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摘要 

 

本研究以半解析方式探討一個複合球形粒子(由一實心硬核外部包覆可穿透

之多孔層所組成)在一個充滿黏性流體之球形孔洞中，於非同心位置沿其垂直連心

方向，所進行的擬穩態低雷諾數移動及轉動。多孔層內外之流體速度分布分別由

Brinkman 方程式及 Stokes 方程式主導，其中粒子外部流體的速度表示式為以粒子

中心及孔洞中心為原點的球座標系統之通解組合而成。對於滿足孔洞表面及多孔

層內外表面的邊界條件所得之方程組，本研究將透過邊界取點法數值求解，計算出

流體施加於粒子之阻力及力矩，且數值解在不同參數組合下均呈現良好收斂性。從

計算結果可得複合粒子移動、轉動時所受拖曳力及力矩與粒子結構(如多孔層的厚

度及流體穿透度)、粒子在孔洞中的相對位置及大小之關係。流體施加於複合粒子

之拖曳力和力矩會隨多孔層穿透度下降、實心硬核對粒子半徑比值增加以及粒子

對孔洞半徑比值增加而呈現單調遞增。粒子所受拖曳力和力矩大致上亦會隨其偏

心程度增加而遞增。此外，孔洞對於複合粒子移動時的阻礙影響會相較於相同粒子

轉動時所受影響更為顯著。複合粒子在孔洞中移動伴隨轉動之耦合效應較為複雜，

且並非為粒子對孔洞半徑比值之單調函數。 

 

關鍵詞: 複合粒子、球形孔洞、拖曳力和力矩、蠕動流，多孔粒子 
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Abstract 

 

A semi-analytical study of coupled translation and rotation of a composite spherical 

particle (a hard sphere core coated with a permeable porous layer) in a viscous fluid inside 

an eccentric spherical cavity normal to their common diameter is presented in the quasi-

steady limit of low Reynolds number. To solve the Stokes and Brinkman equations for 

the flow fields outside and inside the porous layer, respectively, a general solution is 

constructed from the fundamental solutions in the two spherical coordinate systems based 

on both the composite particle and the cavity. The boundary conditions at the cavity wall 

and inner and outer surfaces of the porous layer are satisfied by a collocation method. 

Numerical results for the force and torque exerted on the particle by the fluid are obtained 

with good convergence for various values of the relevant parameters in practical 

applications. For the translation and rotation of a composite sphere inside a concentric 

cavity, our force and torque results agree well with the available solutions in the literature. 

The force and torque on a translating and rotating particle increase monotonically with 

increases in the ratios of particle radius to porous layer permeation length, core-to-particle 

radii, and particle-to-cavity radii. In general, they also increase with an increase in the 

relative distance between the particle and cavity centers. The boundary effect of the cavity 
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on the translation of the particle is much more pronounced than that on the rotation. The 

coupling effect in the simultaneous translation and rotation inside an eccentric spherical 

cavity is complicated and not a monotonic function of the particle-to-cavity radius ratio.  

 

Keywords: composite particle, spherical cavity, drag force and torque, creeping flow, 

porous sphere 
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Chapter 1 

Introduction 

 

The low-Reynolds-number translational and rotational motions of small particles in 

Newtonian fluids continue to be of considerable interest to researchers in various fields 

of science, technology, and engineering. They are fundamental in nature, but allow one 

to develop rational understanding of numerous practical systems such as sedimentation, 

centrifugation, flocculation, filtration, microfluidics, electrophoresis and other phoretic 

motions. Analysis of this topic was first carried out by Stokes (1845, 1851) for the 

creeping motions of an unbounded fluid around a translating and rotating hard 

(impermeable) sphere and later extended to the translation and rotation of composite 

spheres (Masliyah et al 1987, Keh and Chou 2004).  

A composite sphere of radius b  is a particle with a hard sphere core of radius a  

coated with a porous (permeable) layer of thickness b a−  . Typical examples of a 

composite particle are a polystyrene latex with a porous layer extending from the bulk 

particle into the fluid (Anderson and Solomentsev 1996) and a biological cell with rough 

surface appendages ranging from micron-sized cilia to nanometer-sized protein molecules 

(Wunderlich 1982). The particles in a colloidal suspension can be sterically stabilized 
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against flocculation by deliberately adsorbing polymers and forming permeable layers 

(Napper 1983).  

The force and torque exerted by an unbounded fluid of viscosity   on a composite 

particle of radius b   with a hard core of radius a   translating with velocity U   and 

rotating with angular velocity Ω  are (Masliyah et al 1987, Keh and Chou 2004)  

1 2 2

0 6π { cosh 3 ( sinh )W a a a V a a     −= − − +F U   

        3 2cosh( )[ ( cosh ) 3 sinh ]b a W aV b a a b a      + − − +  

        2 2sinh( )[ cosh 3 ( sinh )]}{( sinhb a W a a aV a a b       + − + −   

        2 2 1cosh )[( 3 )cosh( ) 3( 1)sinh( ) 6 ]}a W b b a a b a a        −− + − + − − − , (1)  

3

0 2 2

3 3 cosh( ) sinh( )
8π [1 ]

sinh( ) cosh( )

b a a b a
b

b b b a a b a

    


      

− + −
= − + −

− + −
T Ω , (2)  

respectively, where  

sinh coshV b b b  = − , (3a)  

3 3 3 32 3W b a a  = + + , (3b)  

and 
1 −
 is the flow penetration length or square root of the fluid permeability in the 

porous surface layer of the particle. Note that the translation and rotation of the 

unconfined composite sphere are not coupled with each other; i.e., 0F  and 0T  are not 

related with Ω   and U  , respectively. In the limiting cases of a b=   and 0a =  , 

equations (1) and (2) degenerate to the Stokes results ( 0 6π b=F U  and 
3

0 8π b=T Ω ) 
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of a hard sphere and corresponding results of a completely permeable (porous) sphere 

(Neale et al 1973, Keh and Chou 2004), respectively, of radius b . In the limits 0b =  

and b →  , these equations reduce to the Stokes results of a hard sphere of radius a  

and radius b , respectively.  

In the real case of creeping motions, particles are not isolated and the ambient fluid 

is restricted by solid boundaries (Happel and Brenner 1983, Malysa and van de Ven 1986, 

Anderson 1989, Romanò et al 2020). Therefore, it is necessary to determine whether the 

presence of a neighboring boundary significantly affects the motions of the particles. The 

low-Reynolds-number translational and rotational motions of a hard sphere confined by 

adjacent boundaries, such as inside a spherical cavity (Keh and Chang 1998, Keh and Lee 

2010, Lee and Keh 2013a, Papavassiliou and Alexander 2017, Chou and Keh 2021), in a 

circular cylinder (Brenner and Sonshine 1964, Bungay and Brenner 1973, Greenstein and 

Schiavina 1975, Leichtberg et al 1976, Keh and Chang 2007, Lee and Keh 2021), and 

near one or two planes (Brenner 1961, Dean and O’Neill 1963, Goldman et al 1967, 

Ganatos et al 1980a,b, Chen and Keh 2003, Chang and Keh 2006, Liao and Keh 2022), 

were examined extensively. In the same way, the slow translation and rotation of a 

composite sphere within a concentric spherical cavity (Keh and Chou 2004, 

Srinivasacharya and Krishna Prasad 2012, Prakash and Raja Sekhar 2017), in a circular 

cylinder (Jhuang and Keh 2022), and normal to one or two planes (Anderson and 



doi:10.6342/NTU202502609

4 

 

Solomentsev 1996, Chen and Ye 2000, Chang and Keh 2023), as well as an entirely 

porous sphere within an eccentric spherical cavity (Saad 2016, Sherief et al 2016, Krishna 

Prasad 2021), were also analyzed. Recently, the axisymmetric translation (as given in 

Appendix B) and rotation (Chou and Keh 2022) of a composite sphere within an eccentric 

spherical cavity have been analytically studied. These investigations indicate that the 

boundary effect on the motions of hard, porous, and composite particles can be important 

and interesting.  

The purpose of the main text of this thesis is to obtain a semi-analytical solution for 

the slow translation and rotation of a composite sphere in a nonconcentric spherical cavity 

normal to their common diameter. This normal motion is more difficult to handle 

mathematically because the azimuthal symmetry is broken. The Stokes and Brinkman 

equations for the external and internal flow fields, respectively, of the porous layer are 

solved by using a combination of analytical and numerical methods with a boundary 

collocation technique, and the wall-corrected drag force and torque exerted by the fluid 

on the particle are obtained with good convergence. Since the general problem of 

translation and rotation of a composite sphere in arbitrary directions inside an eccentric 

spherical cavity is linear, its solution can be obtained by the superposition of solutions to 

its two subproblems: motions along/about their common diameter, which was previously 

examined (Chou and Keh 2022, Appendix B), and motions perpendicular to their 
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common diameter, which is treated in the main text of this thesis.  
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Chapter 2 

Analysis 

 

We consider the creeping flow caused by a spherical composite particle of radius b , 

composed of a rigid sphere core of radius a  and a porous surface layer of thickness 

b a−  , translating with a velocity xU=U e   and rotating with an angular velocity 

yΩ=Ω e  in an incompressible Newtonian fluid of viscosity   inside a nonconcentric 

spherical cavity of radius c , as shown in figure 1, in quasi-steady state. Here, ( , , )x y z , 

( , , )z   , and 2 2( , , )r     represent the rectangular, circular cylindrical, and spherical 

coordinate systems, respectively, originating from the cavity center; 1 1( , , )r    denotes 

the spherical coordinate system originating from the particle center; xe  and ye  are the 

unit vectors in the x   and y   directions, respectively. The particle center is 

instantaneously situated away from the cavity center at a distance d  in the z  direction 

(coinciding with the particle-and-cavity common diameter). The objective is to determine 

the correction to equations (1) and (2) for the translation and rotation of the composite 

sphere due to the presence of the cavity wall.  
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Figure 1  Geometrical sketch of the translation and rotation of a composite sphere in an 

eccentric spherical cavity perpendicular to their common diameter.  
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2.1 Governing equations and boundary conditions 

The fluid motions outside the composite particle and inside its porous surface layer 

are governed by the Stokes and Brinkman equations, respectively:  

2 p − =v 0 ,     0= v        ( 1r b  and 2r c ), (4)  

2 2
1 1

ˆ ˆ ˆ( )x y rU Ω r p  − − −  − =v v e e e 0 ,     0ˆ = v        ( 1a r b  ). (5)  

Here v  and v̂  are the fluid velocity fields for the external (outside the particle) and 

internal (inside the porous layer) flows, respectively, p  and p̂  are the corresponding 

dynamic pressure distributions, and rie   together with ie   and e   are the basic unit 

vectors in the spherical coordinate system ( , , )i ir   .  

