). A phone user i ∈ V is a non-migrant associated with the

group G∞ if i doesn’t change the home locations throughout the sample period.

Applying these definitions, we identify 1,274 migrants and 291,465 users who do not

shift their residential locations throughout the sample period. For the detailed explanations

on how criterions are set, please refer to the Section E.3 We require migrants to have

only relocated once because among users who have multiple residential shifts, most of

them have only gone through it once, accounting for 99.65%. Besides, longer distance of

residential movements should be more likely to have substantial impacts on mobility and

mobile communication patterns sowe restrict our discussions on inter-prefecturemigrants.

As Table E.3 demonstrates, we don’t lose too many migrants by restricting the definition

of migrants to those crossing prefectures.
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3.5 Detection of Smartphone Adoption

Aside from residential shifts, our user information data enables us to inspect the

effects of other shift events, specifically upgrading to smartphones. Smartphones have

abundant functionalities that facilitate mobile communication and better assist users in

exploring unfamiliar environments through GPS technology, potentially altering smart-

phone adopters’ mobility patterns. To study the smartphone-adoption shift, we define the

treated and untreated units as follows.

Definition 3.5.1 (Smartphone Adopter). A phone user i ∈ V is a smartphone adopter

associated with group Gg if user i (i) changes from a non-smartphone device to a smart-

phone model, (ii) is not observed to switch back to non-smartphone devices throughout

the sample periods, and (iii) the adoption event occurs in month g ∈ {4, 5, 6, 7} ⊂ M,

where these months represent the middle of the sample period.

This definition rules out phone users who have multiple cellphones, and constantly

switch between smartphone and non-smartphone devices. As defining migrants, we re-

quire the events to happen in the middle of the sample period to confirm the reliability of

the adoption event, avoiding the observation window bias.

Definition 3.5.2 (Non-Smartphone User). A phone user i ∈ V is a non-smartphone user

associated with group G∞ if user i consistently uses non-smartphone devices throughout

the sample periods.

Applying these definitions, we identify 81,949 users who consistently use non-smartphone

devices throughout the sample period and 9,497 users who change from non-smartphone

to smartphone devices. Additionally, 17,717 users are identified as having used both de-
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vice types, while 203,776 users consistently use smartphones. We reuse the notations: Gg

and G∞ to denote the treated and non-treated cohorts.

3.6 Construction of Outcome Variables

Our outcomes of interest contain two groups: mobile communication and human

mobility features. For each group, we craft three kinds of features to study the effects of

residential shift and smartphone adoption on these outcome variables.

Mobile communication network features are derived from the reciprocated network

and include three kinds of features: call duration, contact entropy, and contact distance.

The contact distance isn’t commonly seen in the related literature, but it contains rich

interpretations of how phone users’ mobile communication network geographies look.

Besides, it’s more complicated to construct compared to the other two as it can’t be directly

derived from the call detailed records. Instead, we need a preliminary home-estimation

procedure, then compute the average geographical distance between a phone user’s home

and the other contacts’ homes. Therefore, it serves as a great extension of our robust home

estimation method presented in Section 3.3.

Mobility features consist of radius of gyration, movement entropy, and eccentricity.

Jointly considering movement entropy and eccentricity offers additional insights, beyond

the ”unpredictability” provided by movement entropy alone. Specifically, we can identify

distinct mobility patterns, such as whether users exhibit highly random movements that

are stretched along one direction (high entropy, high eccentricity) versus more predictable

movements that spread evenly across all directions (low entropy and low eccentricity). We

will see interesting evolution in these patterns after migration and upgrading to smartphone
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devices.

What’s more, entropy-based variables can be viewed as measures of diversity, in

addition to unpredictability. Employing entropy as a measure of diversity captures an-

other aspect beyond quantity increases, e.g., interacting with more friends or visiting more

places. Entropy says diversity should also be credited to the randomness. That is, calling

the same number of friends with equal frequency demonstrates a sign of diversity. Besides,

we can measure the diversity while eliminating the variation in quantity by normalizing it

(dividing by log(N), where N can be the total number of contacts/locations).

3.6.1 Mobile Communication Network Features

We haven’t formally defined what the mobile communication network is. Basically,

the nodes of the network are defined as phone users and edges are defined as reciprocated

calls that occur on weekdays, which are further defined as follows.

Definition 3.6.1 (A Reciporated Call). A call record r ∈ R where r = (i, j, t, b) for some

i, j ∈ V, t ∈ T and b ∈ B is reciprocated if there exists t′ ∈ T and b′ ∈ B such that

(j, i, t′, b′) ∈ R.

Note that the mobile communication network is a kind of directed network—i.e., for

example, a user i calls j and j calls i are considered as two edges, whereas this would

be considered as a single edge in an undirected graph. Besides, the edges are weighted

by the underlying call duration (in minutes). Since mobile communication is directed,

we can naturally build relevant features based on distinct communication directions. To

avoid redundantly defining the same features for both incoming and outgoing calls, we

will illustrate the feature definitions using outgoing calls as examples.
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After constructing the mobile communication network by month, directional call du-

ration for a user i ∈ V in a given month m ∈M is computed by separately aggregating

incoming and outgoing calls’ duration. Contact entropy is constructed based on the Shan-

non entropy normalized by the logarithm of the number of contacts for a user i in a given

monthm. Normalization is necessary as it accounts for differences in network size across

phone users, thereby leading to clearer interpretation of the regression coefficients. Intu-

itively, increasing unnormalized entropy by 0.3 doesn’t mean the same thing for a user

with 10 friends versus one with 50 friends.

Definition 3.6.2 (Outgoing Contact Entropy). The outgoing contact entropy ceouti,m (where

ce stands for contact entropy) for user i in monthm is defined by:

ceouti,m =
−
∑

j∈V out
i,m

p̂i,j,m log(p̂i,j,m)

log(|V out
i,m|)

where

V out
i,m := {j ∈ V | user i has once called user j in monthm} (3.2)

and

p̂i,j,m =
wi,j,m∑

k∈V out
i,m

wi,k,m
(3.3)

withwi,j,m being the weight of edge from user i to user j in monthm. Note that the weight

is defined as the total call duration rather than number of phone calls.

Employing call duration as weights for social ties is not a common practice, and

Eagle, Macy and Claxton (2010) and Pappalardo et al. (2016) defined contact entropy

based on the number of phone calls. Nevertheless, as previously mentioned, we recognize

that due to load sharing mechanisms, phone calls might change their served base station,

thereby generating multiple call records when actually only a single call is taking place.
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Figure 3.3: Pipeline of Constructing Contact Distance

Figure 3.3 demonstrates how to construct the contact distance for user i in monthm.

Note that the estimation of home location is necessary in our situation as we do not have the

geographical locations of both the caller and recipient for each call; instead, only a single

location is attached to each phone call—specifically from one telecom base station (see

Table 3.1). Therefore, we impute these locations using the corresponding home locations

obtained through our proposed estimation approach. Furthermore, as the home location

for a given month is estimated through CDRs, the estimation will fail for somemonths that

lack CDRs. We employ forward imputation followed by backward imputation to address

this issue. Forward imputation means using month m − 1 to impute month m’s home

location (if month m doesn’t have any CDR), while backward imputation uses month

m+ 1 to impute monthm’s home location.

Definition 3.6.3 (Outgoing Contact Distance). The outgoing contact distance cdouti,m (where

cd stands for contact distance) for user i in monthm is defined by:

cdouti,m =
∑

j∈V out
i,m

p̂i,j,m · d(homei,m, homej,m)

where V out
i,m and p̂i,j,m is defined in Equation 3.2 and 3.3, respectively. d is the measure

of geographic distance between two coordinates, and homei,m represents the home coor-

dinates for user i in monthm.
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Appendix A — Event-Centered Trends Across Outcomes and Treatments demon-

strates time series for two groups of features, showing the mean for the treated group

against that of the untreated group, with all data points subtracted from the mean in the ref-

erence period. This allows us to better examine the outcome trends in both pre-treatment

and post-treatment periods.

3.6.2 Human Mobility Features

Numerous studies have used CDRs to analyze human mobility patterns. We largely

follow the literature in constructingmobility features but determine theweight of a telecom

base station for a phone user by temporal size (see Equation 3.1) rather than call count,

which corrects distortion caused by load sharing mechanisms. We use notations similar

to those in Section 3.2 to avoid redundant redefinition.

There are two key differences. First, we now use CDRs from weekdays, including

both daytime and nighttime records. Second, we add a monthly dimension, constructing

features on amonthly basis. For example,Bi,m ⊂ B denotes the collection of telecom base

stations that handled calls for user i in month m, Ri,m,b ⊂ R represents call records that

are related to user i in monthm and associated with base station b ∈ Bi,m, and Ti,m,b ⊂ T

denotes timestamps connected to Ri,m,b.

Humanmobility features are derived purely fromCDRs, with the locations of telecom

base stations serving as proxies for visited places. Therefore, all geographic information

is represented by a location matrix Lgeo
i,m defined as follows.

Definition 3.6.4 (Geographic Location Matrix). A geographic location matrix Lgeo
i,m ∈

R|Bi,m|×2 contains all visited coordinates for user i in month m, where the two columns
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record the longitude and latitude, respectively, of each telecom base station b ∈ Bi,m.

