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Abstract

A semi-analytical study of coupled translation and rotation of a composite spherical
particle (a hard sphere core coated with a permeable porous layer) in a viscous fluid inside
an eccentric spherical cavity normal to their common diameter is presented in the quasi-
steady limit of low Reynolds number. To solve the Stokes and Brinkman equations for
the flow fields outside and inside the porous layer, respectively, a general solution is
constructed from the fundamental solutions in the two spherical coordinate systems based
on both the composite particle and the cavity. The boundary conditions at the cavity wall
and inner and outer surfaces of the porous layer are satisfied by a collocation method.
Numerical results for the force and torque exerted on the particle by the fluid are obtained
with good convergence for various values of the relevant parameters in practical
applications. For the translation and rotation of a composite sphere inside a concentric
cavity, our force and torque results agree well with the available solutions in the literature.
The force and torque on a translating and rotating particle increase monotonically with
increases in the ratios of particle radius to porous layer permeation length, core-to-particle
radii, and particle-to-cavity radii. In general, they also increase with an increase in the

relative distance between the particle and cavity centers. The boundary effect of the cavity

v

doi:10.6342/NTU202502609



on the translation of the particle is much more pronounced than that on the rotation. The

coupling effect in the simultaneous translation and rotation inside an eccentric spherical

cavity is complicated and not a monotonic function of the particle-to-cavity radius ratio.

Keywords: composite particle, spherical cavity, drag force and torque, creeping flow,

porous sphere
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Chapter 1

Introduction

The low-Reynolds-number translational and rotational motions of small particles in
Newtonian fluids continue to be of considerable interest to researchers in various fields
of science, technology, and engineering. They are fundamental in nature, but allow one
to develop rational understanding of numerous practical systems such as sedimentation,
centrifugation, flocculation, filtration, microfluidics, electrophoresis and other phoretic
motions. Analysis of this topic was first carried out by Stokes (1845, 1851) for the
creeping motions of an unbounded fluid around a translating and rotating hard
(impermeable) sphere and later extended to the translation and rotation of composite
spheres (Masliyah ef a/ 1987, Keh and Chou 2004).

A composite sphere of radius b 1is a particle with a hard sphere core of radius a
coated with a porous (permeable) layer of thickness b—a . Typical examples of a
composite particle are a polystyrene latex with a porous layer extending from the bulk
particle into the fluid (Anderson and Solomentsev 1996) and a biological cell with rough
surface appendages ranging from micron-sized cilia to nanometer-sized protein molecules

(Wunderlich 1982). The particles in a colloidal suspension can be sterically stabilized
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against flocculation by deliberately adsorbing polymers and forming permeable layers
(Napper 1983).

The force and torque exerted by an unbounded fluid of viscosity 7 on a composite
particle of radius b with a hard core of radius a translating with velocity U and
rotating with angular velocity € are (Masliyah ef al 1987, Keh and Chou 2004)

F, = —6nnA 'U{W lacosh la—3A%a*(V + Aasinh Aa)

+cosh(Ab — Aa)[W (AaV — Abcosh Aa)+3A’a’bsinh Aa]
+sinh(Ab — Aa)[W cosh Aa +34%a’ (AaV —sinh Aa)]} {(Aasinh 1b

—cosh Aa)[(W +3Ab)cosh(Ab — Aa) +3(A%a* —1)sinh(Ab— 1a)—64al}™", (1)

33 cosh(Zb—2a)+ Aasinh(ib—ja), o

T, = —8unb’ Q1 + —— ——— :
A*b* 2b sinh(Ab - Aa)+ Aacosh(Ab— la)

respectively, where
V = Absinh Ab —cosh Ab (3a)
W =2p+Aa’+32a, (3b)
and A7 is the flow penetration length or square root of the fluid permeability in the
porous surface layer of the particle. Note that the translation and rotation of the
unconfined composite sphere are not coupled with each other; 1.e., F, and T, are not
related with Q and U, respectively. In the limiting cases of a=b and a=0,

equations (1) and (2) degenerate to the Stokes results (F, =6n7pU and T, =8nnb’Q)
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of a hard sphere and corresponding results of a completely permeable (porous) sphere

(Neale et al 1973, Keh and Chou 2004), respectively, of radius 4 . In the limits A5 =0

and Ab — o, these equations reduce to the Stokes results of a hard sphere of radius «a

and radius b, respectively.

In the real case of creeping motions, particles are not isolated and the ambient fluid

is restricted by solid boundaries (Happel and Brenner 1983, Malysa and van de Ven 1986,

Anderson 1989, Romano et al 2020). Therefore, it is necessary to determine whether the

presence of a neighboring boundary significantly affects the motions of the particles. The

low-Reynolds-number translational and rotational motions of a hard sphere confined by

adjacent boundaries, such as inside a spherical cavity (Keh and Chang 1998, Keh and Lee

2010, Lee and Keh 2013a, Papavassiliou and Alexander 2017, Chou and Keh 2021), in a

circular cylinder (Brenner and Sonshine 1964, Bungay and Brenner 1973, Greenstein and

Schiavina 1975, Leichtberg et al 1976, Keh and Chang 2007, Lee and Keh 2021), and

near one or two planes (Brenner 1961, Dean and O’Neill 1963, Goldman et al 1967,

Ganatos et al 1980a,b, Chen and Keh 2003, Chang and Keh 2006, Liao and Keh 2022),

were examined extensively. In the same way, the slow translation and rotation of a

composite sphere within a concentric spherical cavity (Keh and Chou 2004,

Srinivasacharya and Krishna Prasad 2012, Prakash and Raja Sekhar 2017), in a circular

cylinder (Jhuang and Keh 2022), and normal to one or two planes (Anderson and
3
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Solomentsev 1996, Chen and Ye 2000, Chang and Keh 2023), as well as an entirely

porous sphere within an eccentric spherical cavity (Saad 2016, Sherief et al 2016, Krishna

Prasad 2021), were also analyzed. Recently, the axisymmetric translation (as given in

Appendix B) and rotation (Chou and Keh 2022) of a composite sphere within an eccentric

spherical cavity have been analytically studied. These investigations indicate that the

boundary effect on the motions of hard, porous, and composite particles can be important

and interesting.

The purpose of the main text of this thesis is to obtain a semi-analytical solution for

the slow translation and rotation of a composite sphere in a nonconcentric spherical cavity

normal to their common diameter. This normal motion is more difficult to handle

mathematically because the azimuthal symmetry is broken. The Stokes and Brinkman

equations for the external and internal flow fields, respectively, of the porous layer are

solved by using a combination of analytical and numerical methods with a boundary

collocation technique, and the wall-corrected drag force and torque exerted by the fluid

on the particle are obtained with good convergence. Since the general problem of

translation and rotation of a composite sphere in arbitrary directions inside an eccentric

spherical cavity is linear, its solution can be obtained by the superposition of solutions to

its two subproblems: motions along/about their common diameter, which was previously

examined (Chou and Keh 2022, Appendix B), and motions perpendicular to their
4
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common diameter, which is treated in the main text of this thesis.
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Chapter 2

Analysis

We consider the creeping flow caused by a spherical composite particle of radius b,
composed of a rigid sphere core of radius a and a porous surface layer of thickness
b—a , translating with a velocity U=Ue, and rotating with an angular velocity
Q=Qe in an incompressible Newtonian fluid of viscosity 7 inside a nonconcentric
spherical cavity of radius ¢, as shown in figure 1, in quasi-steady state. Here, (x,y,z),
(p,9,z), and (r,,6,,¢) represent the rectangular, circular cylindrical, and spherical
coordinate systems, respectively, originating from the cavity center; (7,6,,¢) denotes
the spherical coordinate system originating from the particle center; e, and e, are the
unit vectors in the x and y directions, respectively. The particle center is
instantaneously situated away from the cavity center at a distance d inthe z direction
(coinciding with the particle-and-cavity common diameter). The objective is to determine
the correction to equations (1) and (2) for the translation and rotation of the composite

sphere due to the presence of the cavity wall.
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Figure 1 Geometrical sketch of the translation and rotation of a composite sphere in an

eccentric spherical cavity perpendicular to their common diameter.
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2.1 Governing equations and boundary conditions

The fluid motions outside the composite particle and inside its porous surface layer

are governed by the Stokes and Brinkman equations, respectively:

nviv-Vp=0, V-v=0 (r,>b and r,<c), 4)
WV -nA’(V-Ue, Qe xne,)-Vp=0,  v.v=0 (a<r<b). (5
Here v and v are the fluid velocity fields for the external (outside the particle) and
internal (inside the porous layer) flows, respectively, p and p are the corresponding
dynamic pressure distributions, and e, together with e, and e, are the basic unit

vectors in the spherical coordinate system (r;,6.,9).