The boundary conditions for the fluid flows are  

 ar =1 : 1
ˆ

x y rU aΩ= + v e e e , (6)  

 1r b= : ˆ=v v , (7a)  

 1 1
ˆ ˆ( ) ( )r rp p − =  −e τ I e τ I , (7b)  

 2r c= : 0v = . (8)  

Here, T[ ( ) ]=  + τ v v  and Tˆ ˆ ˆ[ ( ) ]=  + τ v v  are the deviatoric stress tensors for the 

external and internal flows, respectively, and I  is the unit dyadic.  
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2.2 General solutions for external and internal fluid velocities 

Since the governing equations and boundary conditions are linear, the velocity field 

v  and pressure p  outside the particle can be decomposed into two parts (Lee and Keh 

2013a),  

  21 vvv += ,      1 2p p p= + , (9)  

where iv   and ip   are the solution of equation (4) in spherical coordinate system 

( , , )i ir    with  

 i ir ri i i iv v v   = + +v e e e ,      1, 2i = . (10)  

The velocity 1v  and pressure 1p  represent the disturbances generated by the particle 

with Lamb’s general solution (Happel and Brenner 1983)  

2 1
1 1 1 1 1 1

1

( 1)( ) ( )cosn n
r n n n

n

v n C r A r P  


− − −

=

= + + , (11a)  

1 1 2 1/2
1 1 1 1 1

1

[ ( )(1 )n
n n

n

v B r P  


− − −

=

= −  

        
1

2 2 1/21
1 1 1 1 1

1

d ( )2
( ) (1 ) ]cos

d

n n n
n n

Pn
C r A r

n


 



− − −−
+ + − , (11b)   

1
1 2 1/21

1 1 1 1

1 1

d ( )
[ (1 )

d

n n
n

n

P
v B r







− −

=

= −  

        2 1 2 1/2
1 1 1 1 1 1

2
( ) ( )(1 ) ]sinn n

n n n

n
C r A r P

n
  − − − −−

+ + − , (11c)  

1 1

1 1 1 1

1

2 (2 1) ( )cosn

n n

n

p A n r P  


− −

=

= − , (11d)  
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whereas 2v  and 2p  denote the disturbances produced by the cavity wall with  

1 1 1
2 2 2 2 2 2

1

( ) ( )cosn n
r n n n

n

v n C r A r P  


− +

=

= + , (12a)  

1 2 1/2
2 2 2 2 2

1

[ ( )(1 )n
n n

n

v B r P  


−

=

= −  

        
1

1 1 2 1/22
2 2 2 2 2

2

d ( )3
( ) (1 ) ]cos

1 d

n n n
n n

Pn
C r A r

n


 



− ++
− + −

+
, (12b)  

1
2 1/22

2 2 2 2

1 2

d ( )
[ (1 )

d

n n
n

n

P
v B r








=

= −  

        1 1 1 2 1/2
2 2 2 2 2 2

3
( ) ( )(1 ) ]sin

1

n n
n n n

n
C r A r P

n
  − + −+

− + −
+

, (12c)  

1

2 2 2 2

1

2 (2 3) ( )cosn

n n

n

p A n r P  


=

= + . (12d)  

In the previous equations, 
1

nP  are the associated Legendre Polynomials, cosi i = , and 

the unknown constants inA , inB , and inC  need to be determined.  

The velocity field v̂   and pressure p̂   inside the porous surface layer of the 

composite particle can be expressed as (Sherief et al 2016)  

 1 1
ˆ ˆ ˆ ˆ

r rv v v   = + +v e e e ,  (13)  

2 1/2 1 2
1 2 1 1 1

1

ˆ ˆˆ (1 ) cos ( 1){ n n
r n n

n

v U n n C r C r 


− − −

=

= − + + +   

1/2 3/2 1
1 2 1/2 1 1 1/2 1 1

ˆ ˆ[ ( ) ( )]} ( )cosn n n n nr A I r A K r P    − −
+ ++ + , (14a)  

1/2 1 2 1/2
1 1 1 2 1/2 1 1 1/2 1 1 1

1

ˆ ˆˆ ( )cos {( ) [ ( ) ( )] ( )(1 )n n n n n

n

v U rΩ r B I r B K r P       


− −
+ +

=

= + + + −   

1 2 1/2 3/2
2 1 1 1 1 2 1/2 1 1 1/2 1

ˆ ˆ ˆ[ ( 1) { [ ( ) ( )]n n
n n n n nC n r C nr r A nI r r I r   − − − − −

+ −+ − − + + −   
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1
2 1/21

1 1/2 1 1 1/2 1 1

1

d ( )ˆ [ ( ) ( )]}] (1 ) }cos
d

n
n n n

P
A nK r r K r


    


+ −+ + − , (14b)  

1
1/2 2 1 21

1 1 1 2 1/2 1 1 1/2 1 1

1 1

d ( )ˆ ˆˆ ( )sin {( ) [ ( ) ( )] (1 )
d

n
n n n n

n

P
v U rΩ r B I r B K r


     




−

+ +

=

= − + + + −   

1 2 1/2 3/2
2 1 1 1 1 2 1/2 1 1 1/2 1

ˆ ˆ ˆ[ ( 1) { [ ( ) ( )]n n
n n n n nC n r C nr r A nI r r I r   − − − − −

+ −+ − − + + −   

1 2 1/2
1 1/2 1 1 1/2 1 1 1

ˆ [ ( ) ( )]}] ( )(1 ) }sinn n n nA nK r r K r P     −
+ −+ + − , (14c)  

2 1 1

2 1 1 1 1

1

ˆ ˆˆ [ ( 1) ] ( )cosn n

n n n

n

p C n r C nr P  


− −

=

= − − + , (14d)  

where nI   and nK   are the modified Bessel functions of the first and second kinds, 

respectively, and ˆ
inA , ˆ

inB , and ˆ
inC  are unknown constants to be determined. Note that 

the solutions for v  , v̂  , p  , and p̂   are only proportional to either cos   or sin  

(and do not contain the higher-order harmonics) due to the axial symmetry of the system 

geometry.  

 

2.3 Transformation between two spherical coordinate systems  

A solution of the form in equations (9)-(14) immediately satisfies the requirement 

that the velocity is finite for any position in the fluid phases. In order to express these 

equations with a single spherical coordinate system, coordinate transformation is required. 

The coordinates 2r  and 2  of any position are related to the coordinates 1r  and 1  

of that position through the following formulas:  

2/12

11

2

1

2

12 ])()1([ drrr ++−=  ,      2112 /)( rdr +=  . (15)  



doi:10.6342/NTU202502609

12 

 

The relationship between the principal unit vectors of the two coordinate systems is  

1

)2(

1

)1(

2 eee ff rr += ,      (1) (2)

2 1 1rf f = −e e e , (16)  

where 

21

2/12

1

2/12

2

)1( )1()1(  +−−=f , (17a)  

(2) 2 1/2 2 1/2

2 1 1 2(1 ) (1 )f    = − − − . (17b)  

Applying the boundary conditions at the inner and outer surfaces of the porous layer 

of the composite particle and cavity wall given by equations (6)-(8) to equations (9)-(14), 

we obtain equations (A1)-(A12), which are lengthy, in Appendix A. The unknown 

constants ˆ
inA  , ˆ

inB  , ˆ
inC  , inA  , inB  , and inC   with 1i =   and 2 are to be determined 

using these lengthy equations.  

 

2.4 Numerical method 

A check of equations (A1)-(A12) shows that the solution to the resulting coefficient 

matrix is independent of the    coordinate of the boundary points on the spherical 

surfaces 1r a= , 1r b=  and 2r c= . To satisfy these conditions exactly along the entire 

surfaces of the porous layer and cavity wall would require the solution to the whole 

infinite array of the unknown constants inA , inB , inC , ˆ
inA , ˆ

inB , and ˆ
inC  with 1i =  

and 2. However, the collocation technique (Lee and Keh 2013a) enforces the boundary 

conditions at a finite number of discrete points on the half-circular generating arc 
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(longitude with j   from 0 to π  ) of each of the spherical surface and truncates the 

infinite series in equations (11), (12), and (14) into finite ones. If the spherical boundaries 

are approximated by satisfying the conditions of equations (6)-(8) at N discrete points on 

each generating arc, these infinite series are truncated after N terms, resulting in a system 

of 12N simultaneous linear algebraic equations in the truncated form of equations (A1)-

(A12). This matrix equation can be solved to yield the 12N unknown constants inA , inB , 

inC , ˆ
inA , ˆ

inB , and ˆ
inC  appearing in the truncated form of equations (11), (12), and (14). 

The fluid velocity field is completely obtained once these coefficients are solved for a 

sufficiently large value of N.  

 

2.5 Hydrodynamic force and torque on composite sphere 

The hydrodynamic drag force  xF=F e   and torque yT=T e   acting on the 

composite sphere can be calculated by integrations involving the total fluid stress 

(combination of viscous stress and pressure) over the particle surface, with the result  

 118πF A= , (18)  

118πT B= . (19)  

These expressions show that only the lowest-order coefficients 11A  and 11B  contribute 

to the force and torque. As / ( ) 0b c d− = , the cavity wall is infinitely far from the particle 
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and equations (18) and (19) reduce to equations (1) and (2) for the translational and 

rotational motions of an unconfined composite sphere.  