Besides, we denote (lgeoi,m)b ∈ R2 as the row of Lgeo
i,m that corresponds to telecom base

station b ∈ Bi,m, which contains the longitude and latitude information of that telecom

base station.

Mobility features often lay on the foundation of empirical probability distribution

over the visited locations (rows of the location matrix). As mentioned, we consider a new

weighting scheme where the weight for each b ∈ Bi,m is defined as the temporal size

µ(Ti,m,b), and therefore, the corresponding empirical probability is given by:

p̂µi,m,b =
µ(Ti,m,b)∑

b′∈Bi,m
µ(Ti,m,b′)

(3.4)

in contrast to the traditional approach:

p̂Ti,m,b =
|Ti,m,b|∑

b′∈Bi,m
|Ti,m,b′ |

, (3.5)

which is based on the count of call events.

Note that mobility features constructed using the temporal-size-based sample prob-

ability p̂µi,m,b will be named with the prefix ”temporal-size-weighted,” while those that

depend on count-based sample probability p̂Ti,m,b will be named with the prefix ”count-

weighted.” For instance, count-weighted eccentricity versus temporal-size-weighted ec-

centricity.

In the following text, we will operate on the empirical probability vector p̂i,m ∈

R|Bi,m|, where each entry p̂i,m,b corresponds to the empirical probability of base station

b ∈ Bi,m and can be computed using either the temporal size approach (p̂µi,m,b) or the

traditional call count approach (p̂Ti,m,b).
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Figure 3.4: Comparison of Mobility Feature Values

Notes: For radius of gyration and eccentricity, we visualize daily movement trajectories of
four phone users throughout August 2013. Regarding entropy, we examine the distribution
of telecom base station usage for two phone users during the same period, where the y-
axis (p) represents the proportion of total days on which each base station was activated,
calculated as the number of days a station served calls divided by the total number of such
days across all stations.

Geographic distance (geodesic distance) on the Earth’s surface differs fromEuclidean

distance calculated directly from longitude-latitude coordinates, as the former accounts

for spherical geometry while the latter assumes a flat coordinate space. To make spatial

29

http://dx.doi.org/10.6342/NTU202502893


doi:10.6342/NTU202502893

statistical analysis meaningful, we employ the Azimuthal Equidistant (AEQD) projection2

centered at the geographic mean (rc)geoi,m of locations, which is given by:

(rc)
geo
i,m = (Lgeo

i,m)
′
p̂i,m ∈ R2. (3.6)

This projection makes variance-covariance matrices computed on the projected coordi-

nates geographically interpretable, as they accurately reflect the spatial spread of locations

around the centroid. Besides, we denote Li,m, (li,m)b, and (rc)i,m as the projected location

matrix, coordinates of a telecom base station b, and the centroid, respectively.

After completing the preliminary setup, we can now construct mobility features that

aim to measure: (i) how large the activity area is (radius of gyration), (ii) how unpre-

dictable spatial movement patterns are (movement entropy), and (iii) to what extent the

activity area spreads in an elliptical shape (eccentricity), which indicates whether a user

visits locations primarily along a fixed direction. See Figure 3.4 for a comprehensive

understanding of what these metrics actually mean.

Definition 3.6.5 (Radius of Gyration). The radius of gyration (rg)i,m for user i in month

m is defined by:

(rg)i,m =

√ ∑

b∈Bi,m

p̂i,m,b · ∥(li,m)b − (rc)i,m∥2.

Notably, it takes the form of a root-mean-square distance, as it’s borrowed from

physics, and the intuition is that we are thinking of users as orbiting around the center

of mass (rc)i,m.
2The projection is obtained through the Python package pyproj. We choose AEQD over UTM to en-

sure that the Euclidean distance from any location contained in a location matrix to the centroid equals the
geodesic distance. While UTM provides approximately correct Euclidean distances for all locations, we
only require accuracy for distances to the centroid. Additionally, UTM zones are limited to 6° of longi-
tude, but Sichuan spans approximately 11.6°, which would require multiple zones and result in non-uniform
projections across users. Note that with AEQD using individual projection centers, all users’ results are
expressed in the same units (kilometers), ensuring comparability.
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Definition 3.6.6 (Movement Entropy). The movement entropy mei,m, where me stands

for movement entropy, for user i in monthm is defined by:

mei,m =
−
∑

b∈Bi,m
p̂i,m,b log(p̂i,m,b)

log(|Bi,m|)
.

Definition 3.6.7 (Eccentricity). Given Σ̂i,m is the sample variance-covariance matrix of

Li,m, eccentricity ecci,m, where ecc stands for eccentricity, for user i in monthm is defined

as:

ecci,m =

√

1−
(
λi,m,2

λi,m,1

)2

where λi,m,1 is the major eigenvalue of Σ̂i,m and λi,m,2 is the minor one.

The sample variance-covariance matrix Σ̂i,m is constructed in two steps. First, com-

pute the demeaned location matrix L̃i,m = Li,m − 1µ̂′
i,m where 1 ∈ R|Bi,m| is a vector

of ones and µ̂i,m is the sample mean, which is equivalent to (rc)i,m. Then, the sample

variance-covariance matrix is defined by:

Σ̂i,m = κi,m(L̃
′
i,mDiag(p̂i,m)L̃i,m)

where Diag(p̂i,m) is the diagonal matrix with the probability weights p̂i,m on its diagonal,

and κi,m is the bias-correction factor, where

κi,m =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑
b∈Bi,m

µ(Ti,m,b)
(∑

b∈Bi,m
µ(Ti,m,b)

)
−1

if p̂i,m,b = p̂µi,m,b,

∑
b∈Bi,m

|Ti,m,b|
(∑

b∈Bi,m
|Ti,m,b|

)
−1

otherwise.
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3.7 Empirical Strategy

Appendix B— Preliminary of DiD Estimator has a brief introduction on the canoni-

cal 2×2DiD design, which involves exactly two groups and two time periods. To examine

treatment effect dynamics over multiple periods, we generalize the double comparison ap-

proach by selecting a baseline reference period—which corresponds to t− 1 in the 2× 2

DiD case—and then applying the DiD methodology to estimate treatment effects for each

subsequent period relative to this reference point. DiD with multiple periods is also called

event study, and we use these terms interchangeably. Conventionally, practitioners will

utilize the two-way fixed effects specification to facilitate the estimation of average treat-

ment effect on the treated in each period. Furthermore, the canonical 2× 2 setup assumes

static treatment timing, where all treated units receive treatment simultaneously. How-

ever, our empirical setting are different in the sense that treatment units become treated

at different periods. This variation in treatment timing introduces additional complexity,

and several econometrics tools have proposed to address this issue.

In the Definition 3.4.1 and 3.5.1, we include treatment units with staggered treatment

adoption to avoid contemporaneous confounders, leading to a robust estimation. How-

ever, the design of DiD with multiple periods and staggered treatment adoption, through

two-way fixed effect specification may be biased due to the forbidden comparison (this

term also used by Roth et al. (2023) and De Chaisemartin and d＇Haultfoeuille (2023)).

That is, comparing the latter treated units to the early treated units, in the context of time-

variant treatment effects (Goodman-Bacon (2021), Sun and Abraham (2021), Baker, Lar-

cker andWang (2022)). Through inspecting howmobility andmobile communication fea-

tures evolve after residential shift (see Figure from A.1 to A.6) and smartphone adoption
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(see Figure from A.7 to A.12), we can observe the non-static treatment effect dynamics,

resulting in the inapplicability of two-way fixed effects models.

Consequently, we follow the estimation approach proposed by Callaway and Sant＇

Anna (2021), which estimates the ATT dynamics for each treatment-timing cohort inde-

pendently with the valid control group, thereby avoiding the issue of forbidden compari-

son. They name the ATT specific to a period and treatment-timing cohort as group-time

ATT where the group is defined as the treatment-timing cohort. Therefore, in the follow-

ing text, ”groups” refers to treatment-timing cohorts while ”cohorts” aside from groups,

the control units are included as a single cohort.

Aside from Callaway and Sant＇Anna (2021), many other econometric tools have

been proposed to solve the issue as to the forbidden comparison, and Roth et al. (2023) and

De Chaisemartin and d＇Haultfoeuille (2023) both provide comprehensive introduction

and briefly summarize the differences across various approaches. We choose Callaway

and Sant＇Anna (2021) over other alternatives as it’s considered to be more flexible in

(i) the selection of valid control units, (ii) the aggregation of estimated treatment effects

across cohorts and periods, and (iii) the assumption on parallel trends.

As mentioned, the key point of dealing with the time-variant treatment effects with

staggered treatment adoption is to employ valid control units. Callaway and Sant＇Anna

(2021) is flexible in the selection of valid control units in the sense that they allow either

the never-treated units or the not-yet-treated units to be control units depending on the

practitioners’ need. However, others’ control units (e.g., Sun and Abraham (2021) and

Borusyak, Jaravel and Spiess (2024)) encompass of both never-treated and not-yet treated

units, and don’t have the freedom to choose either of them. Despite flexible, Callaway
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and Sant＇Anna (2021) suggest employing the early-treated samples as the comparison

only if the never-treated units are unavailable or limited in size. In our situation where

only a small fraction of samples decides to change their homes or start using smartphones,

never-treated samples are quite suitable as the comparison.