The boundary conditions for the fluid flows are

n=a: v=Ue, +aQe xe,, 6)
n=>b: v="v, (7a)

e, (t—ph=e, (- pI), (7b)
s v=o. (8)

Here, T=n[Vv+(Vv)'] and T=n[VV+(VV)'] are the deviatoric stress tensors for the

external and internal flows, respectively, and I is the unit dyadic.
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2.2 General solutions for external and internal fluid velocities

Since the governing equations and boundary conditions are linear, the velocity field

v and pressure p outside the particle can be decomposed into two parts (Lee and Keh
2013a),

V=V, +V,, P=Di+ Dy )
where v, and p, are the solution of equation (4) in spherical coordinate system
(r,6,,¢) with

V, =V, F Vg + Ve, i=1,2. (10)

rri i

The velocity v, and pressure p, represent the disturbances generated by the particle

with Lamb’s general solution (Happel and Brenner 1983)
v, =2 (1 D(Ci " Ay B (1) cos b (11a)
n=1

o0

Vig = Z[Bln’”linianl ()1 — ﬂ12 )71/2

n=l1

e -2 _, . dP
HC 4, T )%“l)a—uﬁ)“]cow, (11b)
1

o dB ()
Vig = Z;[Bm’i ld—l(l_ﬂlz)l/z

1

e n-2 _, _ )
HChi 2+A1n7r1 )P (1) (1= 7Y sing, (11c)

p =20 A, (2n—1)r""'P(1)cos b, (11d)

n=l1
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whereas v, and p, denote the disturbances produced by the cavity wall with

vy, = 2 1(Co " + Ay, VB (1) cOs (122)
n=l1

Vg = D [ By, B (11 )(1— 11,7 )"

n=l1

1
(Copy ™y, 22 ey S U (i, (12b)
+1 du,
0 . dPl
Vyy = Z[an’”z 0 (15) (1—;122)1/2
n=1 du,
_ n—1 n_+3 n+ly pl 2127 12
(G, + 4, 1 BB () —1,7) 7 ]sing, (12¢)
D, = 2772 4, (2n+3)rznpnl (,UZ)COS¢, (12d)

n=1

In the previous equations, P’

n

are the associated Legendre Polynomials, g =cosé,, and

the unknown constants 4, , B

,and C, need to be determined.
The velocity field v and pressure p inside the porous surface layer of the

composite particle can be expressed as (Sherief ef al 2016)

V=€, + Ve +V4€,, (13)

b, =U1-")" cosp+ Y n(n+D{Cy, 5" + i "

n=1

+ AP A, 0 (A1) + A, K (ARDTEE, (1) cOs (142)

Py = Uy +1Q)cos g+ Y (A7) *[By Ly (A) + BiuK s (A)IPL (1)U — 1)

n=l1
HCy, (—n =D + o "+ AT Ay [0 (AR) — AR,y (A1)]

10
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" dP!
+A1n[nl<n+1/2w1>+ﬂnKn_mmn)]}]%a—ﬂﬁ)”}cow, (14b)
1

X R DT . dp,
By = U+ )sin g YA Byl a (0 B K L 1 2

n=1 lLll

HCy, (—n =D+ Conr "+ AP Ay [0 (AR) = A,y (A1)]

+ Ay, [1K 1 AR) + ARK s (AT IR () (= 147) Y sing (14c)
p=ni’ Z[@n (-n=1)r" +C, " P (14) cos @, (14d)

n=l1
where /, and K, are the modified Bessel functions of the first and second kinds,
respectively,and 4, , B, ,and C, areunknown constants to be determined. Note that
the solutions for v, v, p,and p are only proportional to either cos¢ or sing
(and do not contain the higher-order harmonics) due to the axial symmetry of the system

geometry.

2.3 Transformation between two spherical coordinate systems

A solution of the form in equations (9)-(14) immediately satisfies the requirement
that the velocity is finite for any position in the fluid phases. In order to express these
equations with a single spherical coordinate system, coordinate transformation is required.
The coordinates 7, and u, of any position are related to the coordinates 7 and g,

of that position through the following formulas:
’”2:[’”12(1_/112)"‘(’”1#1+d)2]1/2> = +d)/r. (15)

11
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The relationship between the principal unit vectors of the two coordinate systems is

e,= /e, +fVe,, e, =fVe, —fPe,, (16)
where

SO == A= "+ sy, (172)

P =0=-)" - (=) . (17b)

Applying the boundary conditions at the inner and outer surfaces of the porous layer
of the composite particle and cavity wall given by equations (6)-(8) to equations (9)-(14),

we obtain equations (Al)-(A12), which are lengthy, in Appendix A. The unknown

A A

constants 4, , B, , C

in >

A

in %

B

in %

and C, with i=1 and 2 are to be determined

using these lengthy equations.

2.4 Numerical method

A check of equations (A1)-(A12) shows that the solution to the resulting coefficient
matrix is independent of the ¢ coordinate of the boundary points on the spherical
surfaces r,=a, 1n=>b and r, =c. To satisfy these conditions exactly along the entire

surfaces of the porous layer and cavity wall would require the solution to the whole

infinite array of the unknown constants 4, , B, , C,, 1217.”, B, , and C, with i=1

in in?

and 2. However, the collocation technique (Lee and Keh 2013a) enforces the boundary

conditions at a finite number of discrete points on the half-circular generating arc

12
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(longitude with 6, from 0 to n) of each of the spherical surface and truncates the
infinite series in equations (11), (12), and (14) into finite ones. If the spherical boundaries
are approximated by satisfying the conditions of equations (6)-(8) at N discrete points on
each generating arc, these infinite series are truncated after N terms, resulting in a system

of 12N simultaneous linear algebraic equations in the truncated form of equations (Al)-

B

in 2

(A12). This matrix equation can be solved to yield the 12N unknown constants 4,

in ?

C,, A,, B, ,and C, appearing in the truncated form of equations (11), (12), and (14).

The fluid velocity field is completely obtained once these coefficients are solved for a

sufficiently large value of N.

2.5 Hydrodynamic force and torque on composite sphere
The hydrodynamic drag force F= Fe, and torque T=Te, acting on the
composite sphere can be calculated by integrations involving the total fluid stress
(combination of viscous stress and pressure) over the particle surface, with the result
F=8nn4,, (18)
T =8nnkB,. (19)
These expressions show that only the lowest-order coefficients 4,, and B, contribute

to the force and torque. As b/(c—d) =0, the cavity wall is infinitely far from the particle
13
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and equations (18) and (19) reduce to equations (1) and (2) for the translational and
rotational motions of an unconfined composite sphere.
The force and torque in equations (18) and (19) can be related to the translational
and angular velocities of the composite sphere by
i
F =M (FU+EbQ), (20)
T—i(TU+TbQ) (21)
b.Q t r ’
where F,, F., T,,and T arethe dimensionless resistance coefficients calculated using
constants 4, and B,,.According to the cross-effect theory of the force and torque on
the spherical particle (Goldman et al 1967), it can be proven that the coupling coefficients
F and T, satisfy the relationship

t

_RJ/U
T,/b°Q "

(22)

t

Therefore, it is only necessary to give the solutions for the three coefficients F,, T ,and

F_ (or T)). Note that the values of F,/U and T,/ in equations (20)-(22) can be

calculated using equations (1) and (2).

14
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Chapter 3

Results and Discussion

Results of the force, torque, and coupling coefficients F,, 7., and F, (or 7,) in
equations (20) and (21) for the slow translational and rotational motions of a composite
sphere inside an eccentric spherical cavity normal to their common diameter, obtained by
using the boundary collocation method for numerous values of the ratios of particle radius
to porous layer permeation length Ab, distance between the centers to radius difference
of the particle and cavity d/(c-b), particle-to-cavity radii b/c, and core-to-particle
radii a/b, are presented for the special case of porous sphere (@ =0) in tables 1-3 and
for the general case in table 4 (convergent to at least the significant figures as given). In
the limiting case of Ab — o, our solutions agree with the corresponding results (Lee and
Keh 2013a) obtained for a hard sphere of radius b translating and rotating in a spherical

cavity.

15
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Table 1 The force coefficient F, for the translation of a porous sphere (a = 0) within

an eccentric spherical cavity perpendicular to their common diameter with different

values of d/(c—b), b/c,and Ab.