The force and torque in equations (18) and (19) can be related to the translational 

and angular velocities of the composite sphere by  

 0 ( )t r

F
F FU F bΩ

U
= + , (20)  

 0 ( )t r

T
T TU T bΩ

bΩ
= + , (21)  

where tF , rF , tT , and rT  are the dimensionless resistance coefficients calculated using 

constants 11A  and 11B . According to the cross-effect theory of the force and torque on 

the spherical particle (Goldman et al 1967), it can be proven that the coupling coefficients 

rF  and tT  satisfy the relationship  

 0

2
0

/

/
t r

F U
T F

T b Ω
= . (22)  

Therefore, it is only necessary to give the solutions for the three coefficients tF , rT , and 

rF   (or tT  ). Note that the values of 0 /F U   and 0 /T Ω   in equations (20)-(22) can be 

calculated using equations (1) and (2).  
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Chapter 3 

Results and Discussion 

 

Results of the force, torque, and coupling coefficients tF , rT , and rF  (or tT ) in 

equations (20) and (21) for the slow translational and rotational motions of a composite 

sphere inside an eccentric spherical cavity normal to their common diameter, obtained by 

using the boundary collocation method for numerous values of the ratios of particle radius 

to porous layer permeation length b , distance between the centers to radius difference 

of the particle and cavity / ( )d c b− , particle-to-cavity radii /b c , and core-to-particle 

radii /a b , are presented for the special case of porous sphere ( 0a = ) in tables 1-3 and 

for the general case in table 4 (convergent to at least the significant figures as given). In 

the limiting case of b →  , our solutions agree with the corresponding results (Lee and 

Keh 2013a) obtained for a hard sphere of radius b  translating and rotating in a spherical 

cavity.  
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Table 1  The force coefficient tF  for the translation of a porous sphere ( 0a = ) within 

an eccentric spherical cavity perpendicular to their common diameter with different 

values of / ( )d c b− , /b c , and b .  

 

𝑑

(𝑐 − 𝑏)
 𝑏/𝑐 𝐹𝑡 

  𝜆𝑏 = 0.1 𝜆𝑏 = 1 𝜆𝑏 = 10 𝜆𝑏 = 100 𝜆𝑏 = 500 𝜆𝑏 → ∞ 

0.25 0.1 1.00050 1.04141 1.25090 1.28734 1.29033 1.29106 

 0.2 1.00098 1.08412 1.63521 1.75509 1.76510 1.76757 

 0.3 1.00142 1.12619 2.24472 2.56103 2.58796 2.59460 

 0.4 1.00180 1.16552 3.24915 4.05757 4.12795 4.14527 

 0.5 1.00211 1.19998 4.96145 7.12527 7.32003 7.36765 

 0.6 1.00235 1.22774 7.91293 14.3342 14.9529 15.1016 

 0.7 1.00252 1.24767 12.7202 35.0735 37.6291 38.2196 

 0.8 1.00262 1.25958 19.0178 117.849 135.862 139.647 

 0.9 1.00266 1.26463 23.8937 673.088 1133.79 1222.21 

 0.95 1.00266 1.26534 24.8527 1677.67 7859.89 10257.2 

 0.99 1.00266 1.26545 25.0230 2235.07 52200.0 1333654 

 0.999 1.00266 1.26545 25.0247 2244.98 55659.7 1.35E+09 

        

0.5 0.1 1.00053 1.04395 1.26950 1.30919 1.31243 1.31323 

 0.2 1.00102 1.08745 1.67450 1.80500 1.81587 1.81855 

 0.3 1.00145 1.12893 2.30684 2.65137 2.68058 2.68778 

 0.4 1.00181 1.16694 3.33420 4.21533 4.29176 4.31051 

 0.5 1.00211 1.20007 5.05737 7.41248 7.62462 7.67616 

 0.6 1.00234 1.22699 7.96856 14.9083 15.5864 15.7477 

 0.7 1.00251 1.24676 12.6241 36.3899 39.2250 39.8674 

 0.8 1.00261 1.25905 18.7573 121.145 141.521 145.680 

 0.9 1.00266 1.26452 23.7699 664.720 1174.17 1275.03 

 0.95 1.00266 1.26532 24.8271 1637.55 7910.65 10700.4 

 0.99 1.00266 1.26544 25.0226 2233.52 51720.7 1391281 

 0.999 1.00266 1.26545 25.0247 2244.98 55658.6 1.40E+09 
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Table 2  The torque coefficient rT  for the rotation of a porous sphere ( 0a = ) within 

an eccentric spherical cavity perpendicular to their common diameter with different 

values of / ( )d c b− , /b c , and b .  

 

𝑑

(𝑐 − 𝑏)
 𝑏/𝑐 𝑇𝑟 

  𝜆𝑏 = 0.1 𝜆𝑏 = 1 𝜆𝑏 = 10 𝜆𝑏 = 100 𝜆𝑏 = 500 𝜆𝑏 → ∞ 

0.25 0.1 1.00000 1.00008 1.00099 1.00131 1.00134 1.00135 

 0.2 1.00001 1.00062 1.00753 1.01006 1.01031 1.01037 

 0.3 1.00002 1.00198 1.02466 1.03319 1.03404 1.03425 

 0.4 1.00005 1.00447 1.05781 1.07890 1.08103 1.08157 

 0.5 1.00009 1.00843 1.11440 1.15985 1.16453 1.16571 

 0.6 1.00015 1.01417 1.20654 1.29989 1.30988 1.31241 

 0.7 1.00024 1.02209 1.35723 1.55304 1.57550 1.58122 

 0.8 1.00034 1.03269 1.61960 2.07447 2.13534 2.15088 

 0.9 1.00048 1.04663 2.15295 3.56024 3.84241 3.91569 

 0.95 1.00057 1.05514 2.68095 6.10100 7.15071 7.48248 

 0.99 1.00064 1.06279 3.42910 17.1988 28.7220 36.0981 

 0.999 1.00066 1.06463 3.67393 30.6736 111.831 358.118 

        

0.5 0.1 1.00000 1.00018 1.00223 1.00297 1.00304 1.00306 

 0.2 1.00002 1.00118 1.01475 1.01982 1.02032 1.02045 

 0.3 1.00004 1.00328 1.04281 1.05843 1.06000 1.06039 

 0.4 1.00007 1.00655 1.09061 1.12686 1.13056 1.13150 

 0.5 1.00012 1.01106 1.16383 1.23876 1.24662 1.24861 

 0.6 1.00018 1.01693 1.27190 1.42158 1.43809 1.44227 

 0.7 1.00026 1.02447 1.43288 1.73829 1.77561 1.78498 

 0.8 1.00036 1.03425 1.69217 2.36540 2.47014 2.49584 

 0.9 1.00050 1.04720 2.20112 4.02012 4.54377 4.67236 

 0.95 1.00057 1.05530 2.70534 6.59260 8.39244 9.05476 

 0.99 1.00064 1.06280 3.43126 17.5438 30.5998 44.1787 

 0.999 1.00066 1.06463 3.67397 30.6927 112.784 439.396 
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Table 3  The coupling coefficient rF  for the motion of a porous sphere ( 0a = ) within 

an eccentric spherical cavity perpendicular to their common diameter with different 

values of / ( )d c b− , /b c , and b .  

 

𝑑

(𝑐 − 𝑏)
 𝑏/𝑐 −𝐹𝑟 = −𝑇𝑡(𝑇0/𝑏2𝛺)/(𝐹0/𝑈) 

  𝜆𝑏 = 0.1 𝜆𝑏 = 1 𝜆𝑏 = 10 𝜆𝑏 = 100 𝜆𝑏 = 500 𝜆𝑏 → ∞ 

0.25 0.1 2.28E-06 0.00022 0.00312 0.00425 0.00437 0.00439 

 0.2 7.80E-06 0.00077 0.01382 0.01956 0.02013 0.02028 

 0.3 1.44E-05 0.00148 0.03492 0.05209 0.05382 0.05426 

 0.4 2.01E-05 0.00214 0.07062 0.11422 0.11866 0.11977 

 0.5 2.33E-05 0.00256 0.12630 0.23285 0.24391 0.24667 

 0.6 2.28E-05 0.00257 0.20459 0.47346 0.50283 0.51004 

 0.7 1.85E-05 0.00214 0.28887 1.02391 1.11690 1.13889 

 0.8 1.14E-05 0.00134 0.31039 2.56615 3.00649 3.10125 

 0.9 3.83E-06 0.00046 0.17866 7.85163 13.5020 14.6054 

 0.95 1.10E-06 0.00013 0.07029 9.84411 47.9625 62.8731 

 0.99 4.90E-08 5.98E-06 0.00442 2.05061 62.9921 1661.34 

 0.999 6.96E-10 6.15E-08 5.00E-05 0.04770 3.83860 168150 

        

0.5 0.1 4.97E-06 0.00047 0.00688 0.00940 0.00965 0.00971 

 0.2 1.63E-05 0.00162 0.02977 0.04226 0.04350 0.04382 

 0.3 2.92E-05 0.00301 0.07364 0.11078 0.11449 0.11542 

 0.4 3.97E-05 0.00424 0.14625 0.24049 0.25000 0.25238 

 0.5 4.50E-05 0.00496 0.25689 0.48734 0.51115 0.51706 

 0.6 4.36E-05 0.00493 0.40776 0.98690 1.05072 1.06622 

 0.7 3.54E-05 0.00409 0.56405 2.12498 2.33024 2.37778 

 0.8 2.19E-05 0.00258 0.60034 5.26945 6.26407 6.47157 

 0.9 7.47E-06 0.00090 0.34884 15.4517 27.9584 30.4737 

 0.95 2.17E-06 0.00026 0.13825 19.1087 96.4590 131.180 

 0.99 9.73E-08 1.19E-05 0.00879 4.05415 124.402 3466.26 

 0.999 1.17E-09 1.23E-07 0.00010 0.09497 7.59731 350836 
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Table 4  The resistance coefficients for the motion of a soft sphere with 1b =  within 

an eccentric spherical cavity perpendicular to their common diameter with different 

values of / ( )d c b− , /b c , and /a b .  