Callaway and Sant＇Anna (2021) aim at estimating ATT for each group and period,

and therefore, researcher has the full customizability to aggregate them across groups and

periods to obtain a summary ATT. Additionally, they incorporate covariates on which

the parallel trends assumption (hereafter PTA) conditions, which should be reasonable

when the unconditional PTA is violated because groups differ in observable characteris-

tics that affect outcome trends. Nevertheless, conditional PTA introduces additional layer

of complexity for estimation, so we will first start from the unconditional version for es-

timation, and if we clearly see the patterns of violation, we will move to incorporate the

pre-treatment covariates, adopting the conditional PTA. Furthermore, the anticipation is

allowed, which is particularly useful when discussing the impacts of residential shift as

mobility or mobile communication features might start to change prior to the actual relo-

cation timing.

3.8 Group-Time ATT

Before introducing the group-time ATT, we need to set up the potential outcome

framework first to let it have a clear definition. Since we include treatment units with

four different treatment timings ({4, 5, 6, 7} ⊂ M), for each user i, in each month m ∈

M, there will be 5 potential outcomes: Yi,m(∞), Yi,m(4), Yi,m(5), Yi,m(6), and Yi,m(7).

Yi,m(∞) is the potential outcome in month m for user i if i has never received the treat-
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ment throughout the sample period. Yi,m(g) where g ∈ {4, 5, 6, 7} ⊂M is the potential

outcome in month m for user i if i is treated in month g (i.e., i ∈ Gg). For each user i

and month m, only 1 potential outcome can be realized, becoming observable. Hence,

the connection between potential outcomes and the observed outcome Yi,m is established

(Callaway and Sant＇Anna (2021), Sun and Abraham (2021)) as follows:

Yi,m = Yi,m(∞) + Σ7
g=4(Yi,m(g)− Yi,m(∞)) ·Gi,g (3.7)

where Gi,g is a binary variable defined as:

Gi,g =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if i ∈ Gg, i.e., i receives the treatment in month g

0, otherwise.

Besides, we define an additional binary variable for indicating whether i is in the never-

treated cohort g∞:

Gi,∞ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if i ∈ G∞

0, otherwise.

Anticipation is a critical topic when estimating the ATT as it determines which pre-

treatment period is considered as the reference to correctly assess treatment effects. Let δ

be the number of anticipation months, and for cohort Gg, g − δ becomes the cutoff value

(note that if δ = 0, the cutoff value is g, which returns to the conventional setting) and

treatment effect dynamics are inspected for each month m ≥ g − δ, as treatment effects

are expected to let Yi,m(g) deviate from Yi,m(∞) starting at any timingm after g−δ. This

also implies:

Yi,m(g) = Yi,m(∞) (3.8)
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for all i ∈ Gg and m < g − δ (modified from the Assumption 5 in Roth et al. (2023)). If

we jointly consider the Equation 3.7 and 3.8, we can further derive:

Yi,m = Yi,m(g) = Yi,m(∞) (3.9)

for all i ∈ Gg andm < g−δ. With these potential outcome notations, it’s time to define the

group-time ATT, which is ATT for a specific treatment-timing group in a specific priod.

Definition 3.8.1 (Group-Time ATT). The ATT specific to treatment-timing cohort Gg in

monthm ∈M is defined as:

ATT (g,m) = E[Yi,m(g)− Yi,m(∞) | Gi,g = 1],

which is the expected difference between potential outcomes in monthm for cohort Gg.

As user i belongs to the cohort Gg, by equation 3.7, we know Yi,m(g) is observable

and equivalent to Yi,m. Therefore, the group-time ATT can be rewritten as:

ATT (g,m) = E[Yi,m − Yi,m(∞) | Gi,g = 1]

= E[Yi,m | Gi,g = 1]− E[Yi,m(∞) | Gi,g = 1], (3.10)

which is the difference between the expected observed outcome Yi,m with respect to cohort

Gg and the expected potential outcome in month m that would occur if they have never

been exposed to the treatment.

Note that notations in Definition 3.8.1 are a little bit different from Callaway and

Sant＇Anna (2021) in the way that they denote the period as t and causal parameter as

ATT (g, t) while we use m to emphasize the monthly periods. Besides, we also replace
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the 0 with∞ used by Sun and Abraham (2021) and Borusyak, Jaravel and Spiess (2024)

to align the meaning of never-treated units, which become treated at some point in the

infinite future.

Given the anticipation months δ, and considering a treatment-timing cohort Gg, for

each m ≥ g − δ, Yi,m(∞) is unobservable. Therefore, we need an assumption to make

ATT (g,m) identifiable for monthm ≥ g − δ, and that’s where PTA comes into play.

Definition 3.8.2 (Parallel Trend Assumption). Given the number of anticipation months

δ, for each Gg where g ∈ {4, 5, 6, 7} andm ≥ g − δ, the following equality is assumed:

E[Yi,m(∞)− Yi,m−1(∞) | Gi,g = 1] = E[Yi,m(∞)− Yi,m−1(∞) | Gi,∞ = 1]. (3.11)

That is, for all group Gg and month m ≥ g − δ, the trend in the counterfactual

untreated outcome measured between monthm andm− 1 should be expectedly identical

between group Gg and the never-treated cohort G∞ for all Gg. It’s an assumption as objects

in the equality are potential outcomes Yi,m(∞), which are clearly unobservable in the post-

treatment periods for all Gg. As mentioned, we will impose the unconditional PTA first,

and switch to the conditional version if needed.

The parallel trend assumption stated in Definition 3.8.2 is employed in the canonical

2 × 2 DiD design, and it’s necessary to extend it for the multiple periods case, which is

given by:

E[Yi,m(∞)− Yi,g−δ−1(∞) | Gi,g = 1] = E[Yi,m(∞)− Yi,g−δ−1(∞) | Gi,∞ = 1]. (3.12)

Equation 3.12 can be obtained from Equation 3.11 by adding all parallel trend equality

in post-treatment periods and by the end, Yi,g−δ−1(∞) appears, which is observable since
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Yi,g−δ−1(∞) = Yi,g−δ−1. As mentioned in Roth et al. (2023), for the ATT in the longer

periods after treatment to be identifiable, a stronger assumption needs to be imposed.

With equation 3.12, E[Yi,m(∞) | Gi,g = 1] becomes identifiable:

E[Yi,m(∞) | Gi,g = 1] = E[Yi,g−δ−1(∞) | Gi,g = 1]

+ E[Yi,m(∞) | Gi,g = 1]− E[Yi,g−δ−1(∞) | Gi,g = 1]

= E[Yi,g−δ−1 | Gi,g = 1]

+ E[Yi,m(∞) | Gi,∞ = 1]− E[Yi,g−δ−1(∞) | Gi,∞ = 1]︸ ︷︷ ︸
due to parallel trends

= E[Yi,g−δ−1 | Gi,g = 1] + E[Yi,m − Yi,g−δ−1 | Gi,∞ = 1].

(3.13)

Then, group-time ATT can be derived by:

ATT (g,m) = E[Yi,m | Gi,g = 1]− E[Yi,m(∞) | Gi,g = 1]

= E[Yi,m | Gi,g = 1]

− E[Yi,g−δ−1 | Gi,g = 1]− E[Yi,m − Yi,g−δ−1 | Gi,∞ = 1]

= E[Yi,m − Yi,g−δ−1 | Gi,g = 1]− E[Yi,m − Yi,g−δ−1 | Gi,∞ = 1]. (3.14)

By Equation 3.14, we can simply estimate ATT (g,m) through its sample analogue. The

simplicity credits to the unconditional PTA, and for how to incorporate conditional PTA,

please refer to Callaway and Sant＇Anna (2021). Note that statistical inference relies on

the bootstrap procedure for standard error estimation.

It is important to note that PTA is extremely crucial for identification, as the ATT

becomes unidentifiable without it. This raises the question whether there exists a method
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to test this assumption. Typically, the assumption’s plausibility is evaluated in the pre-

treatment periods in an event study design. As in pre-treatment periods, the potential

outcome of the never-treated Yi,m(∞) is observable for all user i, and if the PTA holds in

the pre-treatment periods, it might be relatively reasonable to claim that the parallel trend

might also hold in post-treatment periods.

That’s the reason why we plot the treated group’s trajectories of mean outcomes cen-

tered at the reference period g − δ − 1, along with those of the control group. In all

figures in Appendix A — Event-Centered Trends Across Outcomes and Treatments, we

can see that the treated group’s re-centered mean outcomes’ trajectories highly overlaps

with those associated to the control group’s trajectory in the pre-treatment periods. How-

ever, exceptions occur in specific treatment-timing cohorts for certain outcomes, raising

some concerns about the plausibility of the PTA.