) b/c F;

Ab=01 Ab=1 Ab=10 Ab=100 Ab =500 Ab— oo

0.25 0.1 1.00050 1.04141 1.25090 1.28734 1.29033  1.29106
0.2 1.00098 1.08412 1.63521 1.75509 1.76510  1.76757
0.3 1.00142  1.12619 2.24472  2.56103 2.58796  2.59460
0.4 1.00180  1.16552 3.24915 4.05757 4.12795  4.14527
0.5 1.00211  1.19998 496145 7.12527  7.32003  7.36765
0.6 1.00235  1.22774 7.91293 14.3342 14.9529  15.1016
0.7 1.00252  1.24767 12.7202  35.0735 37.6291  38.2196
0.8 1.00262  1.25958 19.0178 117.849 135.862  139.647
0.9 1.00266  1.26463 23.8937 673.088 1133.79  1222.21
0.95 1.00266  1.26534  24.8527 1677.67 7859.89  10257.2
0.99 1.00266  1.26545 25.0230 2235.07 52200.0 1333654
0.999 1.00266 1.26545 25.0247 224498 55659.7 1.35E+09

0.5 0.1 1.00053 1.04395 1.26950 1.30919 1.31243  1.31323
0.2 1.00102  1.08745 1.67450 1.80500 1.81587  1.81855
0.3 1.00145 1.12893  2.30684 2.65137 2.68058  2.68778
0.4 1.00181 1.16694 3.33420 4.21533 4.29176  4.31051
0.5 1.00211  1.20007 5.05737 7.41248 7.62462  7.67616
0.6 1.00234  1.22699 7.96856 14.9083 15.5864  15.7477
0.7 1.00251 1.24676 12.6241 36.3899 39.2250  39.8674
0.8 1.00261 1.25905 18.7573 121.145 141.521  145.680
0.9 1.00266  1.26452 23.7699 664.720 1174.17  1275.03
0.95 1.00266 1.26532 24.8271 1637.55 7910.65 10700.4
0.99 1.00266 1.26544  25.0226  2233.52 51720.7 1391281
0.999 1.00266 1.26545 25.0247 224498 55658.6 1.40E+09
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Table 2 The torque coefficient 7, for the rotation of a porous sphere (a = 0) within

an eccentric spherical cavity perpendicular to their common diameter with different

values of d/(c—b), b/c,and Ab.

b/c T,

Ab=01 Ab=1 Ab=10 Ab=100 Ab =500 Ab— o

0.25 0.1 1.00000 1.00008 1.00099 1.00131 1.00134 1.00135
0.2 1.00001  1.00062 1.00753 1.01006 1.01031 1.01037
0.3 1.00002 1.00198 1.02466 1.03319 1.03404 1.03425
0.4 1.00005 1.00447 1.05781 1.07890 1.08103  1.08157
0.5 1.00009 1.00843 1.11440 1.15985 1.16453 1.16571
0.6 1.00015 1.01417 1.20654 1.29989 1.30988 1.31241
0.7 1.00024  1.02209 1.35723 1.55304 1.57550 1.58122
0.8 1.00034 1.03269 1.61960 2.07447 2.13534  2.15088
0.9 1.00048 1.04663  2.15295 3.56024 3.84241 3.91569
0.95 1.00057 1.05514 2.68095 6.10100 7.15071  7.48248
0.99 1.00064 1.06279 3.42910 17.1988  28.7220 36.0981
0.999 1.00066 1.06463 3.67393 30.6736 111.831 358.118

0.5 0.1 1.00000 1.00018 1.00223 1.00297 1.00304 1.00306
0.2 1.00002 1.00118 1.01475 1.01982 1.02032 1.02045
0.3 1.00004 1.00328 1.04281 1.05843 1.06000 1.06039
0.4 1.00007  1.00655 1.09061 1.12686 1.13056 1.13150
0.5 1.00012  1.01106 1.16383  1.23876 1.24662 1.24861
0.6 1.00018 1.01693  1.27190 1.42158 1.43809  1.44227
0.7 1.00026  1.02447 1.43288 1.73829 1.77561  1.78498
0.8 1.00036 1.03425 1.69217 236540 2.47014 2.49584
0.9 1.00050 1.04720 220112 4.02012 4.54377 4.67236
0.95 1.00057 1.05530 2.70534 6.59260 8.39244  9.05476
0.99 1.00064 1.06280 3.43126 17.5438 30.5998 44.1787

0.999 1.00066 1.06463 3.67397 30.6927 112.784  439.396
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Table 3 The coupling coefficient F, for the motion of a porous sphere (a = 0 ) within

an eccentric spherical cavity perpendicular to their common diameter with different

values of d/(c—b), b/c,and Ab.

b/c —F =-T(To/b*2)/(Fo/V)

Ab=01 Ab=1 Ab=10 Ab=100 Ab =500 Ab— o

0.25 0.1 2.28E-06 0.00022 0.00312 0.00425 0.00437 0.00439
0.2  7.80E-06 0.00077 0.01382 0.01956 0.02013  0.02028
0.3 1.44E-05 0.00148 0.03492 0.05209 0.05382 0.05426
0.4 2.01E-05 0.00214 0.07062 0.11422 0.11866  0.11977
0.5 233E-05 0.00256 0.12630 0.23285 0.24391  0.24667
0.6 2.28E-05 0.00257 0.20459 0.47346 0.50283 0.51004
0.7 1.85E-05 0.00214 0.28887 1.02391 1.11690 1.13889
0.8 1.14E-05 0.00134 0.31039 2.56615 3.00649 3.10125
0.9 3.83E-06 0.00046 0.17866 7.85163 13.5020 14.6054
0.95 1.10E-06 0.00013 0.07029 9.84411 47.9625 62.8731
0.99 4.90E-08 5.98E-06 0.00442 2.05061 62.9921 1661.34
0.999 6.96E-10 6.15E-08 5.00E-05 0.04770 3.83860 168150

0.5 0.1 4.97E-06 0.00047 0.00688 0.00940 0.00965 0.00971
0.2 1.63E-05 0.00162 0.02977 0.04226  0.04350 0.04382
0.3 2.92E-05 0.00301 0.07364 0.11078 0.11449 0.11542
0.4 3.97E-05 0.00424 0.14625 0.24049 0.25000 0.25238
0.5 4.50E-05 0.00496 0.25689 0.48734 0.51115 0.51706
0.6 436E-05 0.00493 0.40776 0.98690 1.05072 1.06622
0.7 3.54E-05 0.00409 0.56405 2.12498 2.33024 2.37778
0.8 2.19E-05 0.00258 0.60034 5.26945 6.26407 6.47157
0.9 747E-06 0.00090 0.34884 154517 27.9584 30.4737
095 2.17E-06 0.00026  0.13825 19.1087 96.4590 131.180
099 9.73E-08 1.19E-05 0.00879 4.05415 124.402 3466.26

0.999 1.17E-09 1.23E-07 0.00010 0.09497  7.59731 350836
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Table 4 The resistance coefficients for the motion of a soft sphere with Ab=1 within

an eccentric spherical cavity perpendicular to their common diameter with different

values of d/(c—b), b/c,and a/b.

b/c a/b=0.5 a/b = 0.95

Fy I —F F T —F

0.25 0.1 1.13658  1.00022  0.00063 1.27296 1.00116  0.00372
0.2 1.31052 1.00164 0.00253 1.70765 1.00887  0.01690
0.3 1.53410 1.00529 0.00567 2.43650 1.02917  0.04424
0.4 1.82451 1.01207 0.00990 3.74346  1.06893  0.09470
0.5 2.20596  1.02288 0.01492 6.30177 1.13822  0.18652
0.6 271281 1.03880 0.02012  11.9425 1.25494 0.36040
0.7 3.39459  1.06119 0.02437  26.7278 1.45651 0.71955
0.8 4.32415 1.09197 0.02557 77.9434 1.83817 1.58097
0.9 5.61329 1.13412  0.01989 382.640 2.73744 4.22017
095 6.44589 1.16086 0.01241 1312.30 3.83630 7.46120
0.99  7.23124 1.18570 0.00297 5973.18 5.96394  6.92976
0.999  7.42510 1.19178 0.00031 9588.96 6.89282 1.11704

0.5 0.1 1.14600 1.00049 0.00139 1.29354 1.00262  0.00822
0.2 1.32730  1.00317 0.00546 1.75361 1.01744  0.03650
0.3 1.55592  1.00892 0.01196 2.51698 1.05108  0.09399
0.4 1.84888 1.01804 0.02053 3.87752 1.10976  0.19900
0.5 2.23024 1.03080 0.03055 6.53011 1.20334 0.38916
0.6 2.73428 1.04760 0.04081 12.3589 1.35042  0.74799
0.7 3.41082 1.06934 0.04910 27.5775 1.59019 1.48626
0.8 4.33373  1.09779 0.05130 80.0005 2.01931 3.24621
0.9 5.61660 1.13644 0.03981 388.944 295805 8.57969
095 6.44690 1.16159 0.02482 1323.17 4.02084 15.0462
099  7.23129 1.18574 0.00593 597798 5.99664 13.8706

0.999  7.42511 1.19178 0.00062  9589.07 6.89335 2.23411
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Clearly, F,=T =1 and F. =T =0 (the coupling between particle translation and
rotation disappears) as b/(c—d)=0 (the particle is unconfined) for any values of a/b
and Ab, consistent with equations (1) and (2). Surprisingly and against intuition, as
shown in tables 3 and 4, the coupling coefficient F, (and thus, 7,) is negative for
specified values of the parameters a/b, Ab, b/c, and d/(c—b). This interesting
feature was found and explained in the corresponding translation and rotation of a hard

sphere in an eccentric spherical cavity (Lee and Keh 2013a).

