請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98309完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葛煥彰 | zh_TW |
| dc.contributor.advisor | Huan-Jang Keh | en |
| dc.contributor.author | 陳奕銓 | zh_TW |
| dc.contributor.author | Yi-Chuan Chen | en |
| dc.date.accessioned | 2025-08-01T16:09:52Z | - |
| dc.date.available | 2025-08-02 | - |
| dc.date.copyright | 2025-08-01 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-27 | - |
| dc.identifier.citation | Anderson J L 1989 Colloid transport by interfacial forces Ann. Rev. Fluid Mech. 21 61–99
Anderson J L and Solomentsev Y 1996 Hydrodynamic effects of surface layer on colloidal particles Chem. Eng. Commun. 148–150 291–314 Brenner H 1961 The slow motion of a sphere through a viscous fluid towards a plane surface Chem. Eng. Sci. 16 242–251 Brenner H and Sonshine R M 1964 Slow viscous rotation of a sphere in a circular cylinder Quart. J. Mech. Appl. Math. 17 55-63 Bungay P M and Brenner H 1973 The motion of a closely-fitting sphere in a fluid-filled tube Int. J. Multiph. Flow 1 25–56 Chang C L and Keh H J 2023 Slow rotation of a soft colloidal sphere normal to two plane walls Colloids Interfaces 7 18 Chang Y C and Keh H J 2006 Slow motion of a slip spherical particle perpendicular to two plane walls J. Fluids Struct. 22 647–661 Chen P Y and Keh H J 2003 Slow motion of a slip spherical particle parallel to one or two plane walls J. Chin. Inst. Chem. Eng. 34 123–133 Chen S B 1998 Axisymmetric motion of multiple composite spheres: Solid core with permeable shell, under creeping flow conditions Phys. Fluids 10 1550–1563 Chen S B and Ye X 2000 Boundary effect on slow motion of a composite sphere perpendicular to two parallel impermeable plates Chem. Eng. Sci. 55 2441–2453 Chou C Y and Keh H J 2021 Slow rotation of a spherical particle in an eccentric spherical cavity with slip surfaces Eur. J. Mech. B 86 150-156 Chou C Y and Keh H J 2022 Low-Reynolds-number rotation of a soft particle inside an eccentric cavity Eur. J. Mech. B 91 194–201 Dean W R and O’Neill M E 1963 A slow motion of viscous liquid caused by the rotation of a solid sphere Mathematika 10 13-24 Ganatos P, Weinbaum S and Pfeffer R 1980a A strong interaction theory for the creeping motion of a sphere between plane parallel boundaries Part 1 Perpendicular motion J. Fluid Mech. 99 739-753 Ganatos P, Weinbaum S and Pfeffer R 1980b A strong interaction theory for the creeping motion of a sphere between plane parallel boundaries Part 2 Parallel motion J. Fluid Mech. 99 755-783 Goldman A J, Cox R G and Brenner H 1967 Slow viscous motion of a sphere parallel to a plane wall - I. Motion through a quiescent fluid Chem. Eng. Sci. 22 637–651 Greenstein T and Schiavina G L 1975 Torque exerted on a slowly rotating eccentrically positioned sphere within an infinitely long circular cylinder Int. J. Multiphase Flow 2 353-355 Happel J and Brenner H 1983 Low Reynolds Number Hydrodynamics (Dordrecht, Netherlands: Nijhoff) Jhuang L J and Keh H J 2022 Slow axisymmetric rotation of a soft sphere in a circular cylinder Eur. J. Mech. B Fluids 95 205–211 Keh H J and Chang J H 1998 Boundary effects on the creeping-flow and thermophoretic motions of an aerosol particle in a spherical cavity Chem. Eng. Sci. 53 2365–2377 Keh H J and Chang Y C 2007 Creeping motion of a slip spherical particle in a circular cylindrical pore Int. J. Multiph. Flow 33 726–741 Keh H J and Chou J 2004 Creeping motion of a composite sphere in a concentric spherical cavity Chem. Eng. Sci. 59 407–415 Keh H J and Lee T C 2010 Axisymmetric creeping motion of a slip spherical particle