Moreover, given that the treatment is not confounded, and anticipation effects are cor-

rectly accounted for, if PTA holds, the estimated ATT in pre-treatment periods should be

statistically insignificant. The intuition is that the treatment shouldn’t take effects during

pre-treatment periods and under PTA, treated units’ outcome changes should be identical

to the comparison group’s changes over the same periods, yielding insignificant ATT es-

timation. Therefore, by examining the estimation results in pre-treatment periods, we can

assess whether the PTA holds during the pre-treatment periods.
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After estimating the group-time ATT, we can recover the traditional event study

through the following aggregation scheme provided by Callaway and Sant＇Anna (2021),

which demonstrates the ATT after e month of the treatment:

θ(e) =
7∑

g=4

P(Gi,g = 1)ATT (g, g + e)1[g + e <= 10] (3.15)

where P(Gi,g = 1) is the group size of cohort Gg and 1[g + e <= 10] is an indicator

function that equals to 1 if g + e <= 10 and 0 otherwise. Note that 10, representing May

2014, is the maximum month in our sample period. Moreover, we restrict e to be from -3

to 3 to let the difference of θ(e) be the correct interpretation of treatment effect dynamics.

The Intuition is within this event time interval, the share of group size of each treatment-

timing cohort is fixed. For example, when e = 4, the outcomes of cohort G7 are missing

and when e = −4, the outcomes of cohort G4 are missing. For more details, please refer

to the Equation 3.5 in Callaway and Sant＇Anna (2021).
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Chapter 4 Results

4.1 Outcomes of Interest

Although we can construct the mobile communication network features based on two

directions of mobile communication—incoming and outgoing—we will focus on the out-

going direction as the variation in outgoing-based features may be more sensitive to the

factors directly linked to the treated units themselves. Moreover, through observing Fig-

ures in Appendix A — Event-Centered Trends Across Outcomes and Treatments, where

various outcomes’ paths during the whole sample period are plotted, we can see that the

evolution patterns typically don’t have dramatical differences between outgoing and in-

coming communication. Therefore, when discussing the treatment effects of both resi-

dential shift and smartphone adoption, we will consider only the outgoing-based mobile

communication features. For mobility features, although we propose a new weighting

scheme to address the issue of spurious importance of telecom base stations for phone

users, arising from the load sharing mechanism, it seems that mobility features’ differ-

ences between two construction methods based on distinct weighting schemes are subtle

(see Appendix A — Event-Centered Trends Across Outcomes and Treatments). Hence,

we will adopt our proposed weighting scheme based on the concept of temporal size to

compute the mobility features. All in all, outcomes consists of two groups: mobility fea-
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tures and mobile communication network features, and there are three outcomes in each

group. The total of six outcomes focuses on capturing different aspects of human’s mo-

bility and mobile communication behavior.

4.2 Residential Shifts

In the current and next section, we are going to analyze the estimation results of

ATT with the delicately determined anticipation parameter (see Selection of Anticipation

Parameter) and the assumption of unconditional PTA. To understand the magnitudes of

the estimated effects, we will naively employ the mean outcome of the control group in

September 2013 as the baseline for the context of residential shifts, while for smartphone

adoption, the baseline will be that of October 2013. The confidence interval is constructed

based on the 95% significance level. We first analyze heterogeneous treatment effects

across time periods. Specifically, we will approach with a hierarchical manner starting

from the discussion of static versus time-variant treatment effects. The static treatment

effect means the outcome is persistently shifted without fading back to the baseline level.

In such situation, attribution includes upward or downward shift. For the time-variant one,

we can characterize it to be either transient or smoothly decaying. A transient treatment

effect over time represents an effect that instantly bounces back and forth to the baseline,

while smoothly decaying is the other case, where the effect gradually fades away. Then, we

can discuss the heterogeneous effect across treatment-timing groups by inspecting whether

only few groups exhibit distinct patterns.

At the very first glance, we can see that the residential shift brings about time-variant

effects on both mobile communication network (upper panel) and mobility features (lower
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Figure 4.1: Aggregated Event Study of Residential Shifts

panel), and effects fall back to or approach to the baseline level one month after relocations

begin.

For the mobile communication behavior, anticipation for residential relocation is lim-

ited and observable only in outgoing contact entropy. The pre-treatment shift in outgoing

contact entropy might be result from notifying forthcoming relocation with friends that are

less frequently contacted. However, from Figure D.13, we can see that this phenomenon

only emerges in the treated units who migrate in February 2014 (group 7).

Intuitively, residential relocations expose mobile phone users to unfamiliar environ-

ments, resulting in a temporary surge in total call duration during the month of relocation.

Relative to the baseline mean of 89.7 minutes, migrants experience a 19 minute (21%) in-

crease in outgoing call duration, and a 13 km (189%) increase in outgoing contact distance

relative to the baseline mean of 6.9 km as they seek to connect with geographically distant

social connections. Moreover, during this same period, migrants engage in more diver-

sified social interactions, with entropy increasing by 0.10 units (a 17% increase from the

baseline of 0.60), likely due to the formation of new social connections at the destination or
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contact with those with whom they engaged less frequently prior to the relocation Never-

theless, following the completion of relocation, migrants tend to spend less time on mobile

communication with less diversified interactions. By the third month post-relocation, total

call duration decreases by 5.1 minutes (a 6% reduction from the 89.7-minute baseline) and

contact entropy falls by 0.04 units (a 7% decrease from the baseline of 0.60), indicating a

return toward more concentrated communication patterns.

Figure 4.2: Contact Ratio of Pre-Treatment Friends in Post-Treatment Periods

Notes: The blue line is the contact ratio of pre-treatment friends while the red line addi-
tionally require those in the same origin prefecture.

In Figure 4.2, we analyze the composition of migrants’ contacts in post relocation

periods. We define a new variable called contact ratio, and the contact ratio of a user in a

given month measures the proportion of the users’ call duration with friends with whom

they are already connected versus all friends contacted in the corresponding month. In

the above plot, we present the monthly contact ratio series obtained by averaging across

all users in each given month. We also separately plot the contact ratios for migrants who

relocate in different months though they seem to behave very similarly.
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We can confirm that, in the early periods of post-migration, migrants tend to connect

with those old friends with whom are already connected prior to the migration events.

Typically, in the same months of changing residential places, around 80% of contacts are

pre-treatment friends, but they are not necessarily in the same prefectures from which

migrants come. Specifically, roughly 40% of these pre-treatment friends reside in the

migrants’ origin prefecture. These facts support the hypothesis that the sudden surge in

mobile communication during the period of migration is due to connections with existing

friendships. Moreover, the drastic increase in contact distance also suggests that migrants

move away from their friends rather than toward them.

For mobility patterns, the evidence of anticipation behavior is even more solidified,

with moderate upward shift. The spatial coverage of movement activity measured through

the metric of radius of gyration substantially increases contemporaneously with the com-

pletion of residential relocation, expanding by 36.6 km (a 412% increase from the 8.9 km

baseline) while the effect quickly fades back in the following months. This substantial

increase includes the component of traveling distance between the origin and destination

locations during the relocation process. Movement entropy and eccentricity evolve in an

extreme pattern where migrants instantly transit from highly unpredictable spatial appear-

ances with spatial stretching along a fixed direction to predictable patterns with roughly

circular spatial distribution. This is characterized by a dramatic shift from 0.32 above

the entropy baseline of 0.67 (a 47% increase) and 0.32 above the eccentricity baseline of

0.82 (a 39% increase) during relocation month, to -0.06 (9% below baseline) and -0.08

(10% below baseline) respectively by the third month post-relocation. The intuition is that

when moving to a new environment, a migrant might be actively exploring but have lim-

ited knowledge, resulting in exploration along a fixed axis. As time passes, exploration
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patterns settle down, and they mainly visit a few places located in various directions, cre-

ating a more balanced and predictable spatial distribution.

Both groups of features seem to be continuously evolving to negative states. To better

understand the evolving paths of various features across treatment-timing groups, please

refer to Appendix D — Group-Specific Event Studies.

4.3 Smartphone Adoption

Figure 4.3: Aggregate Event Study of Smartphone Adoption

Unlike the residential shift, we expect no anticipation for smartphone adoption. We

clearly see that the effects are nearly static over time and the shifts are positive, but the

magnitude is relatively small compared to the residential shift. By inspecting ATT dynam-

ics across different groups demonstrated in both Figure D.15 and D.16, we can confirm

that there is no heterogeneous effect across groups.

Relative to the non-smartphone users’ baseline in October 2013, smartphone adop-

tion leads to immediate behavioral changes. The most notable influence is the increase
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in radius of gyration by 1.4 km (a 21% increase from the 6.8 km baseline). There are

also modest shifts in movement entropy (0.10 units, 16% increase from the 0.62 baseline)

and eccentricity (0.10 units, 13% increase from the 0.78 baseline), along with smaller in-

creases in contact entropy of 0.06 units (10% increase from the 0.57 baseline) and call

duration of 4.0 minutes (9% increase from the 44.8 minutes baseline).

The shifts in movement entropy and eccentricity likely reflect the integration of geo-

graphical technologies, such as online maps, facilitating exploration of unfamiliar places.