3.1 Porous sphere

The force, torque, and coupling coefficients F,, 7., and F, for a porous sphere
(a=0) translating and rotating inside an eccentric spherical cavity normal to their
common diameter are plotted versus the parameters Ab, d/(c—b),and b/c in figures
2-4, respectively. Analogous to the situations of translational and rotational motions of a
porous sphere inside a spherical cavity along/about the common diameter (Saad 2016,
Chou and Keh 2022, Appendix B), for given values of the parameters Ab and d/(c-b),
tables 1 and 2 as well as figures 3 and 4 indicate that the normalized force and torque
exerted by the fluid on the particle translating and rotating within the cavity normal to
their common diameter (or the coefficients F, and 7., respectively) increase

monotonically with an increase in the particle-to-cavity radius ratio b/c . For fixed
20
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values of Ab and b/c, these wall-corrected hydrodynamic force and torque generally

increase with increasing relative distance between the particle and cavity centers

d/(c—b) (there are exceptions for F, when b/c is close to unity and Ab is finite,

as shown in table 1 and figure 3a).
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Figure 2 Resistance coefficients for the translation and rotation of a porous sphere

(a =0) in an eccentric spherical cavity perpendicular to their common diameter versus

the shielding parameter Ab with b/c=1/2 and d/(c—b) as a parameter: (a) F,;

(b) T.;(c) F,.
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Figure 3 Resistance coefficients for the translation and rotation of a porous sphere
(a =0) in an eccentric spherical cavity perpendicular to their common diameter versus
the eccentricity parameter d/(c—b) with Ab=10 and b/c as a parameter: (a) F,;

(b) T.;(c) F,.
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Figure 4 Resistance coefficients for the translation and rotation of a porous sphere

(a =0) in an eccentric spherical cavity perpendicular to their common diameter versus

the particle-to-cavity radius ratio b/c¢ with d/(c—b)=1/2 and Ab as a parameter:

(@ F,;() T,;(c) F,.
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On the other hand, the coupling coefficients F, and 7, are not necessarily
monotonic functions of the parameters b/c¢ and d/(c—b) [there may be maxima in
their magnitudes at some moderate values of b/c and d/(c—-b) ], keeping other
parameters unchanged. As illustrated in figure 2, all the resistance coefficients F,, T,
and F. increase with an increase in the ratio of particle radius to permeation length A1b
for constant values of b/c and d/(c—b). Our collocation solutions of F, and 7, in
the concentric limit d/(c-b)=0 (given in figures 2 and 3, with F. =7 =0 due to the
axial symmetry of the translation and rotation) are found to agree excellently with the
available analytical solutions (Keh and Chou 2004). A comparison between tables 1 and

2 indicates that the boundary effect of the cavity on the translational motion of the particle

is much more pronounced than that on the rotation.

3.2 Composite sphere

The force, torque, and coupling coefficients F,, T

roo

and F. for a general
composite sphere translating and rotating inside an eccentric spherical cavity normal to
their common diameter are plotted versus the core-to-particle radius ratio a/b in figures
5 and 6 for various values of the particle-to-cavity radius ratio b/c, shielding parameter

Ab , and eccentricity parameter d/(c—b). Likewise, F, and 7, are monotonically
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increasing functions of /¢ and Ab, and generally rise with increasing d/(c—b),
keeping other parameters unchanged. The coupling coefficients F. and 7, increase
with an increase in Ab, generally increase with an increase in d/(c—b), and are not
necessarily monotonic functions of the parameter b/c (there are maxima in their
magnitudes at some modest values of b/c, as shown in table 4 and figure 5c). The cavity

wall retardation effect on the translation of the composite sphere is much more significant

than the effect on the rotation.
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Figure 5 Resistance coefficients for the translation and rotation of a composite sphere
‘s

d/(c—b)=4/5 and

in an eccentric cavity versus the core-to-particle radius ratio a/b with Ab=1:(a) F,

(b) T.; (¢) F. . The dashed and solid curves represent

d/(c—b)=1/5, respectively.
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Figure 6 Resistance coefficients for the translation and rotation of a composite sphere

in an eccentric cavity versus the core-to-particle radius ratio a/b with b/c=1/2: (a)

F ; (b) T ; (c) F. . The dashed and solid curves represent d/(c—b)=4/5 and

d/(c—b)=1/5, respectively.
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For given values of b/c, d/(c—b),and Ab, figures 5 and 6 and table 4 illustrate

that the resistance coefficients F, and T for a translating and rotating composite

particle inside an eccentric spherical cavity increase monotonically with increasing core-

to-particle radius ratio a/b (become greater if the porous layer is thinner), where cases

a/b=0 and a/b=1 represent entirely porous sphere and hard sphere, respectively. All

hydrodynamic force and torque results for a general composite sphere fall between the

lower and upper limits of a/b=0 and a/b=1, respectively. When the surface layer of

the composite sphere has slight to modest permeability (Ab >10), the results of the force,

torque, and coupling coefficients for the composite sphere with a/b<0.8 inside a

spherical cavity can be well approximated by those of an entirely porous sphere within a

spherical cavity with the same values of b/c, d/(c—b),and Ab,as shown in figure 6.

Here, the hard core of the composite particle can hardly feel the relative motion of the

fluid and only exerts negligible hydrodynamic resistance. However, this approximation

is not suitable for porous layers with high permeability.

Since the governing equations for the general problem of slow translation and

rotation of a composite sphere in an arbitrary direction within an eccentric spherical cavity

are linear, its solution can be obtained by the superposition of the solutions to its two

subproblems: translation and rotation normal to their common diameter, which is

investigated in the main text of this thesis, and axisymmetric translation and rotation, as
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shown in figure 7. The collocation solutions for the translational/rotational motions of a

composite sphere inside an eccentric spherical cavity along/about their common diameter

were previously obtained (Chou and Keh 2022, Appendix B). A comparison between

these solutions and our results in tables 1, 2, and 4 shows that the cavity wall may exert

greater or smaller hydrodynamic force and torque on the particle when its

translation/rotation occur along/about the common diameter than the case of translation

and rotation perpendicular to it (their differences are generally not significant). Thus, the

directions of translation and rotation of a composite sphere inside an eccentric spherical

cavity are slightly different from those of the imposed force and torque, respectively,

except when they are oriented along/about or normal to the common diameter.

y

Figure 7 Geometrical sketch of the translation and rotation of a composite sphere in

arbitrary directions within an eccentric spherical cavity.
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The physical meanings for the four dimensionless parameters a/b , b/c,

d/(c—b),and Ab are graphically depicted in figure 8.

a/b core-to-particle radius ratio /c particle-to-cavity radius ratio
a/b—- 0 a/b=1 b/c -0 b/c -1
(porous) (solid) (unbound)
d/(c—b) cccentricity parameter shielding parameter
"‘ '--..
d/(c—=b) - 0 d/(c=b) =» 1 Ab - 0 Ab = o
(concentric) (fully permeable) (impermeable)

Figure 8 Schematic diagram of the physical meanings for the dimensionless parameters

alb, b/c, d/(c-b),and Ab.
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Chapter 4

Conclusions

In the main text of this thesis, the slow coupled translation and rotation of a
composite sphere, which is a hard sphere core coated with a permeable porous layer, in
an incompressible Newtonian fluid inside an eccentric spherical cavity normal to their
common diameter in the quasi-steady state is semi-analytically studied by using a
boundary collocation method. Accurate solutions of the force and torque exerted by the
fluid on the composite sphere are obtained for wide-range values of the ratio of particle
radius to porous layer permeation length Ab, particle-to-cavity radius ratio b/c, core-
to-particle radius ratio a /b, and relative distance between the particle and cavity centers
d/(c—b) . The force and torque on a translating and rotating particle increase
monotonically with an increase in Ab, a/b, or b/c, and generally increase with
increasing d/(c—b). The boundary effect of the cavity on the translation of the particle
is much more pronounced than that on the rotation. The coupling effect in the
simultaneous translation and rotation inside an eccentric spherical cavity is complicated
and not a monotonic function of b/c.

In tables 1-4 and figures 2-6, we give results for the resistance problem, defined as
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the problem of determining the hydrodynamic force F and torque T on a composite

sphere for specified quasi-steady particle velocities U and Q within an eccentric

spherical cavity. In the mobility problem, the external force F and torque T actingon

the composite sphere have been given, and the particle velocities U and Q need to be

determined. For the slow translation and rotation of a composite sphere within an

eccentric spherical cavity perpendicular to their common diameter considered here, our

expressions in equations (20) and (21) may also be applied to its matching mobility

problem where the external force and torque on the composite sphere are given and thus

the composite sphere translates and rotates accordingly. For example, the translational

and angular velocities of a composite sphere under the condition of free rotation within

an eccentric spherical cavity normal to their common diameter driven by the external

force Fe_ can be obtained using equations (20) and (21), with the result

U=——(F-F1)", (23a)
0 r
UT

9=——-, (23b)

where the resistance coefficients in equation (23) have been given in the tables and figures

in the previous chapters and the value of F;/U on the right-hand side of equation (23a)

can be calculated using equation (1).
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List of Symbols

the radius of the hard core of the composite sphere, [m]
unknown constants in Egs. (11) and (12)

unknown constants in Eq. (14)

position functions given by Egs. (A13)-(A17)

position functions given by Eqs. (A22)-(A27)

position functions given by Egs. (A34)-(A39)

position functions given by Egs. (A18)-(A21)

position functions given by Egs. (A28)-(A33)

position functions given by Egs. (A40)-(A45)

the radius of the composite sphere, [m]

the radius of the cavity, [m]

the distance between the cavity center and the particle center, [m]

principal unit vectors in the ith spherical coordinate system
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x> 7y2¥z

f(l),f(z)