 

𝑑

(𝑐 − 𝑏)
 𝑏/𝑐 𝑎/𝑏 = 0.5 𝑎/𝑏 = 0.95 

  𝐹𝑡 𝑇𝑟 −𝐹𝑟 𝐹𝑡 𝑇𝑟 −𝐹𝑟 

0.25 0.1 1.13658 1.00022 0.00063 1.27296 1.00116 0.00372 

 0.2 1.31052 1.00164 0.00253 1.70765 1.00887 0.01690 

 0.3 1.53410 1.00529 0.00567 2.43650 1.02917 0.04424 

 0.4 1.82451 1.01207 0.00990 3.74346 1.06893 0.09470 

 0.5 2.20596 1.02288 0.01492 6.30177 1.13822 0.18652 

 0.6 2.71281 1.03880 0.02012 11.9425 1.25494 0.36040 

 0.7 3.39459 1.06119 0.02437 26.7278 1.45651 0.71955 

 0.8 4.32415 1.09197 0.02557 77.9434 1.83817 1.58097 

 0.9 5.61329 1.13412 0.01989 382.640 2.73744 4.22017 

 0.95 6.44589 1.16086 0.01241 1312.30 3.83630 7.46120 

 0.99 7.23124 1.18570 0.00297 5973.18 5.96394 6.92976 

 0.999 7.42510 1.19178 0.00031 9588.96 6.89282 1.11704 

        

0.5 0.1 1.14600 1.00049 0.00139 1.29354 1.00262 0.00822 

 0.2 1.32730 1.00317 0.00546 1.75361 1.01744 0.03650 

 0.3 1.55592 1.00892 0.01196 2.51698 1.05108 0.09399 

 0.4 1.84888 1.01804 0.02053 3.87752 1.10976 0.19900 

 0.5 2.23024 1.03080 0.03055 6.53011 1.20334 0.38916 

 0.6 2.73428 1.04760 0.04081 12.3589 1.35042 0.74799 

 0.7 3.41082 1.06934 0.04910 27.5775 1.59019 1.48626 

 0.8 4.33373 1.09779 0.05130 80.0005 2.01931 3.24621 

 0.9 5.61660 1.13644 0.03981 388.944 2.95805 8.57969 

 0.95 6.44690 1.16159 0.02482 1323.17 4.02084 15.0462 

 0.99 7.23129 1.18574 0.00593 5977.98 5.99664 13.8706 

 0.999 7.42511 1.19178 0.00062 9589.07 6.89335 2.23411 
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Clearly, 1t rF T= =  and 0r tF T= =  (the coupling between particle translation and 

rotation disappears) as / ( ) 0b c d− =  (the particle is unconfined) for any values of /a b  

and b  , consistent with equations (1) and (2). Surprisingly and against intuition, as 

shown in tables 3 and 4, the coupling coefficient rF   (and thus, tT  ) is negative for 

specified values of the parameters /a b  , b  , /b c  , and / ( )d c b−  . This interesting 

feature was found and explained in the corresponding translation and rotation of a hard 

sphere in an eccentric spherical cavity (Lee and Keh 2013a).  

 

3.1 Porous sphere 

The force, torque, and coupling coefficients tF , rT , and rF  for a porous sphere 

( 0a =  ) translating and rotating inside an eccentric spherical cavity normal to their 

common diameter are plotted versus the parameters b , / ( )d c b− , and /b c  in figures 

2-4, respectively. Analogous to the situations of translational and rotational motions of a 

porous sphere inside a spherical cavity along/about the common diameter (Saad 2016, 

Chou and Keh 2022, Appendix B), for given values of the parameters b  and / ( )d c b− , 

tables 1 and 2 as well as figures 3 and 4 indicate that the normalized force and torque 

exerted by the fluid on the particle translating and rotating within the cavity normal to 

their common diameter (or the coefficients tF   and rT  , respectively) increase 

monotonically with an increase in the particle-to-cavity radius ratio /b c  . For fixed 
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values of b  and /b c , these wall-corrected hydrodynamic force and torque generally 

increase with increasing relative distance between the particle and cavity centers 

/ ( )d c b−  (there are exceptions for tF  when /b c  is close to unity and b  is finite, 

as shown in table 1 and figure 3a).  
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(a) (b) 

 

(c) 

Figure 2  Resistance coefficients for the translation and rotation of a porous sphere 

( 0a = ) in an eccentric spherical cavity perpendicular to their common diameter versus 

the shielding parameter b  with / 1/ 2b c =  and / ( )d c b−  as a parameter: (a) tF ; 

(b) rT ; (c) rF .  
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(a) (b) 

 

(c) 

Figure 3  Resistance coefficients for the translation and rotation of a porous sphere 

( 0a = ) in an eccentric spherical cavity perpendicular to their common diameter versus 

the eccentricity parameter / ( )d c b−  with 10b =  and /b c  as a parameter: (a) tF ; 

(b) rT ; (c) rF .  
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(a) (b) 

 

(c) 

Figure 4  Resistance coefficients for the translation and rotation of a porous sphere 

( 0a = ) in an eccentric spherical cavity perpendicular to their common diameter versus 

the particle-to-cavity radius ratio /b c  with / ( ) 1/ 2d c b− =  and b  as a parameter: 

(a) tF ; (b) rT ; (c) rF .  
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On the other hand, the coupling coefficients rF   and tT   are not necessarily 

monotonic functions of the parameters /b c  and / ( )d c b−  [there may be maxima in 

their magnitudes at some moderate values of /b c   and / ( )d c b−  ,, keeping other 

parameters unchanged. As illustrated in figure 2, all the resistance coefficients tF , rT , 

and rF  increase with an increase in the ratio of particle radius to permeation length b  

for constant values of /b c  and / ( )d c b− . Our collocation solutions of tF  and rT  in 

the concentric limit / ( ) 0d c b− =  (given in figures 2 and 3, with 0r tF T= =  due to the 

axial symmetry of the translation and rotation) are found to agree excellently with the 

available analytical solutions (Keh and Chou 2004). A comparison between tables 1 and 

2 indicates that the boundary effect of the cavity on the translational motion of the particle 

is much more pronounced than that on the rotation. 

 

3.2 Composite sphere 

The force, torque, and coupling coefficients tF  , rT  , and rF   for a general 

composite sphere translating and rotating inside an eccentric spherical cavity normal to 

their common diameter are plotted versus the core-to-particle radius ratio /a b  in figures 

5 and 6 for various values of the particle-to-cavity radius ratio /b c , shielding parameter 

b  , and eccentricity parameter / ( )d c b−  . Likewise, tF   and rT   are monotonically 
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increasing functions of /b c   and b  , and generally rise with increasing / ( )d c b−  , 

keeping other parameters unchanged. The coupling coefficients rF   and tT   increase 

with an increase in b , generally increase with an increase in / ( )d c b− , and are not 

necessarily monotonic functions of the parameter /b c   (there are maxima in their 

magnitudes at some modest values of /b c , as shown in table 4 and figure 5c). The cavity 

wall retardation effect on the translation of the composite sphere is much more significant 

than the effect on the rotation.  
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(a) (b) 

 

(c) 

Figure 5  Resistance coefficients for the translation and rotation of a composite sphere 

in an eccentric cavity versus the core-to-particle radius ratio /a b  with 1b = : (a) tF ; 

(b) rT  ; (c) rF  . The dashed and solid curves represent / ( ) 4 / 5d c b− =   and 

/ ( ) 1/ 5d c b− = , respectively.  
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(a) (b) 

 

(c) 

Figure 6  Resistance coefficients for the translation and rotation of a composite sphere 

in an eccentric cavity versus the core-to-particle radius ratio /a b  with / 1/ 2b c = : (a) 

tF  ; (b) rT  ; (c) rF  . The dashed and solid curves represent / ( ) 4 / 5d c b− =   and 

/ ( ) 1/ 5d c b− = , respectively.  
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For given values of /b c , / ( )d c b− , and b , figures 5 and 6 and table 4 illustrate 

that the resistance coefficients tF   and rT   for a translating and rotating composite 

particle inside an eccentric spherical cavity increase monotonically with increasing core-

to-particle radius ratio /a b  (become greater if the porous layer is thinner), where cases 

/ 0a b =  and / 1a b =  represent entirely porous sphere and hard sphere, respectively. All 

hydrodynamic force and torque results for a general composite sphere fall between the 

lower and upper limits of / 0a b =  and / 1a b = , respectively. When the surface layer of 

the composite sphere has slight to modest permeability ( 10b  ), the results of the force, 

torque, and coupling coefficients for the composite sphere with / 0.8a b    inside a 

spherical cavity can be well approximated by those of an entirely porous sphere within a 

spherical cavity with the same values of /b c , / ( )d c b− , and b , as shown in figure 6. 

Here, the hard core of the composite particle can hardly feel the relative motion of the 

fluid and only exerts negligible hydrodynamic resistance. However, this approximation 

is not suitable for porous layers with high permeability.  