Interestingly, this pattern is identical to that observed during residential relocations, where

individuals moving to new environments exhibit increased movement entropy (exploring

behavior) coupled with increased eccentricity (fixed directional preference). This find-

ing additionally confirms the systematic ”exploring pattern of individuals” where users

do not tend to explore randomly but rather follow structured exploration along preferred

directions, suggesting that smartphone adoption triggers similar exploratory behaviors as

physical relocation to unfamiliar territories.

It seems counterintuitive that after upgrading to smartphone devices, users increase

their call duration as they might have better access to the internet and switch to using

mobile communication apps like WeChat. Our explanation is that our examination of

effect dynamics is on a monthly basis, which is short-term, and these users originally used

non-smartphones, which might suggest that they don’t have a strong preference for the

internet and tend to utilize phone calls to contact their friends. Therefore, after upgrading

to smartphones, in the short run, they might still mainly rely on phone calls rather than

the internet to interact with their friends. Besides, we believe that mobile infrastructure

was not well implemented back in 2013 when 4G technology was not widely spread.

Therefore, phone calls still served as a major tunnel for remote social interactions.
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Chapter 5 Discussion

5.1 Summary

Firstly, ourmethodological contributions is based on the incorporation of load sharing

mechanisms. Specifically, we redesign the home location estimation approach, residen-

tial shift identification, and human mobility and mobile communication network features

that are commonly used when utilizing CDRs to analyze these behaviors. Moreover, we

present a new research topic that derives treatments fromCDRs or user profile information

and examines the dynamics of treatment effects on two common behaviors, going beyond

conventional correlation studies utilizing CDRs. Finally, investigations into the impacts

of residential shifts and smartphone adoption on mobility and communication behavior

provide rich policy insights. For instance, our findings suggest policymakers should in-

crease awareness of telecommunication infrastructure and urban transportation planning

during large-scale population displacement and mobile technology transitions.

5.2 Limitations

Anotable limitation in utilizing CDRs for home/work location inference andmobility

pattern analysis is the inherent sampling bias present in the data. CDRs only capture spatial
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information at discrete moments when individuals initiate or receive telecommunications,

thereby providing an incomplete representation of their complete spatial-temporal trajec-

tory. This selective sampling characteristic potentially introduces bias into our inference

methodologies. However, according to empirical investigations by Ranjan et al. (2012)

and Zhao et al. (2016), while movement entropy estimates may exhibit either upward or

downward bias depending on context, metrics such as radius of gyration and home/work

location inferences demonstrate robust reliability. By extension, we posit that eccentricity

measurements remain relatively unbiased, as they share fundamental characteristics with

radius of gyration—specifically, both metrics aim to capture the geographical shape de-

fined by the visited locations. Furthermore, the mobile communication network features

we derive are specifically designed to quantify distinct contact behaviors, rendering them

methodologically appropriate for our analytical framework despite the aforementioned

sampling considerations.

Another limitation is that individuals, especially younger generations, have recently

started engaging social media platforms more frequently to connect with friends and mak-

ing fewer phone calls (Garrett et al. (2023)), which may deteriorate the quality of utilizing

CDRs for home/work location inference and mobility pattern analysis. While this limi-

tation does not affect our study since our sample period spans from 2013 to 2014, when

social media platforms were not yet widespread, it raises questions about the validity of

utilizing CDRs for more contemporary mobility and communication studies. In fact, there

is a growing body of research attempting to leverage geolocated posts on various social

media platforms, such as Facebook (Sahai and Bailey (2022)), Twitter (Zagheni et al.

(2014), Hawelka et al. (2014), Jurdak et al. (2015), Luo et al. (2016)), and Weibo(Cui,

Xie and Liu (2018), Ebrahimpour et al. (2020)), to study migration and human mobility
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patterns. Nevertheless, we still believe CDRs have their own advantages. First, in devel-

oping countries where network infrastructures are not well-developed, people still rely on

phone calls to communicate with their family and friends. Second, people often use so-

cial media to share their travel experiences, resulting in important locations inferred from

geolocated posts that potentially yield systematic biases. As stated in Armstrong et al.

(2021), utilizing tweets to infer migration populations yields high misclassification rates.

Finally, mobile communication is a more fundamental contact behavior, potentially lead-

ing to higher coverage of different age groups and reducing income bias due to unequal

access to the internet, as Facebook users are often located in high-income regions in India

(Sahai and Bailey (2022)).

5.3 Future Work

The main goal of this paper is to quantify the effects of residential shifts and smart-

phone adoption on behavioral features. We apply the estimation method proposed by Call-

away and Sant＇Anna (2021) and rely on the parallel trends assumption to identify treatment

effects that are robust to heterogeneous treatment effects across time and treatment-timing

groups. However, we acknowledge that we did not rigorously test for endogeneity, as both

treatments are self-selected. For example, although we include multiple treatment-timing

groups, our short-term sample periods cannot fully avoid contemporaneous factors at the

annual level that affect treatment adoption and outcomes simultaneously. Future research

should consider instrumental variable approaches to address these endogeneity concerns

more rigorously.
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Appendix A — Event-Centered Trends

Across Outcomes and Treatments

In this section of appendix, we attach all outcomes’ mean trajectories over time across

two groups of features: mobility and mobile communication network features, and two

types of treatments: residential shift and smartphone adoption. These plots should serve

as the motivation to discuss the treatment effects as we can clearly observe the substantial

and sudden changes after the exposure to treatments across treated groups. Besides, they

also validate the plausibility of applying the DiD framework as through examining the

outcome trends, where the comparison is made to the reference period, g − δ − 1, we can

see nearly identical unconditional trends between the treated and control groups most of

the time. The trends we refer heavily here are computed through the re-centering scheme

on each sample average outcome Ê[Yi,m | Gi,g = 1] for cohort Gg given δ:

Ỹm(g) = Ê[Yi,m | Gi,g = 1]− Ê[Yi,g−δ−1 | Gi,g = 1]

where g ∈ {4, 5, 6, 7} or is equal to ∞ while calculating the control group’s outcome

trends. Therefore, by comparing Ỹm(g) to Ỹm(∞) for all m < g − δ − 1, we can assess

on how likely parallel trends hold in the pre-treatment periods.
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Figure A.1: Total Duration by Treatment (Residential Shifts) Status
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Figure A.2: Contact Distance by Treatment (Residential Shifts) Status

(a) Outgoing Contact Distance
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(b) Incoming Contact Distance
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Figure A.3: Contact Entropy by Treatment (Residential Shifts) Status

(a) Outgoing Contact Entropy
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(b) Incoming Contact Entropy
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Figure A.4: Radius of Gyration by Treatment (Residential Shifts) Status

(a) Temporal-Size-Weighted Radius of Gyration
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(b) Count-Weighted Radius of Gyration
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Figure A.5: Movement Entropy by Treatment (Residential Shifts) Status

(a) Temporal-Size-Weighted Movement Entropy
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(a) Count-Weighted Movement Entropy
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Figure A.6: Eccentricity by Treatment (Residential Shifts) Status

(a) Temporal-Size-Weighted Eccentricity

2013-08 2013-10 2013-12 2014-02 2014-04
Month

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

(c
e
n

te
re

d
) 

o
u

tc
o

m
e

never-treated treated
Group

Treatment-Timing Cohort: 4 (2013-11)

2013-08 2013-10 2013-12 2014-02 2014-04
Month

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

(c
e
n

te
re

d
) 

o
u

tc
o

m
e

never-treated treated
Group

Treatment-Timing Cohort: 5 (2013-12)

2013-08 2013-10 2013-12 2014-02 2014-04
Month

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

(c
e
n

te
re

d
) 

o
u

tc
o

m
e

never-treated treated
Group

Treatment-Timing Cohort: 6 (2014-01)

2013-08 2013-10 2013-12 2014-02 2014-04
Month

−0.1

0.0

0.1

0.2

0.3

0.4

(c
e
n

te
re

d
) 

o
u

tc
o

m
e

never-treated treated
Group

Treatment-Timing Cohort: 7 (2014-02)

(b) Count-Weighted Eccentricity
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Figure A.7: Total Duration by Treatment (Smartphone Adoption) Status

(a) Outgoing Total Duration

2013-08 2013-10 2013-12 2014-02 2014-04
Month

−6

−4

−2

0

2

4

6

8

10

12

(c
e
n

te
re

d
) 

o
u

tc
o

m
e

never-treated treated
Group

Treatment-Timing Cohort: 4 (2013-11)

2013-08 2013-10 2013-12 2014-02 2014-04
Month

−4

−2

0

2

4

6

8

10

12

14

(c
e
n

te
re

d
) 

o
u

tc
o

m
e

never-treated treated
Group

Treatment-Timing Cohort: 5 (2013-12)

2013-08 2013-10 2013-12 2014-02 2014-04
Month

0

2

4

6

8

10

12

(c
e
n

te
re

d
) 

o
u

tc
o

m
e

never-treated treated
Group

Treatment-Timing Cohort: 6 (2014-01)

2013-08 2013-10 2013-12 2014-02 2014-04
Month

−6

−4

−2

0

2

4

6

8

10

12

14

(c
e
n

te
re

d
) 

o
u

tc
o

m
e

never-treated treated
Group

Treatment-Timing Cohort: 7 (2014-02)

(b) Incoming Total Duration
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Figure A.8: Contact Distance by Treatment (Smartphone Adoption) Status

(a) Outgoing Contact Distance
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(b) Incoming Contact Distance
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Figure A.9: Contact Entropy by Treatment (Smartphone Adoption) Status

(a) Outgoing Contact Entropy
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(b) Incoming Contact Entropy
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Figure A.10: Radius of Gyration by Treatment (Smartphone Adoption) Status

(a) Temporal-Size-Weighted Radius of Gyration
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(b) Count-Weighted Radius of Gyration
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Figure A.11: Movement Entropy by Treatment (Smartphone Adoption) Status

(a) Temporal-Size-Weighted Movement Entropy
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(b) Count-Weighted Movement Entropy
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Figure A.12: Eccentricity by Treatment (Smartphone Adoption) Status

(a) Temporal-Size-Weighted Eccentricity
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(b) Count-Weighted Eccentricity
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Appendix B — Preliminary of DiD

Estimator

In this section, we introduce the concept of potential outcome framework and the

average treatment effect on the treated (ATT) to formalize our research question. As a

straightforward and ideal definition, ATT provides clear guidance on what should be es-

timated, and it could be obtained through the DiD design. We will elaborate on what

specific estimation approach we adopt and the corresponding motivations in this section.