F,F

F.F,

F.E.T.T,

rotes

P

)23

>

principal unit vectors in Cartesian coordinates

the functions used for coordinate transformation

the drag force exerted on the composite sphere by the fluid, [N]

the drag force exerted on a composite sphere by an unbounded fluid,

[N]

the dimensionless resistance coefficients

unit dyadic

the modified Bessel function of the first kind of order n

the modified Bessel function of the second kind of order 7

dynamic pressure for the external fluid, [Pa]

the component of p generated by the particle, [Pa]

the component of p generated by the cavity, [Pa]

dynamic pressure for the internal fluid, [Pa]

the associated Legendre function of the first kind of order 7 and

degree 1
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X, ¥V, Z

spherical coordinates originated from the particle center, [m, -, -

spherical coordinates originated from the cavity center, [m, -, -

the torque exerted on the composite sphere by the fluid, [N-m]

the torque exerted on a composite sphere by an unbounded fluid,

[N-m]

the translational velocity of the composite sphere, [m-s™]

velocity field for the external fluid, [m-s™]

the component of Vv generated by the particle, [m-s™]

the component of Vv generated by the cavity, [m-s™']

velocity field for the internal fluid, [m-s™]

components of v, in spherical coordinates, [m-s™']

components of V in spherical coordinates, [m-s™]

Cartesian coordinates originated from the cavity center, [m, m, m]
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Greek letters

ro~r position functions given by Eqs. (A46)-(A50)
n the viscosity of the fluid, [kg-m™-s™']
A the reciprocal of the square root of the fluid permeability or flow

penetration length in the porous layer, [m™]

4, =cos o,

0,9,z cylindrical coordinates originated from the cavity center, [m, -, m]
T the viscous stress tensor of the external fluid, [N-m™]

T the viscous stress tensor of the internal fluid, [N-m™]

Q.Q the angular velocity of the composite sphere, [s™']
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Appendix A
Equations to Be Solved for Unknown Constants in

Equations (9)-(14)

Applying the boundary conditions given by equations (6)-(8) to equations (9)-(14),
we obtain

> n(n+1) (C,a"" +Cpa >

n=l1

A2 1 (Aa)+ Ay K AP () =0, (A1)

> {(Aa)y By 1,0 (A0) + B K, 0 (AQ)I P () (1 - 7)™

n=l1

HC,y, (—n—Da"" +Cna™" 2+ 27 2a {4y, [nl ., (Aa) - Aal,_,,(Aa)]

N dp!
+A[K () + ﬂaKn_l/Ma)]}]%a )y =0, (A2)
1
0 B R . dPl
S {(Aa) ‘”[Bz,,lnmua:)+Bm1<n+1/z<ﬂa)]%(l—uﬁ)‘”
n=l1 1

HCy (~n=Da"" + Cna™" 7 + 2722 {4, [0, (Aa) - Aal,,_, ()]

+ A4, (7K, p (Aa) + 2aK,, (AP ()1 - 12) 2} =0; (A3)

S [+ 1(Cob " + A5

n=l1

—n(n+D){Cy, 0"+ C b+ AT Ay, 0,5 (WD) + 4,K 1 (AD)IVIP) (1)

dPl n— n -
AC OBl 1 T ED A 2y B B )
2
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1
iy, (nf OB () + 22 0 4 (1)
n+1 du,

(1=, = U - )2, (A4)

SUIB,b " —(Ab) By, L1y (AD) + B, K, (AD)V P (1) (1 )2
n=l

HC, b2+ 4, 2

n

b - ézn (—n—1)p"" - élnnb_n_z — A7 {/Alzn [1,,11/,(AD)

. dp!
TYA (ﬂb)]+Aln[nKnH/z(ﬂb)MbKn_l/zmb)]}]g—("l)a—uﬁ)“

e
" _ dpP! e
By, LV P ()1~ 1)+ Cy, inf PP (1) — £ ﬁ"z)(l—u;)“}rz !
2
n+3 o dP .
oy f O Bl )= 70 32“2) (-2 3", =Usy +bQ, (AS)
2

< - 1244 5 dp, .
Z {[B,,b '~ (2b) "2 {By,1s12(AD) + B, K, 1/, (AD)}] % (I- :ulz )1/2 +[C,b ?

n=1 1

n—2

+ A, —=b"=Cy, (—n—=1)p"" =C, nb " = A7, [nl ., (Ab) = AbL,_,,(A)]

~ - n dPnl
A1, [1K 12 (AB) + ABK,, L ADIE, (e)(U = p47) "2 +[ By 1y d(#Z) (1= )"

)

(Co™ Aoy DB )1 ) 1, = U b0, (A6)
i[(Cme; + A, Ay + By, By, + Cs, Coy + Ay, 4,
n=1

~(C5,Cy, + G, Chy + Ay o, + A4y, 4, )= =0, (A7)
S BBy +CouCrn + Ay A + By B 4o, G+ Ay )
n=1

_(EZnB;n + Zg)1;131";1 + éZnC;n + élnclun + IaznA;n + 1211;1141",1 )= =0, (AB)
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skekck ekok stk stk

Z[(BlnB;:* +C1nC1*:* +A1nAln +B2nB2n +C2nC2n +A2nA2n )
n=1

A

_(BSZnB;n + BglnBlmn + éZnC;n +C Clmn + AZnAgn + IalnAln;z )]rI = = 09 (A9)

1n

SUIB, L Or Pl ()= 7)™

n=1

1
G, ((n+ 1) fOP () + 1 %(l—uﬁ)“}n“
o
n—-2 dPnl (/J ) -n
+ A4, {(n+1) OB () +—= f P =22 (1= 1) 245",
n duy
+1P, (1, ((Coc" ™ + Ay, =0, (A10)

00

Z {[Bn,f(l)rlinil[;l (4)(A - /‘112)71/2

n=1

dpP' .
—Cm{(n+1)f(2)1’,3(ﬂ1)—f‘”%(l—ﬂlz)“‘m :
1

dPn1 (44)
duy

n—2 n
~ A, A+ 1) PP (1) - - o (=),

_ +3
#Byy Bl ()= 7)1 —(Cope ! 4 Ay, ™

1
)dPn (44) (1—,1122)1/2} -0, (Al
+1 du,

> e dPn1 e n-2 _, _
LB R (- ) (G A, P )= 1),

n=l1 :u1

P! _ +3 .
2By, S UB) 2y g gy P83 ey pl - ) =0 (AT2)
du, n+1
Here, 4,, B, ,and C, with asterisks and apostrophes for i=1 and 2 in equations

(A7)-(A9) are the position functions given by
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1
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where the simplified expressions of or,/0r, or,/06,, 06,/0r, and 00,/06, were
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given by Lee and Keh (2013b), f© and £ are given by equation (17),

P =D 2k =3 Gy e 2 e - 52" ~ SR (Ad6)
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80 or,
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ntl - or 20, du,
n+2k-1 _ 89 89 dpP! d? P
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Appendix B
Translation of a Composite Sphere in an Eccentric

Spherical Cavity along Their Common Diameter

B.1 Introduction

The objective of this appendix is to obtain a theoretical solution for the quasi-steady
slow translation of a soft spherical particle in a non-concentric spherical cavity along their
common diameter. A boundary collocation method (Keh and Lee 2010, Chou and Keh
2022) will be used to solve the creeping flow equations applicable to this system, and the
wall-corrected hydrodynamic drag exerted on the particle will be obtained in many cases.
The drag results reveal some interesting features of the influence of the cavity wall on

soft particle motion.
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B.2 Analysis

As shown in Fig. B1, we consider the quasi-steady flow caused by a soft spherical
particle of radius b translating with a velocity U in an incompressible Newtonian
fluid inside an eccentric spherical cavity of radius ¢ along their common diameter ( Z
axis). Here, (p,¢,z) and (r,,0,,4) represent the circular cylindrical and spherical
coordinate systems, respectively, with their origins attached to the cavity center. The soft
particle has a hard core of radius a and a porous layer of thickness & —a . The center
of the particle is situated at a distance d from the cavity center instantaneously. The
purpose is to determine the correction for the hydrodynamic drag experienced by the

particle because of the existence of the cavity.