Since the governing equations for the general problem of slow translation and 

rotation of a composite sphere in an arbitrary direction within an eccentric spherical cavity 

are linear, its solution can be obtained by the superposition of the solutions to its two 

subproblems: translation and rotation normal to their common diameter, which is 

investigated in the main text of this thesis, and axisymmetric translation and rotation, as 
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shown in figure 7. The collocation solutions for the translational/rotational motions of a 

composite sphere inside an eccentric spherical cavity along/about their common diameter 

were previously obtained (Chou and Keh 2022, Appendix B). A comparison between 

these solutions and our results in tables 1, 2, and 4 shows that the cavity wall may exert 

greater or smaller hydrodynamic force and torque on the particle when its 

translation/rotation occur along/about the common diameter than the case of translation 

and rotation perpendicular to it (their differences are generally not significant). Thus, the 

directions of translation and rotation of a composite sphere inside an eccentric spherical 

cavity are slightly different from those of the imposed force and torque, respectively, 

except when they are oriented along/about or normal to the common diameter.  

 

Figure 7  Geometrical sketch of the translation and rotation of a composite sphere in 

arbitrary directions within an eccentric spherical cavity. 
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The physical meanings for the four dimensionless parameters /a b  , /b c  , 

/ ( )d c b− , and b  are graphically depicted in figure 8. 

 

Figure 8  Schematic diagram of the physical meanings for the dimensionless parameters 

/a b , /b c , / ( )d c b− , and b . 
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Chapter 4 

Conclusions 

 

In the main text of this thesis, the slow coupled translation and rotation of a 

composite sphere, which is a hard sphere core coated with a permeable porous layer, in 

an incompressible Newtonian fluid inside an eccentric spherical cavity normal to their 

common diameter in the quasi-steady state is semi-analytically studied by using a 

boundary collocation method. Accurate solutions of the force and torque exerted by the 

fluid on the composite sphere are obtained for wide-range values of the ratio of particle 

radius to porous layer permeation length b , particle-to-cavity radius ratio /b c , core-

to-particle radius ratio /a b , and relative distance between the particle and cavity centers 

/ ( )d c b−  . The force and torque on a translating and rotating particle increase 

monotonically with an increase in b  , /a b  , or /b c  , and generally increase with 

increasing / ( )d c b− . The boundary effect of the cavity on the translation of the particle 

is much more pronounced than that on the rotation. The coupling effect in the 

simultaneous translation and rotation inside an eccentric spherical cavity is complicated 

and not a monotonic function of /b c .  

In tables 1-4 and figures 2-6, we give results for the resistance problem, defined as 
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the problem of determining the hydrodynamic force F  and torque T  on a composite 

sphere for specified quasi-steady particle velocities U   and Ω   within an eccentric 

spherical cavity. In the mobility problem, the external force F  and torque T  acting on 

the composite sphere have been given, and the particle velocities U  and Ω  need to be 

determined. For the slow translation and rotation of a composite sphere within an 

eccentric spherical cavity perpendicular to their common diameter considered here, our 

expressions in equations (20) and (21) may also be applied to its matching mobility 

problem where the external force and torque on the composite sphere are given and thus 

the composite sphere translates and rotates accordingly. For example, the translational 

and angular velocities of a composite sphere under the condition of free rotation within 

an eccentric spherical cavity normal to their common diameter driven by the external 

force xFe  can be obtained using equations (20) and (21), with the result  

 
1

0

( )
/

t
t r

r

TF
U F F

F U T

−= − , (23a)  

 
t

r

TU
Ω

b T
= − , (23b)  

where the resistance coefficients in equation (23) have been given in the tables and figures 

in the previous chapters and the value of 0 /F U  on the right-hand side of equation (23a) 

can be calculated using equation (1).  
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List of Symbols 

 

a  the radius of the hard core of the composite sphere, [m]  

, ,in in inA B C  unknown constants in Eqs. (11) and (12) 

ˆ ˆˆ, ,in in inA B C  unknown constants in Eq. (14) 

* * *, ,in in inA B C  position functions given by Eqs. (A13)-(A17) 

** ** **, ,in in inA B C  position functions given by Eqs. (A22)-(A27) 

*** *** ***, ,in in inA B C  position functions given by Eqs. (A34)-(A39) 

' ',in inA C  position functions given by Eqs. (A18)-(A21) 

'' '' '', ,in in inA B C  position functions given by Eqs. (A28)-(A33) 

''' ''' ''', ,in in inA B C  position functions given by Eqs. (A40)-(A45) 

b  the radius of the composite sphere, [m]  

c  the radius of the cavity, [m]  

d  the distance between the cavity center and the particle center, [m]  

, ,ri i e e e  principal unit vectors in the ith spherical coordinate system  
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, ,x y ze e e  principal unit vectors in Cartesian coordinates 

(1) (2),f f  the functions used for coordinate transformation 

, FF  the drag force exerted on the composite sphere by the fluid, [N]  

0, F
0

F  the drag force exerted on a composite sphere by an unbounded fluid, 

[N]  

, , ,t r t rF F T T  the dimensionless resistance coefficients 

I  unit dyadic 

nI  the modified Bessel function of the first kind of order n  

nK  the modified Bessel function of the second kind of order n  

p  dynamic pressure for the external fluid, [Pa]  

1p  the component of p  generated by the particle, [Pa]  

2p  the component of p  generated by the cavity, [Pa]  

p̂  dynamic pressure for the internal fluid, [Pa]  

1

nP  the associated Legendre function of the first kind of order n  and 

degree 1 
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1 1, ,r    spherical coordinates originated from the particle center, [m, -, -]  

2 2, ,r    spherical coordinates originated from the cavity center, [m, -, -]  

,TT  the torque exerted on the composite sphere by the fluid, [N m]  

0,T
0

T  the torque exerted on a composite sphere by an unbounded fluid, 

[N m]  

,UU  the translational velocity of the composite sphere, 1[m s ]−  

v  velocity field for the external fluid, 1[m s ]−  

1v  the component of v  generated by the particle, 1[m s ]−  

2v  the component of v  generated by the cavity, 1[m s ]−  

v̂  velocity field for the internal fluid, 1[m s ]−  

, ,ir i iv v v   components of iv  in spherical coordinates, 1[m s ]−  

ˆ ˆ ˆ, ,rv v v 
 components of v̂  in spherical coordinates, 1[m s ]−  

, ,x y z  Cartesian coordinates originated from the cavity center, [m, m, m]  
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Greek letters 

( ) ( )

1 5~k k   position functions given by Eqs. (A46)-(A50) 

  the viscosity of the fluid, 1 1[kg m s ]− −   

  the reciprocal of the square root of the fluid permeability or flow 

penetration length in the porous layer, 1[m ]−  

i  cos i=  

, , z   cylindrical coordinates originated from the cavity center, [m, -, m] 

τ  the viscous stress tensor of the external fluid, 2[N m ]−  

τ̂  the viscous stress tensor of the internal fluid, 2[N m ]−  

,Ω  the angular velocity of the composite sphere, 1[s ]−  
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Appendix A 

Equations to Be Solved for Unknown Constants in 

Equations (9)-(14) 

 

Applying the boundary conditions given by equations (6)-(8) to equations (9)-(14), 

we obtain  
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Here, inA  , inB  , and inC   with asterisks and apostrophes for 1i =   and 2 in equations 

(A7)-(A9) are the position functions given by  
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* 2 1 1
1 1 12( 3 1) ( )n
n nA n n r P − −= − + − , (A13)  

* 3 1
1 1 12( 1)( 2) ( )n
n nC n n r P − −= − + + , (A14)  

(1)
* 1 1 (1) 12
2 2 2 2

1 1

2 {[ { ( 1) (2 3)}] ( )n
n n

rf
A r n r n n f n P

r r
+ − 
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 
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1 2 1
(2) 22 22

2 22
1 2 2

d ( ) d ( )3
[ (1 )]}

1 d d

n nP Pn
f

n r

 
 

 

+
+ − −

+ 
, (A15)  
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− += + − − + , (A18)  

' 2 2 2 3 1
1 1 1 1(2 6 4 ) ( )n
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** 2 1 2 1/2
1 1 1 1( 2) ( )(1 )n
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where the simplified expressions of 2 1/r r   , 2 1/r    , 2 1/ r   , and 2 1/     were 
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given by Lee and Keh (2013b), (1)f  and (2)f  are given by equation (17),  
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Appendix B 

Translation of a Composite Sphere in an Eccentric 

Spherical Cavity along Their Common Diameter 

 

B.1 Introduction 

The objective of this appendix is to obtain a theoretical solution for the quasi-steady 

slow translation of a soft spherical particle in a non-concentric spherical cavity along their 

common diameter. A boundary collocation method (Keh and Lee 2010, Chou and Keh 

2022) will be used to solve the creeping flow equations applicable to this system, and the 

wall-corrected hydrodynamic drag exerted on the particle will be obtained in many cases. 

The drag results reveal some interesting features of the influence of the cavity wall on 

soft particle motion.  
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B.2 Analysis 

As shown in Fig. B1, we consider the quasi-steady flow caused by a soft spherical 

particle of radius b   translating with a velocity U   in an incompressible Newtonian 

fluid inside an eccentric spherical cavity of radius c  along their common diameter ( z  

axis). Here, ),,( z   and ),,( 22 r   represent the circular cylindrical and spherical 

coordinate systems, respectively, with their origins attached to the cavity center. The soft 

particle has a hard core of radius a  and a porous layer of thickness ab − . The center 

of the particle is situated at a distance d  from the cavity center instantaneously. The 

purpose is to determine the correction for the hydrodynamic drag experienced by the 

particle because of the existence of the cavity.  

 

Fig. B1. A soft spherical particle translating inside a spherical cavity along their common 

diameter.  
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Owing to low Reynolds number, the fluid motion is governed by the Brinkman 

(inside the porous surface layer) and Stokes (outside the soft sphere) equations for the 

axisymmetric creeping flow,  

 
2 2 2 ˆ( ) 0E E Ψ− =      ( 1a r b  ), (B1)  

 0)( 22 =ΨEE      ( 1r b  and 2r c ), (B2)  

where ),,( 11 r  is the spherical coordinate system based on the center of the soft particle, 

1 −  is the permeation length or square root of the fluid permeability in the porous layer, 

Ψ̂   and Ψ   are stream functions of the flow in the porous layer and external flow, 

respectively, related to their nontrivial velocity components ˆ ˆ( , )
i irv v   and ( , )

i irv v   in 

spherical coordinates by  

      
2

ˆ1 ( , )
ˆ( , )

sini ir r

i i i

Ψ Ψ
v v

r  


= −


,     

ˆ1 ( , )
ˆ( , )

sini i

i i i

Ψ Ψ
v v

r r
 




=


, (B3)  

the Stokes operator  

     

2
2

2 2

sin 1
( )
sin

i

i i i i i

E
r r



  

  
= +
  

, (B4)  

and 1i =  or 2.  