in a nonconcentric spherical cavity Theor. Comput. Fluid Dyn. 24 497–510 Koplik J, Levine H and Zee A 1983 Viscosity renormalization in the Brinkman equation Phys. Fluids 26 2864–2870 Krishna Prasad M 2021 Boundary effects of a nonconcentric semipermeable sphere using Happel and Kuwabara cell models Appl. Comput. Mech. 15 19–30 Lee M C and Keh H J 2021 Slow axisymmetric rotation of a sphere in a circular tube with slip surfaces Fluid Dyn. Res. 53 065502 Lee T C and Keh H J 2013a Slow motion of a spherical particle in a spherical cavity with slip surfaces Int. J. Eng. Sci. 69 1-15 Lee T C and Keh H J 2013b Axisymmetric thermocapillary migration of a fluid sphere in a spherical cavity Int. J. Heat Mass Transfer 62 772-781 Leichtberg S, Pfeffer R and Weinbaum S 1976 Stokes flow past finite coaxial clusters of spheres in a circular cylinder Int. J. Multiph. Flow 3 147–169 Liao J C and Keh H J 2022 Slow rotation of a sphere about its diameter normal to two planes with slip surfaces Fluid Dyn. Res. 54 035502 Malysa K and van de Ven T G M 1986 Rotational and translational motion of a sphere parallel to a wall Int. J. Multiph. Flow 12 459–468 Masliyah J H, Neale G, Malysa K and van de Ven T G M 1987 Creeping flow over a composite sphere: Solid core with porous shell Chem. Eng. Sci. 42 245–253 Napper D H 1983 Polymeric Stabilization of Colloidal Dispersions (London: Academic Press) Neale G, Epstein N and Nader W 1973 Creeping flow relative to permeable spheres Chem. Eng. Sci. 28 1865-1874 Papavassiliou D and Alexander G P 2017 Exact solutions for hydrodynamic interactions of two squirming spheres J. Fluid Mech. 813 618-646 Prakash J and Raja Sekhar G P 2017 Slow motion of a porous spherical particle with a rigid core in a spherical fluid cavity Meccanica 52 91–105 Romanò F, des Boscs P-E and Kuhlmann H C 2020 Forces and torques on a sphere moving near a dihedral corner in creeping flow Eur. J. Mech. B 84 110-121 Saad E I 2016 Axisymmetric motion of a porous sphere through a spherical envelope subject to a stress jump condition Meccanica 51 799–817 Sherief H H, Faltas M S and Saad E I 2016 Stokes resistance of a porous spherical particle in a spherical cavity Acta Mech. 227 1075–1093 Srinivasacharya D and Krishna Prasad M 2012 Steady rotation of a composite sphere in a concentric spherical cavity Acta Mech. Sin. 28 653–658 Stokes G G 1845 On the theories of the internal friction of fluids in motion and of the equilibrium and motion of elastic solids Trans. Camb. Phil. Soc. 8 287-319 Stokes G G 1851 On the effect of the internal friction of fluids on the motion of pendulums Trans. Camb. Phil. Soc. 9 8-106 Wunderlich R W 1982 The effects of surface structure on the electrophoretic mobilities of large particles J. Colloid Interface Sci. 88 385–397 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98309 | - |
| dc.description.abstract | 本研究以半解析方式探討一個複合球形粒子(由一實心硬核外部包覆可穿透之多孔層所組成)在一個充滿黏性流體之球形孔洞中,於非同心位置沿其垂直連心方向,所進行的擬穩態低雷諾數移動及轉動。多孔層內外之流體速度分布分別由Brinkman方程式及Stokes方程式主導,其中粒子外部流體的速度表示式為以粒子中心及孔洞中心為原點的球座標系統之通解組合而成。對於滿足孔洞表面及多孔層內外表面的邊界條件所得之方程組,本研究將透過邊界取點法數值求解,計算出流體施加於粒子之阻力及力矩,且數值解在不同參數組合下均呈現良好收斂性。從計算結果可得複合粒子移動、轉動時所受拖曳力及力矩與粒子結構(如多孔層的厚度及流體穿透度)、粒子在孔洞中的相對位置及大小之關係。流體施加於複合粒子之拖曳力和力矩會隨多孔層穿透度下降、實心硬核對粒子半徑比值增加以及粒子對孔洞半徑比值增加而呈現單調遞增。粒子所受拖曳力和力矩大致上亦會隨其偏心程度增加而遞增。此外,孔洞對於複合粒子移動時的阻礙影響會相較於相同粒子轉動時所受影響更為顯著。複合粒子在孔洞中移動伴隨轉動之耦合效應較為複雜,且並非為粒子對孔洞半徑比值之單調函數。 | zh_TW |