Fig. B1. A soft spherical particle translating inside a spherical cavity along their common

diameter.
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Owing to low Reynolds number, the fluid motion is governed by the Brinkman
(inside the porous surface layer) and Stokes (outside the soft sphere) equations for the
axisymmetric creeping flow,

(E*=2)E*¥W =0 (a<r <h), (B1)
E*(E’P)=0 (n2b and r,<c), (B2)
where (7,,6,,¢) 1isthe spherical coordinate system based on the center of the soft particle,
A" is the permeation length or square root of the fluid permeability in the porous layer,

¥ and ¥ are stream functions of the flow in the porous layer and external flow,

respectively, related to their nontrivial velocity components (v,,v,) and (v,,v,) In

spherical coordinates by

YR r’ s:n 0. a(fé:p) ’ (a2v4)= v siln o, a(i;lp) ’ ®3)
the Stokes operator
0> sin@ 0 1 0
E o w0 ®
and i=1 or2.
The boundary conditions for the fluid flow are
n=a: ‘342‘351209 (BS)
n=>b: v, =V, Vo = Vg s (B6a)
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T,0 =%m0s Ty —P=%.,.— D, (Béb)

B, =cC: v, =—Ucosb,, v, =Usind,. (B7)

Here, (7,,,7,,) and (7,,,7,. ) are the nontrivial stress components in the spherical
coordinates (7,,0,,¢) for the flow in the porous surface layer and external flow,
respectively, p and p are the matching pressure profiles, and Eqgs. (B5)-(B7) take a
reference frame translating with the soft particle. For axisymmetric motions with the
effective viscosity of the fluid in the porous layer equal to the bulk fluid viscosity (Koplik
et al 1983, Masliyah et al 1987) and satisfying Eq. (B6a) simultaneously, the boundary

condition (B6b) is equivalent to (Chen 1998)

Ov, OV,

or, _Grl

n=>b: , p=p (or 7, =7,). (B8)

We can express the stream functions as (Keh and Lee 2010, Chen and Ye 2000)

g’} = i{Alnrln +B

In
n=2

R (A1) + DK, (A)N(AR) G, (c0s ), (B9)

V= [(Ayn" +Couty" )G, 2 (c0s 0,) + (B, 1" + D, 1" )G P (c0s B)],  (B10)
n=2

where I, and K, are the modified Bessel functions of the first and second kinds of

order n, respectively, and G, Y2 s the Gegenbauer polynomial of the first kind of

order n and degree —1/2.The unknown coefficients 4., B,, C, ,and D, (i=1

or 2) will be determined using Eqs. (B5)-(B7). When constructing the solution (B10), the
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general solutions of Eq. (B2) in the two spherical coordinate systems can be superimposed
due to the linearity of this equation.
Application of Eq. (B3) to Egs. (B9) and (B10) leads to the components of fluid

velocities (v,,v,) and (v,,v.) for the flow inside the porous layer and external flow,

respectively, in circular cylindrical coordinates as

{}p = Z[AlnA:,(’/i701)+B]nBrlz(rl’01)+ Cln}/:l(ri’el)_'_Dlné‘n,(rlﬁel)] s (Blla)
n=2

5, = [4,401,6)+ B, Bl(5.0)+ C, 72, 0)+ D, 8. 6)];  (BlIb)
n=2

Vp = Z[AZnAi’z (7"2 H 02) + C2nC;l (r2 H 62) + B2nBlg (l/i H 91 ) + D2nD}; (I/i ° 01 )] ) (B lza)
n=2

2n"n 2n""n

vz:Z[AznA;'(;»z,ez)+Cz,lc;’(r2,02)+B B'(r,6)+D, D!(r,6)], (B12b)
n=2

where A4, A, B, B!, C,, C!, D/, D!, vy, y', &, and 8" are functions

of spherical coordinates (»,6) defined by Egs. (C1)-(C12) in Appendix C. Applying

boundary conditions (B5)-(B7) to Egs. (B11) and (B12), we obtain

Z[AMA; (a,6)+B,, B (a,0)+C, 7 (a,0)+D,5 (a,6)]=0, (B13a)
n=2
Z[AlnA;'(a» 6)+B,B,(a,0)+C,y,(a,0)+D,,05,(a,6)]=0; (B13b)
n=2

n-n n n

D {[4,A4,(r,,0,)+C,,C.(13,6,)],_, +B,,B,(b,6,)+D,,D, (b,6)
n=2
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_AlnAr: (b’el)_BlnB:,(bael)_C1n7r’,(b901) _Dlngr;(bﬁel)} =0 > (B14a)

2n‘"n 2n"n 2n"n 2n""n

D A4, 4(r,,6,)+C,,C(13,6,)],_, + B,,B)(b,6)+D,,D;(b,6,)
n=2

—A4, A"(b,6)—B, B'(b,0)—C, y"(b,0)—D, 5"(b,6,)} =0, (B14b)

In“"n In™n nln In~"n

Z {[AZnA: (r2 > 02) + CZnC}: (’”2 > 02 )]r]:b + B211B:; (b’ 91 ) + DZnD: (b’ 01)

n=2

—4,4,(0,6)-B,,B,(0,0,)-C,,7,(5,6)-D,,5,(b,6)} =0, (Bl4c)

1n=n

0

Z {[AZnA;: (’”2 2 02) + C2nC:* (r2 2 62 )]r] =b + BZnB;: (b’ 01) + D2nD:>‘< (b’ 01 )

n=2

_AlnA::(bagl) _BlnBl*:(b’ 91)_C1n7/:*(b9 91) -D 5**(]7» 01)} =0 5 (B14d)

In~"n

ek

Z {AZnA:** (09 92) + CZnC:** (C, 62) + [B2an (l/i > 01 ) +D D*** (’/i > 91 )]rzzc} = _U s (Blsa)

2n""n
n=2

sieksiek

Z {AZnA:*** (C’ 02) + C2nC:*** (C, 02) + [BZan (I’i K 01) + DZnD;*** (rl H 01 )]rz :c} = _U ] (B 1 Sb)
n=2

sk etk seksieok £ sk sk seskok soeskok

Ed sk
Where An’ Aln’ A2n’ An ’ An 4 Bn’ Bln’ BZn’ Bn 2 Bn 2 Cn’ Cn 2 Cn ’
siesiestesk * ok ek seskeieok £ sk * ok .
¢c ,D,D ,D ,D , vy, ,v ,0,,ad 6 are functions of (r,0)

defined by Egs. (C13)-(C34).

To exactly satisfy the conditions in Egs. (B13)-(B15), solutions of the whole infinite

unknown constants 4,,, B, , C, ,and D, arerequired. But, the collocation technique

in > in in >

(Keh and Lee 2010, Chou and Keh 2022) enforces boundary conditions at a limited
number of discrete points on the longitudinal semicircle of each of the spherical surfaces
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(from 6,=0 to 6,=m at r,=a, 1,=b,and r, =c) and truncates the infinite series
in Egs. (B9)-(B12) to finite series. If the longitudinal semicircle is approximated by N
discrete points satisfying the conditions in Egs. (B5)-(B7), then the infinite series in Egs.
(B9)-(B12) are truncated after N terms, resulting in 8N linear algebraic equations in

the truncated form of Eqgs. (B13)-(B15). These equations can be solved numerically to

B

in

c

in %

produce the 8N unknowns A4,

in 2

and D, required for the truncated Egs.
(B9)-(B12). Once these unknowns are solved for a sufficiently large number of N, the
fluid velocity can be fully obtained. Details of the boundary collocation scheme are given
in a previous paper on the translational motion of a hard spherical particle in a cavity (Keh
and Lee 2010).

The drag force exerted by the external fluid on the soft particle (in the opposite
direction of U ) can be determined from (Happel and Brenner 1983)

F=4nnD,,, (B16)
where 7 is viscosity of the fluid. The previous equation indicates that only the lowest-
order constant D,, contributes to the hydrodynamic force acting on the particle. If the
soft sphere is located at the center of the spherical cavity (d =0), D,, can be obtained
analytically as Eq. (C35).

When the porous layer of the soft particle vanishes, it reduces to a hard particle of

radius a =b, Egs. (B1), (B5), (B6b), (B8), (B9), (B11), (B13) and (Bl4c,d) are trivial,
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=B, =C,=D,, =0, and just Egs. (B14a,b) and (B15) are needed to
be solved for the 4N unknown constants 4, , B,,, C,,, and D, . When the hard

core disappears (a = 0), the soft sphere reduces to a porous particle of radius b , Egs.
(B5) and (B13) are trivial, B,, =D,, =0, and just Egs. (B14) and (B15) are needed for

C

In >

4., B, , C

the 6 N unknowns A4 and D,,.

In » 2n > 2n 2n >

In the limiting case of b/c¢ =0, the soft sphere is unconfined and Eq. (B16) can be

expressed analytically as Eq. (1). For the cases of a=b and a =0, Eq. (1) becomes

Stokes’ law ( F, = 6mnbU ) for a hard sphere and corresponding result for a porous sphere,
respectively. In the limits Ab — o0 (impermeable in the porous surface layer of the
particle) and Ab =0 (completely permeable in the porous surface layer), Eq. (1) again

simplifies to Stokes’ law for hard spheres of radii » and a, respectively.
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B.3 Results and Discussion

Results of the hydrodynamic drag force acting on a soft sphere translating inside an

eccentric spherical cavity, obtained with good convergence by using the boundary

collocation technique described in the previous section for various values of the ratios of

the core-to-particle radii a/b, particle-to-cavity radii b/ c, distance between the centers

to radius difference of the cavity and particle d/(c—»b), and particle radius to porous

layer permeation length Ab , are presented for cases of porous sphere (a = 0 ) and general

soft sphere in Tables B1 and B2, respectively. The drag force F, acting on an identical

particle in the unbounded fluid given by Eq. (1) is used to normalize the cavity-corrected

value F . These results converge to at least the significant digits as given in the tables

and agree well with the available analytical solution in the concentric limit

d/(c—b)=0 given in Appendix C. Also, our results in the limit b/c— 0 (vanishing

cavity wall curvature compared with the particle) but finite in b/(c—d) are in good

agreement with the results for a soft spherical particle translating perpendicular to a large

plane wall obtained by Chen and Ye (2000). In the limit A6 - o (or a=»), our results

agree well with those (Keh and Lee 2010) obtained for a hard sphere translating in a

corresponding cavity. F/F =1 as b/(c—d)=0 (the cavity wall is far away from the

particle) as expected, irrespective of the other parameters.
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Table B1 The normalized drag force F/F, experienced by a porous sphere (a = 0)
translating inside a spherical cavity at different values of d/(c — b), b/c, and Ab.