The boundary conditions for the fluid flow are  

 1r a= :      
1 1

ˆ ˆ 0rv v= = , (B5)  

 1r b= :      
1 1

ˆ
r rv v= ,    

1 1
ˆv v = , (B6a)  
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1111

ˆ
  rr = ,   

1 1 1 1
ˆ ˆ

r r r rp p − = − , (B6b)  

 2r c= :      
2 2cosrv U = − ,    

2 2sinv U = . (B7)  

Here, 
1 1 1 1

ˆ ˆ( , )r r r   and 
1 1 1 1

( , )r r r   are the nontrivial stress components in the spherical 

coordinates ),,( 11 r   for the flow in the porous surface layer and external flow, 

respectively, p̂  and p  are the matching pressure profiles, and Eqs. (B5)-(B7) take a 

reference frame translating with the soft particle. For axisymmetric motions with the 

effective viscosity of the fluid in the porous layer equal to the bulk fluid viscosity (Koplik 

et al 1983, Masliyah et al 1987) and satisfying Eq. (B6a) simultaneously, the boundary 

condition (B6b) is equivalent to (Chen 1998)  

 1r b= :      1 1

1 1

ˆv v

r r

  
=

 
,   ˆp p=  (or 

1 1 1 1
ˆ

r r r r = ). (B8)  

We can express the stream functions as (Keh and Lee 2010, Chen and Ye 2000)  

+1 1/2 1/2

1 1 1 1 1 1/2 1 1 1/2 1 1 1

2

ˆ { [ ( ) ( )]( ) } (cos )n n

n n n n n n n

n

Ψ A r B r C I r D K r r G   


− −

− −

=

= + + + , (B9)  

2 1/2 +1 +3 1/2

2 2 2 2 2 2 1 2 1 1

2

[( ) (cos ) ( ) (cos )]n n n n

n n n n n n

n

Ψ A r C r G B r D r G 


+ − − − −

=

= + + + , (B10)  

where nI  and nK  are the modified Bessel functions of the first and second kinds of 

order n  , respectively, and 
2/1−

nG   is the Gegenbauer polynomial of the first kind of 

order n  and degree 2/1− . The unknown coefficients inA , inB , inC , and inD  ( 1=i  

or 2) will be determined using Eqs. (B5)-(B7). When constructing the solution (B10), the 



doi:10.6342/NTU202502609

53 

 

general solutions of Eq. (B2) in the two spherical coordinate systems can be superimposed 

due to the linearity of this equation.  

Application of Eq. (B3) to Eqs. (B9) and (B10) leads to the components of fluid 

velocities ˆ ˆ( , )zv v
 and ( , )zv v

 for the flow inside the porous layer and external flow, 

respectively, in circular cylindrical coordinates as  

      1 1 1 1 1 1 1 1 1 1 1 1

2

ˆ [ ( , ) ( , ) ( , ) ( , )]n n n n n n n n

n

v A A r B B r C r D r      


=

   = + + + , (B11a)  

      1 1 1 1 1 1 1 1 1 1 1 1

2

ˆ [ ( , ) ( , ) ( , ) ( , )]z n n n n n n n n

n

v A A r B B r C r D r     


=

   = + + + ; (B11b)  

      2 2 2 2 2 2 2 1 1 2 1 1

2

[ ( , ) ( , ) ( , ) ( , )]n n n n n n n n

n

v A A r C C r B B r D D r    


=

   = + + + , (B12a)  

      2 2 2 2 2 2 2 1 1 2 1 1

2

[ ( , ) ( , ) ( , ) ( , )]z n n n n n n n n

n

v A A r C C r B B r D D r   


=

   = + + + , (B12b)  

where nA , nA  , nB  , nB  , nC , nC  , nD , nD  , n  , n  , n  , and    are functions 

of spherical coordinates ( , )r    defined by Eqs. (C1)-(C12) in Appendix C. Applying 

boundary conditions (B5)-(B7) to Eqs. (B11) and (B12), we obtain  

1 1 1 1 1 1 1 1

2
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n
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      1 1 1 1 1 1 1 1( , ) ( , ) ( , ) ( , )} 0n n n n n n n nA A b B B b C b D b        − − − − = , (B14a)  

12 2 2 2 2 2 2 1 2 1

2

{[ ( , ) ( , )] ( , ) ( , )n n n n r b n n n n

n

A A r C C r B B b D D b   


=

=

   + + +   

      1 1 1 1 1 1 1 1( , ) ( , ) ( , ) ( , )} 0n n n n n n n nA A b B B b C b D b        − − − − = , (B14b)  

1

* * * *

2 2 2 2 2 2 2 1 2 1
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{[ ( , ) ( , )] ( , ) ( , )n n n n r b n n n n

n

A A r C C r B B b D D b   


=

=

+ + +   

      
* * * *

1 1 1 1 1 1 1 1( , ) ( , ) ( , ) ( , )} 0n n n n n n n nA A b B B b C b D b     − − − − = , (B14c)  

1

** ** ** **

2 2 2 2 2 2 2 2 2 1 2 1

2

{[ ( , ) ( , )] ( , ) ( , )n n n n r b n n n n

n
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

=

=

+ + +   

      
** ** ** **

1 1 1 1 1 1 1 1 1 1( , ) ( , ) ( , ) ( , )} 0n n n n n n n nA A b B B b C b D b     − − − − = ; (B14d)  

2

*** *** *** ***

2 2 2 2 2 1 1 2 1 1

2

{ ( , ) ( , ) [ ( , ) ( , )] }n n n n n n n n r c

n

A A c C C c B B r D D r U   


=

=

+ + + = − ,  (B15a)  

2

**** **** **** ****

2 2 2 2 2 1 1 2 1 1

2

{ ( , ) ( , ) [ ( , ) ( , )] }n n n n n n n n r c

n

A A c C C c B B r D D r U   


=

=

+ + + = − , (B15b)  

where 
*

nA  , 
**

1nA  , 
**

2nA  , 
***

nA  , 
****

nA  , 
*

nB  , 
**

1nB  , 
**

2nB  , 
***

nB  , 
****

nB  , 
*

nC  , 
**

nC  , 
***

nC  , 

****

nC  , 
*

nD  , 
**

nD  , 
***

nD  , 
****

nD  , 
*

n  , 
**

n  , 
*

n  , and 
**

n   are functions of ( , )r   

defined by Eqs. (C13)-(C34).  

To exactly satisfy the conditions in Eqs. (B13)-(B15), solutions of the whole infinite 

unknown constants inA , inB , inC , and inD  are required. But, the collocation technique 

(Keh and Lee 2010, Chou and Keh 2022) enforces boundary conditions at a limited 

number of discrete points on the longitudinal semicircle of each of the spherical surfaces 
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(from 0j =  to πj =  at ar =1 , 1r b= , and 2r c= ) and truncates the infinite series 

in Eqs. (B9)-(B12) to finite series. If the longitudinal semicircle is approximated by N  

discrete points satisfying the conditions in Eqs. (B5)-(B7), then the infinite series in Eqs. 

(B9)-(B12) are truncated after N  terms, resulting in 8N  linear algebraic equations in 

the truncated form of Eqs. (B13)-(B15). These equations can be solved numerically to 

produce the 8N   unknowns inA  , inB  , inC  , and inD   required for the truncated Eqs. 

(B9)-(B12). Once these unknowns are solved for a sufficiently large number of N , the 

fluid velocity can be fully obtained. Details of the boundary collocation scheme are given 

in a previous paper on the translational motion of a hard spherical particle in a cavity (Keh 

and Lee 2010).  

The drag force exerted by the external fluid on the soft particle (in the opposite 

direction of U ) can be determined from (Happel and Brenner 1983)  

 224πF D= , (B16)  

where   is viscosity of the fluid. The previous equation indicates that only the lowest-

order constant 22D  contributes to the hydrodynamic force acting on the particle. If the 

soft sphere is located at the center of the spherical cavity ( 0d = ), 22D  can be obtained 

analytically as Eq. (C35).  

When the porous layer of the soft particle vanishes, it reduces to a hard particle of 

radius a b= , Eqs. (B1), (B5), (B6b), (B8), (B9), (B11), (B13) and (B14c,d) are trivial, 
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ˆ ˆ 0zv v = = , 1 1 1 1 0n n n nA B C D= = = = , and just Eqs. (B14a,b) and (B15) are needed to 

be solved for the 4N  unknown constants 2nA , 2nB , 2nC , and 2nD . When the hard 

core disappears ( 0a = ), the soft sphere reduces to a porous particle of radius b , Eqs. 

(B5) and (B13) are trivial, 1 1 0n nB D= = , and just Eqs. (B14) and (B15) are needed for 

the 6N  unknowns 1nA , 1nC , 2nA , 2nB , 2nC , and 2nD .  