| dc.description.abstract | A semi-analytical study of coupled translation and rotation of a composite spherical particle (a hard sphere core coated with a permeable porous layer) in a viscous fluid inside an eccentric spherical cavity normal to their common diameter is presented in the quasi-steady limit of low Reynolds number. To solve the Stokes and Brinkman equations for the flow fields outside and inside the porous layer, respectively, a general solution is constructed from the fundamental solutions in the two spherical coordinate systems based on both the composite particle and the cavity. The boundary conditions at the cavity wall and inner and outer surfaces of the porous layer are satisfied by a collocation method. Numerical results for the force and torque exerted on the particle by the fluid are obtained with good convergence for various values of the relevant parameters in practical applications. For the translation and rotation of a composite sphere inside a concentric cavity, our force and torque results agree well with the available solutions in the literature. The force and torque on a translating and rotating particle increase monotonically with increases in the ratios of particle radius to porous layer permeation length, core-to-particle radii, and particle-to-cavity radii. In general, they also increase with an increase in the relative distance between the particle and cavity centers. The boundary effect of the cavity on the translation of the particle is much more pronounced than that on the rotation. The coupling effect in the simultaneous translation and rotation inside an eccentric spherical cavity is complicated and not a monotonic function of the particle-to-cavity radius ratio. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-01T16:09:52Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-01T16:09:52Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
謝辭 ii 摘要 iii Abstract iv Table of Contents vi List of Figures viii List of Tables x Chapter 1 Introduction 1 Chapter 2 Analysis 6 2.1 Governing equations and boundary conditions 8 2.2 General solutions for external and internal fluid velocities 9 2.3 Transformation between two spherical coordinate systems 11 2.4 Numerical method 12 2.5 Hydrodynamic force and torque on composite sphere 13 Chapter 3 Results and Discussion 15 3.1 Porous sphere 20 3.2 Composite sphere 25 Chapter 4 Conclusions 32 List of Symbols 34 References 38 Appendix A Equations to Be Solved for Unknown Constants in Equations (9)-(14) 42 Appendix B Translation of a Composite Sphere in an Eccentric Spherical Cavity along Their Common Diameter 49 Appendix C Some Functions in Appendix B 74 | - |
| dc.language.iso | en | - |
| dc.subject | 複合粒子 | zh_TW |
| dc.subject | 球形孔洞 | zh_TW |
| dc.subject | 拖曳力和力矩 | zh_TW |
| dc.subject | 蠕動流 | zh_TW |
| dc.subject | 多孔粒子 | zh_TW |
| dc.subject | drag force and torque | en |
| dc.subject | composite particle | en |
| dc.subject | porous sphere | en |
| dc.subject | creeping flow | en |
| dc.subject | spherical cavity | en |
| dc.title | 球形複合粒子在非同心球形孔洞中之緩慢移動及轉動 | zh_TW |
| dc.title | Slow translation and rotation of a composite sphere within a nonconcentric spherical cavity | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 詹正雄;謝子賢 | zh_TW |
| dc.contributor.oralexamcommittee | Jeng-Shiung Jan;Tzu-Hsien Hsieh | en |
| dc.subject.keyword | 複合粒子,球形孔洞,拖曳力和力矩,蠕動流,多孔粒子, | zh_TW |
| dc.subject.keyword | composite particle,spherical cavity,drag force and torque,creeping flow,porous sphere, | en |
| dc.relation.page | 77 | - |
| dc.identifier.doi | 10.6342/NTU202502609 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-29 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2025-08-02 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 2.61 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