ﬁ b/c FJF,
Ab=01 Ab=1 Ab=10 Ab=100 Ab =500
025 0.1 0.9949  1.0380 12619 13015  1.3048
0.2 09702 1.0569  1.6570 17931  1.8046
0.3 0.9626  1.0890 22845  2.6428  2.6738
0.4 0.9673  1.1303 33190 42244 43053
0.5 09766  1.1728 50786 74727  7.6958
0.6 09869 12108 80957 151128  15.8189
0.7 0.9953 12397 129569  37.0789  39.9815
0.8 1.0004 12572 192043 1244E2  1.447E2
0.9 1.0023 12643 239350 6.971E2  1.195E3
0.95 1.0018 12652 24.8577 1.692E3  7.847E3
0.975  1.0023 12649 249698 2.025E3  2.702E4
0.99 1.0026 12654 250226 2212E3  4.747E4
0.999  1.0027 12655 25.0247 2245E3  5.564E4
0.5 0.1 0.9901  1.0419 13253 13778 13821
0.2 09389  1.0379  1.8007 19933  2.0100
0.3 0.8681  1.0007 25106  3.0559  3.1058
0.4 0.8634  1.0237  3.6576  5.0423  5.1760
0.5 09022  1.0925 55773 9.1351  9.5057
0.6 0.9435  1.1622 87466 187607  19.9314
0.7 09755 12169  13.5844 462215  51.0323
0.8 0.9943 12500 19.4783 1.521E2  1.857E2
0.9 1.0014 12631 239276 7.604E2  1.522E3
0.95 1.0023 12649 24.8262 1.600E3  9.517E3
0.975  1.0010 12633 248767 1.756E3  1.958E4
0.99 1.0021 12647 249957 2.147E3  3.790E4

0.999 1.0027 1.2654  25.0246  2.245E3  5.564E4
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Table B2 The normalized drag force F/F, experienced by a soft sphere with Ab =1

translating inside a spherical cavity at different values of d/(c — b), b/c, and a/b.

ﬁ b/c  F/F,
a/b=05 a/b=08 a/b=095

0.25 0.1 1.1387 1.2304 1.2858
0.2 1.2976 1.5592 1.7389

0.3 1.5105 2.0622 2.5003

0.4 1.7973 2.8642 3.8672

0.5 2.1822 42100 6.5427

0.6 2.7002 6.6206 12.4338

0.7 3.3984 113193 27.8263

0.8 43408 21.5831 80.8279

0.9 5.6261 48.0522 3.924E2

0.95 6.4505 78.1032 1.327E3

0.975 6.9168 1.021E2 2.846E3

0.99 7.2290 1.224E2 5.793E3

0.999 7.4251 1.369E2 9.589E3

0.5 0.1 1.1668 1.2842 1.3569
0.2 1.3269 1.6664 1.9150

0.3 1.4769 2.1951 2.8323

0.4 1.7280 3.0461 4.4755

0.5 2.1288 45028 7.6832

0.6 2.6887 7.1133 14.6867

0.7 3.4357 12.1532 32.7173

0.8 4.4057 22.8894 93.2114
0.9 5.6672 49.4743 4310E2

0.95 6.4648 78.8504 1.351E3

0.975 6.9173 1.009E2 2.153E3

0.99 72224 1.221E2 5.328E3

0.999 7.4251 1.369E2 9.587E3
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The normalized drag force F/F, of a porous sphere ( a=0 ) translating
axisymmetrically within a non-concentric spherical cavity is plotted against the
parameters b/c, d/(c—b),and Ab in Figs. B2-B4, respectively. For fixed values of
d/(c—b) and b/c, F/F, increases monotonically with a decrease in permeability
or an increase in Ab from unity (with F=F =0) at Ab=0 to a finite value (or

infinity at the limit 5/c=1 where the particle seals the cavity) as Ab — o, as illustrated

in Table B1 and Figs. B2a, B3b, B4a, and B4b. F/F, changes weakly with d /(c—b)

and b/c (less than 27% for all cases with 5/¢<0.999) as Ab<1. When b/c and

d/(c—b) are not close to unity, the normalized force on a porous particle with
Ab>100 approaches to that with Ab—>o (a porous sphere of little permeability
performs as a hard sphere), but when the porous sphere is near the wall, the difference

can become significant.
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Fig. B2. Normalized drag force F/F, of a porous sphere (a = 0) translating inside a
spherical cavity versus the ratio of particle-to-cavity radii b/c: (a) d/(c —b) = 1/2; (b)
Ab = 10.
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Fig. B3. Normalized drag force F/F, of a porous sphere (a = 0) translating inside a

spherical cavity versus the eccentricity parameter d/(c — b): (a) Ab = 10; (b) b/c =
1/2.
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Fig. B4. Normalized drag force F/F, of a porous sphere (a = 0) translating inside a
spherical cavity versus the shielding parameter Ab: (a) b/c = 1/2; (b) d/(c —b) =
1/2.
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For given values of Ab and d/(c—»b), as illustrated in Table B1 and Figs. B2a,

B2b, B3a, and B4b, the normalized force F/F, acting on a porous sphere generally 1s

an increasing function of the ratio of the particle-to-cavity radii /¢ from unity at

b/c=0 toafinite value (or infinity if 1b—> o )at b/c =1, because the closer the cavity

wall to the particle surface, the stronger the hydrodynamic hindrance effect of the wall.

Unexpectedly, when d/(c—»b) is not near zero (the particle eccentricity within the

cavity is not negligible) and Ab 1is smaller than about 2 (the porous sphere is relatively

permeable), F/F, may not be a monotonic function of b/c, and reach a minimum

either greater or less than unity at medium values of b/c¢ (that is, the existence of a

confinement wall can decrease the hydrodynamic force on a porous sphere, and this

counter-intuitive behavior seems to be caused by the approximations in the porous

particle that the volume-averaged superficial velocity of the local fluid is used and its

effective viscosity is equal to the bulk fluid viscosity (Koplik et a/ 1983)). The

dependence of F/F, on b/c disappears at the limit Ab=0 but is strong when Ab

is large.

For specified values of b/c and Ab, the normalized force F/F, generally

increases with increasing d / (¢ —b) , the eccentricity parameter, from one finite value in

the concentric situation d/(c—b)=0 to another at the contact limit of particle and

cavity surfaces d/(c—b)=1, as shown in Table B1 and Figs. B2b, B3a, B3b, and B4a.
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These results indicate that the hydrodynamic hindrance of particle motion due to the

proximity of the cavity wall is enhanced on the proximal side and reduced on the distal

side of the particle, with an enhanced net effect. But, when the value of Ab is small (say,

less than about 3) or b/c 1s large (say, greater than about 0.8), F/F, may decrease

slightly (even to less than unity) as d /(c—b) increases. The variation of F/F, with

d /(c—b) vanishes at the limits Ab=0 and b/c=0 butis obvious when the value of

Ab 1is large.

Having realized the hydrodynamic effects of the non-concentric cavity on a

translating porous particle, we can examine the general case of a translating soft particle.

In Figs. B5-B8 and Table B2, the normalized force F/F, on a soft spherical particle

within the cavity is shown as functions of the particle-to-cavity radius ratio b/c, core-

to-particle radius ratio a/b , shielding parameter Ab , and eccentricity parameter

d / (c—Db),respectively. Likewise, F/F, isamonotonically increasing function of Ab

from a constant at Ab =0 to a finite value (or infinity at the limit b/c=1)as Ab—>x,

generally increases with b/c from unity at b/c=0 to a finite value (or infinity in the

limit Ab—> o) at b/c=1, and generally rises with increasing d/(c—b) from one

finite value in the concentric situation d/(c—b)=0 to another at the contact limit

d/(c—b)=1, keeping other parameters unchanged. When the value of a/b is small,
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d /(c—>b) 1isnotnear zero, and Ab is smaller than about 2, F/F, may first decrease
as b/c increases from unity at b/c=0, reach a minimum with F/F <1, and then
rise with further increase of b/c¢ up to a value larger than unity at 5/c =1, as shown in
Fig. B6 and Table B2. In addition, when the values of Ab and a/b are small (such as
less than 3 and 0.5, respectively) F/F, may decrease slightly (even to less than unity)