In the limiting case of / 0b c = , the soft sphere is unconfined and Eq. (B16) can be 

expressed analytically as Eq. (1). For the cases of a b=  and 0a = , Eq. (1) becomes 

Stokes’ law ( 0 6πF bU= ) for a hard sphere and corresponding result for a porous sphere, 

respectively. In the limits b →    (impermeable in the porous surface layer of the 

particle) and 0b =  (completely permeable in the porous surface layer), Eq. (1) again 

simplifies to Stokes’ law for hard spheres of radii b  and a , respectively. 
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B.3 Results and Discussion 

Results of the hydrodynamic drag force acting on a soft sphere translating inside an 

eccentric spherical cavity, obtained with good convergence by using the boundary 

collocation technique described in the previous section for various values of the ratios of 

the core-to-particle radii ba / , particle-to-cavity radii /b c , distance between the centers 

to radius difference of the cavity and particle / ( )d c b− , and particle radius to porous 

layer permeation length b , are presented for cases of porous sphere ( 0a = ) and general 

soft sphere in Tables B1 and B2, respectively. The drag force 0F  acting on an identical 

particle in the unbounded fluid given by Eq. (1) is used to normalize the cavity-corrected 

value F . These results converge to at least the significant digits as given in the tables 

and agree well with the available analytical solution in the concentric limit 

/ ( ) 0d c b− =  given in Appendix C. Also, our results in the limit / 0b c →  (vanishing 

cavity wall curvature compared with the particle) but finite in / ( )b c d−  are in good 

agreement with the results for a soft spherical particle translating perpendicular to a large 

plane wall obtained by Chen and Ye (2000). In the limit b →   (or a b= ), our results 

agree well with those (Keh and Lee 2010) obtained for a hard sphere translating in a 

corresponding cavity. 0/ 1F F =  as / ( ) 0b c d− =  (the cavity wall is far away from the 

particle) as expected, irrespective of the other parameters.  
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Table B1 The normalized drag force 𝐹/𝐹0  experienced by a porous sphere (𝑎 = 0 ) 

translating inside a spherical cavity at different values of 𝑑/(𝑐 − 𝑏), 𝑏/𝑐, and 𝜆𝑏.  

 

𝑑
(𝑐 − 𝑏)

 𝑏/𝑐 𝐹/𝐹0 

  𝜆𝑏 = 0.1 𝜆𝑏 = 1 𝜆𝑏 = 10 𝜆𝑏 = 100 𝜆𝑏 = 500 

0.25 0.1 0.9949 1.0380 1.2619 1.3015 1.3048 

 0.2 0.9702 1.0569 1.6570 1.7931 1.8046 

 0.3 0.9626 1.0890 2.2845 2.6428 2.6738 

 0.4 0.9673 1.1303 3.3190 4.2244 4.3053 

 0.5 0.9766 1.1728 5.0786 7.4727 7.6958 

 0.6 0.9869 1.2108 8.0957 15.1128 15.8189 

 0.7 0.9953 1.2397 12.9569 37.0789 39.9815 

 0.8 1.0004 1.2572 19.2043 1.244E2 1.447E2 

 0.9 1.0023 1.2643 23.9350 6.971E2 1.195E3 

 0.95 1.0018 1.2652 24.8577 1.692E3 7.847E3 

 0.975 1.0023 1.2649 24.9698 2.025E3 2.702E4 

 0.99 1.0026 1.2654 25.0226 2.212E3 4.747E4 

 0.999 1.0027 1.2655 25.0247 2.245E3 5.564E4 

       

0.5 0.1 0.9901 1.0419 1.3253 1.3778 1.3821 

 0.2 0.9389 1.0379 1.8007 1.9933 2.0100 

 0.3 0.8681 1.0007 2.5106 3.0559 3.1058 

 0.4 0.8634 1.0237 3.6576 5.0423 5.1760 

 0.5 0.9022 1.0925 5.5773 9.1351 9.5057 

 0.6 0.9435 1.1622 8.7466 18.7607 19.9314 

 0.7 0.9755 1.2169 13.5844 46.2215 51.0323 

 0.8 0.9943 1.2500 19.4783 1.521E2 1.857E2 

 0.9 1.0014 1.2631 23.9276 7.604E2 1.522E3 

 0.95 1.0023 1.2649 24.8262 1.600E3 9.517E3 

 0.975 1.0010 1.2633 24.8767 1.756E3 1.958E4 

 0.99 1.0021 1.2647 24.9957 2.147E3 3.790E4 

 0.999 1.0027 1.2654 25.0246 2.245E3 5.564E4 
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Table B2 The normalized drag force 𝐹/𝐹0  experienced by a soft sphere with 𝜆𝑏 = 1 

translating inside a spherical cavity at different values of 𝑑/(𝑐 − 𝑏), 𝑏/𝑐, and 𝑎/𝑏.  

 

𝑑
(𝑐 − 𝑏)

 𝑏/𝑐 𝐹/𝐹0 

  𝑎/𝑏 = 0.5 𝑎/𝑏 = 0.8 𝑎/𝑏 = 0.95 

0.25 0.1 1.1387 1.2304 1.2858 

 0.2 1.2976 1.5592 1.7389 

 0.3 1.5105 2.0622 2.5003 

 0.4 1.7973 2.8642 3.8672 

 0.5 2.1822 4.2100 6.5427 

 0.6 2.7002 6.6206 12.4338 

 0.7 3.3984 11.3193 27.8263 

 0.8 4.3408 21.5831 80.8279 

 0.9 5.6261 48.0522 3.924E2 

 0.95 6.4505 78.1032 1.327E3 

 0.975 6.9168 1.021E2 2.846E3 

 0.99 7.2290 1.224E2 5.793E3 

 0.999 7.4251 1.369E2 9.589E3 

     

0.5 0.1 1.1668 1.2842 1.3569 

 0.2 1.3269 1.6664 1.9150 

 0.3 1.4769 2.1951 2.8323 

 0.4 1.7280 3.0461 4.4755 

 0.5 2.1288 4.5028 7.6832 

 0.6 2.6887 7.1133 14.6867 

 0.7 3.4357 12.1532 32.7173 

 0.8 4.4057 22.8894 93.2114 

 0.9 5.6672 49.4743 4.310E2 

 0.95 6.4648 78.8504 1.351E3 

 0.975 6.9173 1.009E2 2.153E3 

 0.99 7.2224 1.221E2 5.328E3 

 0.999 7.4251 1.369E2 9.587E3 
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The normalized drag force 
0/F F   of a porous sphere ( 0a =  ) translating 

axisymmetrically within a non-concentric spherical cavity is plotted against the 

parameters /b c , / ( )d c b− , and b  in Figs. B2-B4, respectively. For fixed values of 

/ ( )d c b−  and /b c , 
0/F F  increases monotonically with a decrease in permeability 

or an increase in b   from unity (with 
0 0F F= =  ) at 0b =   to a finite value (or 

infinity at the limit / 1b c =  where the particle seals the cavity) as b →  , as illustrated 

in Table B1 and Figs. B2a, B3b, B4a, and B4b. 
0/F F  changes weakly with / ( )d c b−  

and /b c   (less than 27% for all cases with / 0.999b c   ) as 1b   . When /b c   and 

/ ( )d c b−   are not close to unity, the normalized force on a porous particle with 

100b    approaches to that with b →    (a porous sphere of little permeability 

performs as a hard sphere), but when the porous sphere is near the wall, the difference 

can become significant.  
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(a) 

 

(b) 

Fig. B2. Normalized drag force 𝐹/𝐹0 of a porous sphere (𝑎 = 0) translating inside a 

spherical cavity versus the ratio of particle-to-cavity radii 𝑏/𝑐: (a) 𝑑/(𝑐 − 𝑏) = 1/2; (b) 

𝜆𝑏 = 10. 
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(a) 

 

(b) 

Fig. B3. Normalized drag force 𝐹/𝐹0 of a porous sphere (𝑎 = 0) translating inside a 

spherical cavity versus the eccentricity parameter 𝑑/(𝑐 − 𝑏): (a) 𝜆𝑏 = 10; (b) 𝑏/𝑐 =

1/2. 
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(a) 

 

(b) 

Fig. B4. Normalized drag force 𝐹/𝐹0 of a porous sphere (𝑎 = 0) translating inside a 

spherical cavity versus the shielding parameter 𝜆𝑏 : (a) 𝑏/𝑐 = 1/2;  (b) 𝑑/(𝑐 − 𝑏) =

1/2. 
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For given values of b  and / ( )d c b− , as illustrated in Table B1 and Figs. B2a, 

B2b, B3a, and B4b, the normalized force 
0/F F  acting on a porous sphere generally is 

an increasing function of the ratio of the particle-to-cavity radii /b c   from unity at 

/ 0b c =  to a finite value (or infinity if b →  ) at / 1b c = , because the closer the cavity 

wall to the particle surface, the stronger the hydrodynamic hindrance effect of the wall. 

Unexpectedly, when / ( )d c b−   is not near zero (the particle eccentricity within the 

cavity is not negligible) and b  is smaller than about 2 (the porous sphere is relatively 

permeable), 
0/F F  may not be a monotonic function of /b c , and reach a minimum 

either greater or less than unity at medium values of /b c  (that is, the existence of a 

confinement wall can decrease the hydrodynamic force on a porous sphere, and this 

counter-intuitive behavior seems to be caused by the approximations in the porous 

particle that the volume-averaged superficial velocity of the local fluid is used and its 

effective viscosity is equal to the bulk fluid viscosity (Koplik et al 1983)). The 

dependence of 
0/F F  on /b c  disappears at the limit 0b =  but is strong when b  

is large.  

For specified values of /b c   and b  , the normalized force 
0/F F   generally 

increases with increasing / ( )d c b− , the eccentricity parameter, from one finite value in 

the concentric situation / ( ) 0d c b− =   to another at the contact limit of particle and 

cavity surfaces / ( ) 1d c b− = , as shown in Table B1 and Figs. B2b, B3a, B3b, and B4a. 
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These results indicate that the hydrodynamic hindrance of particle motion due to the 

proximity of the cavity wall is enhanced on the proximal side and reduced on the distal 

side of the particle, with an enhanced net effect. But, when the value of b  is small (say, 

less than about 3) or /b c  is large (say, greater than about 0.8), 
0/F F  may decrease 

slightly (even to less than unity) as / ( )d c b−  increases. The variation of 
0/F F  with 

/ ( )d c b−  vanishes at the limits 0b =  and / 0b c =  but is obvious when the value of 

b  is large.  