Moreover, the estimation approach comes with various possible setups, and we explain

which are the most suitable for us.

As we are interested in the effects of residential shifts and smartphone adoption on

human mobility patterns and mobile communication behaviors, we formalize our research

questions as follows: what are the magnitudes of differences in mobility and communica-

tion behaviors for individuals who receive these treatments compared to a counterfactual

scenario where they never experienced them? The magnitudes of differences are so-called

treatment effects, and treatments in this study are either residential shifts or smartphone

adoption events. Given that many individuals in our sample receive the treatment, it is

natural to focus on average treatment effects rather than individual-level effects. More-

over, since our primary interest lies in understanding how these life events specifically
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impact those who experience them—addressing the counterfactual question ”what would

have happened if they had not been treated?”—we focus on the treatment effects on the

treated specifically as our primary causal parameter of interest.

ATT can be formalized as follows. Suppose a treatment occurs in period t. ATT is

given by:

ATT = E[Yi,t − Yi,t(∞)|Di = 1]

where Di is a binary variable indicating whether an individual i is treated, Yi,t is the ob-

served outcome in period t, and Yi,t(∞) is the counterfactual untreated outcome. Examin-

ing how ATT evolves over time provides an additional dimension for analysis, and given

these motivations, DiDwith the design of multiple periods (also known as the event study)

is an ideal econometric approach.

The intuition of DiD is that simply comparing treated and untreated units at a single

point in time may be misleading because these groups might differ in unobservable ways.

Similarly, comparing the same units before and after treatment might confound the treat-

ment effect with general time trends that would have occurred regardless of treatment.

DiD solves this problem by using a ”double comparison.” Suppose the treatment occurs

in time period t, and first, it compares the change in outcomes for the treated group over

time:

E[Yi,t − Yi,t−1 | Di = 1]

Second, it compares this change to the change observed in a control group over the same

period:

E[Yi,t − Yi,t−1 | Di = 1]− E[Yi,t − Yi,t−1 | Di = 0]

Besides, whatmakes theDiD design prevalent in empirical study is that it has good theoret-
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ical implication in that if we assume parallel trends in counterfactual untreated outcomes:

E[Yi,t(∞)− Yi,t−1(∞) | Di = 1]− E[Yi,t(∞)− Yi,t−1(∞) | Di = 0],

then the double comparison can recover ATT:

E[Yi,t − Yi,t(∞)|Di = 1]︸ ︷︷ ︸
ATT

= E[Yi,t | Di = 1]

− (E[Yi,t−1(∞) | Di = 1] + E[Yi,t(∞)− Yi,t−1(∞) | Di = 1])︸ ︷︷ ︸
=E[Yi,t(∞)|Di=1]

= E[Yi,t − Yi,t−1(∞) | Di = 1]− E[Yi,t(∞)− Yi,t−1(∞) | Di = 0]︸ ︷︷ ︸
due to parallel trends

= E[Yi,t − Yi,t−1 | Di = 1]− E[Yi,t − Yi,t−1 | Di = 0].

Note that observed outcomes are equivalent to counterfactual untreated outcomes for all

untreated units in both period t− 1 and t, and the equivalence also holds for treated units

at period t− 1.
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Appendix C — Results of ATT

Estimation by Event Time

Here we present the full ATT estimation results on which Figure 4.1 and Figure 4.3

are based. We discuss the effects of residential shift and smartphone adoption on mobile

communication networks and mobility features. Due to the limited space, we abbreviate

part of the variables’ names as follows: “out” indicates the outgoing direction of mobile

communication from which communication features are derived. “dura” represents the

total duration of all phone calls in a month (measured in minutes). “cd” is the abbreviation

for contact distance, which is the average geographical distance between phone users and

their friends (measured in kilometers). “entr” stands for entropy and there are two types of

entropy: out ce (outgoing contact entropy) and ts. me (temporal-size-weighted movement

entropy), which quantify the unpredictability of mobile contacts and visited locations,

respectively. “ts.” is the short form of temporal-size-weighted, indicating the mobility

features are computed through temporal-size-based weights rather than count-based ones.

“rg” is the abbreviation for radius of gyration (measured in kilometers), which quantifies

how large a user’s activity area is. “ecc” is the eccentricity, measuring the ratio of the first

and second principal components of users’ two-dimensional variance-covariance matrix

of spatial distribution.
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Table C.1: Results of ATT (Residential Shifts) Estimation by Event Time

out dura out cd out ce ts. rg ts. me ts. ecc

ATT(-3) 0.95 −2.77 −0.01 1.45 −0.01 −0.02

(1.86) (1.50) (0.01) (0.92) (0.01) (0.01)

ATT(-2)

ATT(-1) 0.75 1.42 0.03∗∗ 6.40∗∗∗ 0.07∗∗∗ 0.07∗∗∗

(1.81) (1.73) (0.01) (1.11) (0.01) (0.01)

ATT(0) 19.18∗∗∗ 13.45∗∗∗ 0.10∗∗∗ 36.57∗∗∗ 0.32∗∗∗ 0.32∗∗∗

(2.12) (2.91) (0.01) (1.54) (0.01) (0.01)

ATT(1) 3.15 6.15 0.03∗ 3.62∗∗ 0.06∗∗∗ 0.06∗∗∗

(2.32) (3.40) (0.01) (1.21) (0.02) (0.02)

ATT(2) −2.23 3.09 −0.02 0.37 −0.04∗∗ −0.05∗∗

(2.34) (3.32) (0.01) (1.05) (0.02) (0.02)

ATT(3) −5.11∗ −1.27 −0.04∗∗∗ −0.22 −0.06∗∗∗ −0.08∗∗∗

(2.47) (3.08) (0.01) (1.00) (0.01) (0.02)

Num. users 292739 292739 292739 292739 292739 292739

Num. anticipation 1 1 1 1 1 1

∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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Table C.2: Results of ATT (Smartphone Adoption) Estimation by Event Time

out dura out cd out ce ts. rg ts. me ts. ecc

ATT(-3) 0.76∗ 0.12 0.01∗∗∗ 0.06 0.01∗∗∗ 0.02∗∗∗

(0.38) (0.19) (0.00) (0.23) (0.00) (0.00)

ATT(-2) 0.16 0.26 0.01∗∗ −0.25 0.00 0.01∗

(0.37) (0.16) (0.00) (0.20) (0.00) (0.00)

ATT(-1) 0.00 0.00 0.00 0.00 0.00 0.00

ATT(0) 3.99∗∗∗ 0.56∗∗ 0.06∗∗∗ 1.44∗∗∗ 0.10∗∗∗ 0.10∗∗∗

(0.38) (0.18) (0.00) (0.23) (0.00) (0.00)

ATT(1) 10.96∗∗∗ 1.26∗∗∗ 0.10∗∗∗ 2.51∗∗∗ 0.14∗∗∗ 0.17∗∗∗

(0.47) (0.20) (0.00) (0.25) (0.00) (0.01)

ATT(2) 9.40∗∗∗ 1.15∗∗∗ 0.09∗∗∗ 2.15∗∗∗ 0.12∗∗∗ 0.14∗∗∗

(0.50) (0.22) (0.00) (0.23) (0.00) (0.00)

ATT(3) 9.42∗∗∗ 1.29∗∗∗ 0.09∗∗∗ 1.95∗∗∗ 0.11∗∗∗ 0.13∗∗∗

(0.52) (0.25) (0.00) (0.24) (0.00) (0.01)

Num. users 91446 91446 91446 91446 91446 91446

Num. anticipation 0 0 0 0 0 0

∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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Appendix D — Group-Specific Event

Studies

Applying Callaway and Sant＇Anna (2021)’s approach involves estimating the ATT

for each treatment-timing group and calendar month. Then, a family of causal parameters

of interest can be obtained, which can be aggregated through Equation 3.15 to recover the

event study. In the main text, we present the event-study-like results, which are based on

the aggregated ATT by the number of months after the treatment. One might wonder if

there are heterogeneous treatment effects across different treatment-timing groups so we

include the complete group-time ATT here for further discussions.