as d/(c—b) increases, as illustrated in Table B2 and Figs. B5, B7, and BS.
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Fig. B5. Normalized drag force F/F, of a soft spherical particle translating inside a
spherical cavity versus the ratio of core-to-particle radii a/b: (a) Ab =1; (b)b/c =
1/2. The solid and dashed curves denote d/(c —b) =1/5 and d/(c —b) =1/2,
respectively.
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Fig. B6. Normalized drag force F/F, of a soft sphere translating inside a spherical
cavity with d/(c —b) = 1/2 versus the ratio of core-to-particle radii b/c. The solid
and dashed curves denote Ab = 1 and Ab = 3, respectively.
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Fig. B7. Normalized drag force F/F, of a soft sphere translating inside a spherical
cavity with Ab = 1 versus the eccentricity parameter d/(c — b). The solid and dashed
curves denote b/c = 1/5 and b/c = 1/2, respectively.
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Fig. B8. Normalized drag force F/F, of a soft sphere translating inside a spherical
cavity with b/c = 1/2 versus the shielding parameter Ab. The solid and dashed curves
denote d/(c —b) =1/5 and d/(c — b) = 1/2, respectively.
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For fixed values of Ab, d/(c—b),and b/c,Figs. B5-B8 and Table B2 show that

the normalized force F/F, on a translating soft sphere within a spherical cavity

monotonically increases with a rise in the ratio of core-to-particle radii a /b, in which

the cases of a/b=0 and a/b=1 denote porous particle and solid particle,

respectively. That is, for specified particle radius, permeability of the porous layer, and

separation from the wall, the force acting on the particle becomes less if the porous

surface layer is thicker. All force results of the soft particle fall between the upper and

lower bounds of a/b=1 and a/b =0, respectively. When the porous layer of the soft

particle has small to moderate permeability (say. 4b>10), F/F, on the soft particle

with a/b less than about 0.8 within a spherical cavity can be well approximated by the

normalized force on a porous particle having identical permeability, radius, and

eccentricity inside an identical cavity, as illustrated in Figs. B5b and B8. Here, the hard

core of the soft sphere barely feels the motion of the fluid and exerts only negligible

hindrance. But, this approximation does not apply to surface layers with high permeability.
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B.4 Conclusions

In this Appendix, the axially symmetric translation of a soft sphere in a viscous fluid

within an eccentric spherical cavity is semi-analytically investigated in the quasi-steady

limit of small Reynolds number. A boundary collocation method is used to solve the

Brinkman and Stokes equations for the fluid flows inside and outside the porous surface

layer of the soft particle, respectively. Numerical results with good convergence for the

normalized drag force F/F, exerted by the fluid on the particle are obtained for

numerous values of the core-to-particle radius ratio a /b, particle-to-cavity radius ratio

b/c, ratio of distance between the centers to radius difference of the particle and cavity

d /(¢ —b), and ratio of particle radius to porous layer permeation length Ab . The cavity

wall effect on the drag force of a translating soft sphere is monotonically increasing

functionsof a/b and Ab.While F/F, generally increases with an increasein b/c,

a weak minimum (surprisingly, smaller than unity) may occur for the case of low a/b

and low Ab . This normalized drag force generally increases with an increase in

d/(c—b), but for the case of low a/b and low Ab, the drag force may decrease

slightly with an increase in d/(c—b).

We presented in Section B.3 the solutions for a resistance problem, in which the drag

force F acting on the soft sphere undergoing translation inside a spherical cavity is
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determined for a given particle velocity U . On the other hand, in a mobility problem, an
applied force F' acting on the particle is given and the wall-corrected particle velocity
U needs to be determined. For the low-Reynolds-number translational motion of a soft
sphere inside a cavity along their common diameter considered here, the normalized
particle velocity U/U, [where U, is given by U in Eq. (1) with F;,=F] for a
mobility problem is equal to the reciprocal normalized drag force, (F/F,)”", provided

by Tables B1 and B2 and Figs. B2-B8 for its matching resistance problem.
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Appendix C

Some Functions in Appendix B

The functions in Egs. (B11)-(B15) are defined by

A (r,0)=—-r""[(n+1)G,*(cos@)csc @ — (2n—1)G,"* (cos @) cot 4], (C1)
A'(r,0)=-r"?[(2n-1)G,"*(cos 0) + P, (cos 9)], (C2)
B/(r,0)=—(n+1)r""'G, 1’ (cos @) csc b, (C3)
B'(r,0)=—r""P (cos ), (C4)
C!(r,0)=—r"[(n+1G,!*(cos @) csc @ — (2n+1)G,"* (cos @) cot 4], (C5)
C'(r,0)=—r"[(2n+1)G,"*(cos 8) + P,(cos 0)], (C6)
D! (r,0)=—r""[(n+1)G,*(cos @) csc 8 —2G,"*(cos ) cot ], (C7)
D!(r,0)=-r""[2G,"*(cos ) + P.(cos 0)], (C8)

7 (r,0)= 2" Al (Ar)G, " (cos @) cot @ —(n+1)I,_,,,(Ar)G,*(cos @) csc O], (C9)
yI(r,0)=-2"r""[arl_,,(Ar)G,"*(cos @)+ 1, _,,,(Ar)P, (cos O)], (C10)
5'(r,0)=A"r"*{K _,,(Ar)[nG;"*(cos @) cot @ - P,_ (cos §)sin ]

—ArK .., (Ar)G,"* (cos @) cot 0}, (C11)

S'(r,0)=-21"r"{K _,(Ar)[nG,"*(cos @)+ P,_ (cosd)cosd]

—ArK,..»(Ar)G, " (cos 0)}; (C12)
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A (r,0)=2n(n-2)r">G,"*(cos @) csch,

2.2

rl " P _(cos®),

A" (r,0)=(2n+4— A
A, (r,0) ==2(n=2)r">P,_ (cos 8),

B (r,0)=2(n" =1)r""G,"*(cos @) csc b,

2.2
Ar

B (r,0)=(2n+2+ )P (cos ),

n
By, (r,0) =2(n+1)r"?P,_(cos0),
C (r,0)=2(n" =1)r""'G."*(cos ) csc b,
kK 3 n_l
C, (r,0)=—2(n-2- —1)” P, (cos),
n p—

D, (r,0)=2n(n-2)r"G,"*(cos @) csc,

D (r,0)=2(n+1- E)r"’ > (cos0),
n

(C13)

(C14)

(C15)

(C16)

(C17)

(C18)

(C19)

(C20)

(C21)

(C22)

y.(r,0)==2"r2[24r1 ,,,(Ar)—(2n* —4n+ A°r*)I,_,,(A)]G,*(cos @) csc @, (C23)

¥, 0) = =24 (Ar) + (n=2)I,_,,(AF)]P,_ (cos 0)

(C24)

S (r,0)=A"r"P[2AK ,, ,(AF)+ (20" —4n+ A r*)K,_,,(Ar)]G,"*(cos@)csc @, (C25)

5 (r,0) = 22" [ ArK, ., (Ar) —(n= 2K, , (AP, (cos ),

A" (r,0)=—r""[(n+1)G,’(cos @) sec O+ P, (cos 9)],

n+l

B:**(r, 0)=B!(r,0)+ B (r,0)tan 6,

Skskok

C"(r,0)=—r"[(n+1)G,!*(cos @) secO+ P, (cos0)],

n+l

D::**(l"a 0) = Dr,:(r’ 9) +D’; (l", 9) tan 92 R
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sk

A (r,0)=—r"[2n-1)G,"*(cos O csc” O — (n+1)G, > (cos @) csc Ocot O+ P, (cos B)], (C31)

n+l

sesksiesk

B (r,0) = B'(r,6) - B.(r,0) cot 6, (C32)

Hoksksk

C™(r,0)=—r"[2n+1)G.*(cosf) csc” O — (n+1)G, !’ (cos @) csc O cot O+ P, (cosB)],  (C33)

n+l

seksiesk

D (r,0) = D'(r,6) - D' (r,0)cot b, (C34)

where P, is the Legendre polynomial of order n.

For the slow translation of a soft spherical particle inside a concentric spherical
cavity (d =0), the exact solution of its drag force in Eq. (B16) was obtained explicitly
with (Keh and Chou 2004)

D,, = 6%[600{ﬁ2 (2%, =3a’s, +aps,s,)cosh(f - a)
+ (2B sg+asysg — 3o fs7)sinh(B - )], (C35)

where

A=12as,, +(9a’s,, — as,S,, — 235, ) cosh(B—a)

+3(25,, + a5y, — s, )sinh(B—a) ; (C36)
s0=a2+3, s5=ﬂ5+15ﬂ3—75, s6=6ﬂ5+45,83—7/5,
s7=,35+45,83—7/5, s8=6,35+15ﬂ3—7/5,

s19 =88 —158% +608° +108%° =35>,

520 =48 =98y +180 B* +10 8%y (% —18)—98y° + 4y °,

5, =48 =98y +608° +28y(5y> —63) =38’ y(3y* —20y° +90)+48°y° +6y°,
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520 =208° =21y +55%y(r* -18) +2/°,
Syy = 8,88 —1587y + 20,86 +2ﬂ57/(5y2 —-36) —ﬂ37/(3y4 —207/2 +90) +27/6 . (C37)

a=Aa, f=Ab,and y=Ic.
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