Through the following set of figures, we can generally claim that there is no substan-

tial heterogeneous treatment effects across different treatment-timing groups as there is

no particular group exhibit distinct ATT dynamics compared to the others in any of the

outcome. However, there is an exception, which is ATT of residential shift on outgoing

contact distance in group 7 (see Figure D.13). In such case, only group 7 shows a sig-

nificant positive effect contemporaneously with the treatment while all the other groups

exhibit insignificant effects. However, all the others are, in fact, experience a positive

upward shift in outcomes, which coincides with the group 7 and therefore, we can still

somehow confirm the positive effect of residential shift on outgoing contact distance.
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Figure D.13: Group-Specific Event Study: Residential Shifts on Communication
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Figure D.14: Group-Specific Event Study: Residential Shifts on Mobility
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Figure D.15: Group-Specific Event Study: Smartphone Adoption on Communication
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Figure D.16: Group-Specific Event Study: Smartphone Adoption on Mobility
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Appendix E — Implementation Details

E.1 Parameter Choices of DBSCAN

While most cases involve multiple observed locations forming a cluster around the

home location candidate, it is possible that only a single observed location is associated

with a home location candidate, particularly in areas with sparse base station coverage. To

account for this case, we set the min_samples parameter to one. Another parameter, eps,

which defines the maximum distance for two observed locations to be considered neigh-

bors within a cluster, is set to 5 km with distances calculated using Vincenty’s formulae.

This parameter choice is motivated by the heterogeneous nature of effective service radii

of base stations across our study regions.

Since effective service radii provide informative insights into the neighboring dis-

tances between consecutive base stations, they serve as appropriate prior knowledge for

determining the eps value. Theoretically, neighboring distances should be less than the

sum of two consecutive base stations’ effective service radii. Therefore, eps should be

greater than the maximum of all neighboring distances approximated by the sum of con-

secutive base stations’ effective service radii but shouldn’t be excessively large, as an

overly large value might cause the algorithm to incorrectly merge two distinct clusters

into one. Nevertheless, we believe that individuals will stay at home most of the time, so

83

http://dx.doi.org/10.6342/NTU202502893


doi:10.6342/NTU202502893

the distance between clusters should be relatively large to mitigate the issue of misidenti-

fication of clusters.

Our study regions including Deyang, Chongqing, and other prefectures in Sichuan

Province encompass diverse geographic regions, including urban, suburban, and rural ar-

eas, and typically, the service radii in urban areas is smaller than those in rural areas

(Zreikat, Al-Begain and Smith (2004)). Zhou et al. (2024) provides an overview of re-

cent research that utilizes CDRs to locate individuals’ positions across various regions,

including a particular discussion on spatial resolution, which is partially related to base

stations’ service radii. The overview states that the average service radius in urban regions

(Shanghai, Nanjing, and Guiyang) is less than 1 km, while our study regions have much

more complicated compositions. Therefore, the 5 km threshold represents an aggressive

lower bound, which aims to account for the larger service radii characteristic of rural and

suburban regions while maintaining meaningful spatial clustering in dense urban regions.

Besides, choosing a relatively large eps value addresses a key trade-off: while smaller val-

ues would reduce localization accuracy in rural regions, larger values risk merging distinct

urban clusters. However, this risk can be potentially mitigated because individuals spend

most time at home locations, and our weighted-average estimation across telecom stations

(based on usage frequency) ensures that wrongly-included stations receive low weights in

the final home estimation.
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E.2 Temporal Filtering

Algorithm 1 Home Cluster Estimation

Input: Cnight
i

Output: Chome
i

1: candidates← sort Cnight
i in descending order by the temporal size

2: Chome
i ← [candidates[1]]

3:
4: for all j = 2, · · · , length(candidates) do
5: isolate← true
6: candidate← candidates[j]
7:
8: for all k = 1, · · · , length(Chome

i ) do
9: if candidate temporally overlaps with Chome

i [k] then
10: isolate← false
11: break
12: end if
13: end for
14:
15: if isolate = true and the temporal size of candidate > 2 then
16: insert candidate into Chome

i

17: end if
18: end for
19:
20: sort Chome

i in ascending order by the start time of service time interval
21: return Chome

i

Theorem E.2.1. For the algorithm 1, where each user i ∈ V has a nighttime cluster

set Cnight
i with |Cnight

i | elements, the time complexity is O
(∑

i∈V |Cnight
i |2

)
and the space

complexity is O
(∑

i∈V |Cnight
i |

)
.

Proof. For the time complexity, consider the worst case scenario where for all user i, all

nighttime clusters are temporally non-overlapping with one another. The algorithm will

iterate for

1 + 2 + . . .+ (|Cnight
i |− 1) =

|Cnight
i |(|Cnight

i |− 1)

2
= O(|Cnight

i |2)

times for each user i. Aggregating over all users gives the total time complexity of
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O
(∑

i∈V |Cnight
i |2

)
. For the space complexity, under the worst case scenario, the size

of Chome
i is identical to |Cnight

i | for each user i. Therefore, the total space required is

O
(∑

i∈V |Cnight
i |

)
.

E.3 Residential Shifts

Table E.3: Statistics of Migrants by the Month of Migration

Count of Migrants Migration Distance

month all inter-pref. ratio (%) all inter-pref. ratio (%)

Aug. 2013 2434 2006 82.42 134.8 157.11 116.55

Sep. 2013 974 797 81.83 135.82 159.25 117.25

Oct. 2013 451 311 68.96 119.01 158.83 133.46

Nov. 2013 363 247 68.04 101.0 137.35 135.99

Dec. 2013 305 231 75.74 132.15 164.7 124.63

Jan. 2014 448 338 75.45 128.04 160.78 125.57

Feb. 2014 594 458 77.1 116.56 142.44 122.2

Mar. 2014 594 443 74.58 118.48 148.91 125.68

Apr. 2014 675 519 76.89 129.55 160.28 123.72

May 2014 1520 1222 80.39 127.37 151.29 118.78
Notes: The column all represents the count of migrants and migration distance are computed on the phone
users who satisfy the first requirement of migrants. Therefore, they don’t necessarily change their home
locations to another prefecture. The column, inter-pref., means statistics are computed on the phone users
who satisfy the first and second requirement of migrants. Moreover, the unit of distance is in kilometers.

The treatment timing varies across users who have once changed their residential

locations, but we select those who migrate in the middle of the sample period, i.e., g ∈

{4, 5, 6, 7}. For these users, we have higher confidence level to safely classify them as

migrants in that the temporal sizes of the two home clusters are comparable. For example,

if the residential shift takes place in September 2013, then the first cluster’s temporal size

is about a month while the second cluster’s temporal size is very likely to be greater than a

month with a maximum of 9 months. In this case, the two home clusters are obviously not

86

http://dx.doi.org/10.6342/NTU202502893


doi:10.6342/NTU202502893

comparable in terms of the temporal sizes, so we are less confident to classify this user as

a migrant because the first cluster may be a short visit, and the first timestamp associated

with the second home cluster might be even earlier, outside the sample period. We call

this kind of issue observation window bias, which results from the pre-determined ob-

servation time frame where the accumulation of information for inference is insufficient.

Referring to Table E.3, it seems that there are many users relocating in the early and late

period of the sample period, highlighting the importance to restrict the definition of mi-

grants to those relocate in the middle of the sample period. Besides, restricting migrants

to those who relocate in the middle of the sample period doesn’t substantially distort the

origin-destination distribution, as the KL-divergence is about 0.35, which is calculated by

comparing the origin-destination distribution of inter-prefecture migrants who migrate in

the middle of the sample period to that of migrants who migrate in all months.

We can define some parameters to rule out users who have incomparable temporal

sizes of home clusters, for example, requiring the temporal sizes of the home clusters or

even the ratio between them to be greater than thresholds. Nonetheless, as aforemen-

tioned, it’s not necessary to define such parameters. We can simply follow the patterns

of the data and conduct restrictive sample selection to validate the robustness of the re-

sults. Moreover, even if these parameters are defined, they are not employed to reduce

methodological error—like other existing methods to identify residential shift mentioned

in Section 2.1. Rather, it’s a decision on how much we should trust the patterns
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Table E.4: Balance of Pre-Treatment (Residential Shifts) Covariates

Variable Non-Migrant Migrant Difference p-value

Panel A: Inter-Prefecture Migrants, Any

age 40.87 36.67 -4.2 0.0

male flag 0.66 0.68 0.02 0.0001

born in Deyang flag 0.82 0.65 -0.17 0.0

(max) phone price 954.72 1059.87 105.15 0.0

(max) smartphone flag 0.65 0.77 0.12 0.0

Panel B: Inter-Prefecture Migrants, Middle Period

age 40.87 35.56 -5.31 0.0

male flag 0.66 0.71 0.05 0.0001

born in Deyang flag 0.82 0.61 -0.21 0.0

(max) phone price 954.72 1011.0 56.28 0.0234

(max) smartphone flag 0.65 0.74 0.09 0.0

Notes: (i) Panel A presents statistics for phone users who meet the first two requirements of the migrant
definition outlined in Definition 3.4.1 without restricting the migration timeframe, while Panel B analyzes
data based on the complete migrant definition, limiting inter-prefecture migrants to those who migrated be-
tween November 2013 and February 2014. (ii) The variables include: male flag, a binary indicator of user
gender; born in Deyang flag, a binary variable indicating whether the user was born in Deyang prefecture;
and (max) phone price, and (max) smartphone flag, which are time-variant variables constructed using data
before November 2013 to examine pre-treatment covariates. (iii) Since phone users may have changed de-
vices or own multiple phone devices between August 2013 and October 2013,(max) phone price represents
the highest price among all phones a user owned during this period, and (max) smartphone flag indicates
whether a user ever owned a smartphone during this period.

Table E.4 presents the sample statistics of our final selection on migrants, compared

to the non-migrant groups. We can see that migrants’ characteristics differ slightly be-

tween the complete migrant sample and the subsample including only those who migrate

in the middle of sample period. The differences in demographic features compared to

non-migrants are larger for the subsample migrants than for the complete migrant sam-

ple, while the differences in phone-related characteristics compared to non-migrants are

smaller for the subsample migrants.
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Examining Panel B more closely, as we define the treatment group for analysis as

those who migrate across prefectures during the middle of the sample period. Compared

to non-migrants, these migrants tend to be younger and have a higher probability of be-

ing male, with a lower likelihood of being born in Deyang city. Furthermore, they own

slightly better phone devices and a higher fraction of them use smartphones. Although the

imbalance of pre-treatment covariates is significant, the scale of differences seems to be

small.

E.4 Smartphone Adoption

Figure E.17: Number of Phone Users Upgrading to Smartphones by Month

The above figure shows the counts of smartphone adopters for each month. Gen-

erally, there are few differences across months, except a notable increase in September

2013, owing to the observation window bias.

Table E.5 shows that smartphone adopters who upgrade during middle periods are

largely similar to those upgrading during any month of the sample period, with the excep-

tion of owning slightly less expensive devices. This pattern may result from observation

window bias. Panel A includes users who switch to smartphones during early sample
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periods, but we lack sufficient observation periods to verify their consistent use of non-

smartphone devices before adoption.

The definition of ”changers” in Panel B of Table E.5 corresponds to our formal def-

inition of smartphone adopters presented in Definition 3.5.1. We can see that smartphone

adopters are slightly younger, marginally more likely to be born outside Deyang prefecture

(by approximately 2%), and own more expensive non-smartphone phone devices (before

adoption) compared to non-smartphone users. Besides, the age composition of the two

groups shows no significant difference. Similar to the situation in residential shifts, the

imbalance seems to be not obvious.

Table E.5: Balance of Pre-Treatment (Smartphone Adoption) Covariates

Variable Non-Changers Changers Difference p-value

Panel A: Smartphone Adopters, Any

age 44.7 41.68 -3.02 0.0

male flag 0.66 0.65 0.0 0.5039

born in Deyang flag 0.86 0.83 -0.03 0.0

(max) phone price 409.9 706.11 296.22 0.0

Panel B: Smartphone Adopters, Middle Periods

age 44.7 41.84 -2.86 0.0

male flag 0.66 0.66 0.0 0.8563

born in Deyang flag 0.86 0.83 -0.02 0.0

(max) phone price 409.9 501.75 91.85 0.0

Notes: (i) The Changers refers to the smartphone adopters and non-changers mean non-smartphone users.
(ii) The Panel A compares pre-treatment covariates between smartphone adopters (upgrading in any month)
and non-smartphone users. Panel B examines the same comparison but restricts smartphone adopters to
those upgrading between November 2013 and February 2014. (iii) The pre-treatment covariates are crafted
in the same way with Table E.4.
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E.5 Selection of Anticipation Parameter

In this section, we explain how we determine the anticipation parameter δ, which is

the number of months allowed for anticipation. As we aim to identify effects of residential

shift and smartphone adoption on two groups of outcomes—mobility and mobile commu-

nication network features—it is plausible for migrants to change their mobility and mobile

communication behavior prior to their relocations, as explained previously. However, it’s

subtle whether users will anticipate upgrading their devices to smartphones. Therefore,

we will primarily focus on the residential shift as an illustration example and apply the

strategy developed in this section on both treatment contexts.

To select the correct horizon of δ, we initiate a warm-up estimation for the group-

time ATT by applying the Callaway and Sant＇Anna (2021)’s method implemented in

the did R package.1 Several critical settings include setting the anticipation argument to

0, corresponding to δ = 0 and the base_period argument to “varying”. Moreover, we

rely on the conditional parallel trend assumption and the never-treated control units. By

setting the anticipation argument to 0, the post-treatment estimation on group-time ATT is

referred to the one period (month) prior to residential shift, and the “varying” base_period

allows the group-time ATT to be estimated in the reference period, unlike the conventional

event study design2.

In traditional event study, outcomes in both post-treatment and pre-treatment periods

are compared to the reference period, which is the one period prior to the treatment if there

is no anticipation. Therefore, the reference period cannot compare to itself, resulting in

1The did R package, to which both authors of the paper, Callaway and Sant＇Anna (2021), have been
contributing.

2The did R package allows the event study design by setting base_period to “universal”.
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the failure of estimation. Nonetheless, “varying” base_period means that for each period

before the treatment, the group-time ATT is estimated through iteratively changing the

reference period. That is, to estimate the ATT in one month prior to the treatment, which

is usually the reference period, the two periods prior is employed as reference.

“Varying” base_period is plausible in pre-treatment periods as it relies on the PTA

specific to two-period DiD (see Equation 3.11), which involves the short difference, i.e.,

Yi,m − Yi,m−1, instead of the long difference Yi,m − Yi,g−δ−1 utilized in the post-treatment

estimation of DiDwith multiple periods (see Equation 3.12) within each treatment group’s

estimation of ATT dynamics. The motivation for the long difference is that Yi,m−1(∞) is

still unobservable in post-treatment periods if m − 1 ̸= n − δ − 1 whereas this does not

hold in the pre-treatment periods. Therefore, the short difference is sufficed and applied.

The reason why we specifically want the group-time ATT to be estimable in the ref-

erence period g−δ−1 is that it is the most likely period for treatment cohorts to anticipate.

Furthermore, iteratively changing the reference period allows us to more easily observe

the jump in the plot of group-time ATT dynamics during the pre-treatment period, thereby

hypothesizing the occurrence of the anticipation behavior. Moreover, It’s relatively com-

putationally efficient compared to conventional event study in that we only need one es-

timation procedure by setting base_period to “varying” to have complete ATT estimation

in all pre-treatment periods. Nevertheless, since event study can’t estimate ATT in the

reference period, we may need to try out different anticipation values, running several

estimation procedures to find the right one.

One can view the estimation of ATT in the pre-treatment periods as the placebo test,

which aims to answer a hypothetical question: what is the treatment effects if the users
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pretendedly receive the treatment prior to the real treatment timing? If the treatment is not

confounded, anticipation parameter δ is correctly specified, and PTA holds, the placebo

test should yield an insignificant ATT.

Figure E.18: Aggregate Event Study of Residential Shifts with No Anticipation

In Figure E.18, we plot the warmup estimation results of group-time ATT of resi-

dential shift on two groups of features. We can see that the group-time ATT is very often

significantly different from 0 in the one-month prior to the residential shift and the ATT

in period g − 1 (event time -1) is in the same direction with the period g (event time 0).

Note that we employ the 95% confidence bands. Therefore, we think that the number

of months for anticipation δ should be set to one when discussing treatment effects of

residential shift.

Note that for some outcomes, such as outgoing duration and contact distance, it

doesn’t make sense to claim the existence of anticipation as ATT in event time -1 (pe-

riod g− 1 ) denoted as ATT (−1) is insignificant. However, it won’t affect the estimation

of post-treatment effect on these outcomes when requiring the anticipation months to be

one, i.e., g − 2 is referenced. This is because as the “varying” base_period let ATT (−1)
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be obtained by referencing period g−2, and as the plot shows, ATT (−1) is insignificant,

which means the difference, E[Yi,g−1 − Yi,g−2 | Gi,g = 1] is equivalent to the parallel

trend. Therefore, it will be differenced out by E[Yi,g−1 − Yi,g−2 | Gi,∞ = 1].

Nevertheless, the situation is not symmetric for outcomes other than outgoing dura-

tion and contact distance when we incorrectly set δ = 0 while the true value is δ = 1.

This asymmetry arises because Yi,g−1 contains an ATT component, and differencing other

periods’ outcomes against this contaminated baseline distorts the ATT estimates in those

periods. Specifically, the ATT in other periods will be underestimated when treatment

effects across periods have the same sign, but amplified when they have opposite signs.

Regarding the treatment of smartphone adoption, it seems to be unfair to claim the

existence of anticipation, and through the plot, we don’t find the evidence of pre-treatment

shifts in outcomes, therefore we will set δ to 0.

Figure E.19: Aggregate Event Study of Smartphone Adoption with No Anticipation
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