Having realized the hydrodynamic effects of the non-concentric cavity on a 

translating porous particle, we can examine the general case of a translating soft particle. 

In Figs. B5-B8 and Table B2, the normalized force 
0/F F  on a soft spherical particle 

within the cavity is shown as functions of the particle-to-cavity radius ratio /b c , core-

to-particle radius ratio ba /  , shielding parameter b  , and eccentricity parameter 

/ ( )d c b− , respectively. Likewise, 
0/F F  is a monotonically increasing function of b  

from a constant at 0b =  to a finite value (or infinity at the limit / 1b c = ) as b →  , 

generally increases with /b c  from unity at / 0b c =  to a finite value (or infinity in the 

limit b →   ) at / 1b c =  , and generally rises with increasing / ( )d c b−   from one 

finite value in the concentric situation / ( ) 0d c b− =   to another at the contact limit 

/ ( ) 1d c b− = , keeping other parameters unchanged. When the value of ba /  is small, 
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/ ( )d c b−  is not near zero, and b  is smaller than about 2, 
0/F F  may first decrease 

as /b c  increases from unity at / 0b c = , reach a minimum with 0/ 1F F  , and then 

rise with further increase of /b c  up to a value larger than unity at / 1b c = , as shown in 

Fig. B6 and Table B2. In addition, when the values of b  and ba /  are small (such as 

less than 3 and 0.5, respectively) 
0/F F  may decrease slightly (even to less than unity) 

as / ( )d c b−  increases, as illustrated in Table B2 and Figs. B5, B7, and B8.  
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(a) 

 

(b) 

Fig. B5. Normalized drag force 𝐹/𝐹0  of a soft spherical particle translating inside a 

spherical cavity versus the ratio of core-to-particle radii 𝑎/𝑏 : (a) 𝜆𝑏 = 1;  (b) 𝑏/𝑐 =

1/2 . The solid and dashed curves denote 𝑑/(𝑐 − 𝑏) = 1/5  and 𝑑/(𝑐 − 𝑏) = 1/2 , 

respectively. 
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Fig. B6. Normalized drag force 𝐹/𝐹0  of a soft sphere translating inside a spherical 

cavity with 𝑑/(𝑐 − 𝑏) = 1/2 versus the ratio of core-to-particle radii 𝑏/𝑐. The solid 

and dashed curves denote 𝜆𝑏 = 1 and 𝜆𝑏 = 3, respectively. 
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Fig. B7. Normalized drag force 𝐹/𝐹0  of a soft sphere translating inside a spherical 

cavity with 𝜆𝑏 = 1 versus the eccentricity parameter 𝑑/(𝑐 − 𝑏). The solid and dashed 

curves denote 𝑏/𝑐 = 1/5 and 𝑏/𝑐 = 1/2, respectively.  
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Fig. B8. Normalized drag force 𝐹/𝐹0  of a soft sphere translating inside a spherical 

cavity with 𝑏/𝑐 = 1/2 versus the shielding parameter 𝜆𝑏. The solid and dashed curves 

denote 𝑑/(𝑐 − 𝑏) = 1/5 and 𝑑/(𝑐 − 𝑏) = 1/2, respectively.  
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For fixed values of b , / ( )d c b− , and /b c , Figs. B5-B8 and Table B2 show that 

the normalized force 
0/F F   on a translating soft sphere within a spherical cavity 

monotonically increases with a rise in the ratio of core-to-particle radii /a b , in which 

the cases of / 0a b =   and / 1a b =   denote porous particle and solid particle, 

respectively. That is, for specified particle radius, permeability of the porous layer, and 

separation from the wall, the force acting on the particle becomes less if the porous 

surface layer is thicker. All force results of the soft particle fall between the upper and 

lower bounds of / 1a b =  and / 0a b = , respectively. When the porous layer of the soft 

particle has small to moderate permeability (say. 10b  ), 
0/F F  on the soft particle 

with /a b  less than about 0.8 within a spherical cavity can be well approximated by the 

normalized force on a porous particle having identical permeability, radius, and 

eccentricity inside an identical cavity, as illustrated in Figs. B5b and B8. Here, the hard 

core of the soft sphere barely feels the motion of the fluid and exerts only negligible 

hindrance. But, this approximation does not apply to surface layers with high permeability. 
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B.4 Conclusions 

In this Appendix, the axially symmetric translation of a soft sphere in a viscous fluid 

within an eccentric spherical cavity is semi-analytically investigated in the quasi-steady 

limit of small Reynolds number. A boundary collocation method is used to solve the 

Brinkman and Stokes equations for the fluid flows inside and outside the porous surface 

layer of the soft particle, respectively. Numerical results with good convergence for the 

normalized drag force 
0/F F   exerted by the fluid on the particle are obtained for 

numerous values of the core-to-particle radius ratio /a b , particle-to-cavity radius ratio 

/b c , ratio of distance between the centers to radius difference of the particle and cavity 

/ ( )d c b− , and ratio of particle radius to porous layer permeation length b . The cavity 

wall effect on the drag force of a translating soft sphere is monotonically increasing 

functions of /a b  and b . While 
0/F F  generally increases with an increase in /b c , 

a weak minimum (surprisingly, smaller than unity) may occur for the case of low /a b  

and low b  . This normalized drag force generally increases with an increase in 

/ ( )d c b−  , but for the case of low /a b   and low b  , the drag force may decrease 

slightly with an increase in / ( )d c b− .  

We presented in Section B.3 the solutions for a resistance problem, in which the drag 

force F  acting on the soft sphere undergoing translation inside a spherical cavity is 
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determined for a given particle velocity U . On the other hand, in a mobility problem, an 

applied force F  acting on the particle is given and the wall-corrected particle velocity 

U  needs to be determined. For the low-Reynolds-number translational motion of a soft 

sphere inside a cavity along their common diameter considered here, the normalized 

particle velocity 0/UU   [where 0U   is given by U   in Eq. (1) with 0F F=  , for a 

mobility problem is equal to the reciprocal normalized drag force, 
1

0 )/( −FF , provided 

by Tables B1 and B2 and Figs. B2-B8 for its matching resistance problem. 
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Appendix C 

Some Functions in Appendix B 

 

The functions in Eqs. (B11)-(B15) are defined by  

]cot)(cos)12(csc)(cos)1[(),( 2/12/1

1

2  −−

+

− −−+−=
nn

n

n GnGnrrA , (C1)  

)](cos)(cos)12[(),( 2/12  nn

n

n PGnrrA +−−= −−
, (C2)  

1 1/2

1( , ) ( 1) (cos )cscn

n nB r n r G  − − −

+
 = − + , (C3)  

)(cos),( 1  n

n

n PrrB −−−= , (C4)  

]cot)(cos)12(csc)(cos)1[(),( 2/12/1

1  −−

+ +−+−=
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n

n GnGnrrC , (C5)  

)](cos)(cos)12[(),( 2/1  nn

n

n PGnrrC ++−= −
, (C6)  

1 1/2 1/2

1( , ) [( 1) (cos )csc 2 (cos )cot ]n

n n nD r r n G G    − + − −

+
 = − + − , (C7)  

1 1/2( , ) [2 (cos ) (cos )]n

n n nD r r G P  − + − = − + , (C8)  

1/2 3/2 1/2 1/2

3/2 1/2 1( , ) [ ( ) (cos )cot ( 1) ( ) (cos )csc ]n n n n nr r rI r G n I r G         − − −

− − +
 = − + , (C9)  

1/2 3/2 1/2

3/2 1/2( , ) [ ( ) (cos ) ( ) (cos )]n n n n nr r rI r G I r P       − −

− −
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1/2 3/2 1/2

1/2 1( , ) { ( )[ (cos )cot (cos )sin ]n n n nr r K r nG P       − −

− −
 = −  

1/2

1/2 ( ) (cos )cot }n nrK r G   −

+− , (C11)  

1/2 3/2 1/2

1/2 1( , ) { ( )[ (cos ) (cos )cos ]n n n nr r K r nG P      − −

− −
 = − +  

1/2

1/2 ( ) (cos )}n nrK r G  −

+− ; (C12)  
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* 3 1/2( , ) 2 ( 2) (cos )cscn

n nA r n n r G  − −= − , (C13)  

2 2
** 3

1 1( , ) ( 2 4 ) (cos )
1

n

n n

r
A r n r P

n


 −

−= − + −
−

, (C14)  

** 3

2 1( , ) 2( 2) (cos )n

n nA r n r P −

−= − − , (C15)  

* 2 2 1/2( , ) 2( 1) (cos )cscn

n nB r n r G  − − −= − , (C16)  

2 2
** 2

1 1( , ) (2 2+ ) (cos )n

n n

r
B r n r P

n


 − −

−= + , (C17)  

** 2

2 1( , ) 2( 1) (cos )n

n nB r n r P − −

−= + , (C18)  

* 2 1 1/2( , ) 2( 1) (cos )cscn

n nC r n r G  − −= − , (C19)  

** 1

1

3
( , ) 2( 2 ) (cos )

1

n

n nC r n r P
n

 −

−= − − −
−

, (C20)  

* 1/2( , ) 2 ( 2) (cos )cscn

n nD r n n r G  − −= − , (C21)  

**

1

3
( , ) 2( 1 ) (cos )n

n nD r n r P
n

 −

−= + − , (C22)  

* 1/2 5/2 2 2 2 1/2

1/2 1/2( , ) [2 ( ) (2 4 ) ( )] (cos )cscn n n nr r rI r n n r I r G        − −

+ −= − − − + ,  (C23)  

** 1/2 5/2

1/2 1/2 1( , ) 2 [ ( ) ( 2) ( )] (cos )n n n nr r rI r n I r P      −

+ − −= − + − , (C24)  

* 1/2 5/2 2 2 2 1/2

1/2 1/2( , ) [2 ( ) (2 4 ) ( )] (cos )cscn n n nr r rK r n n r K r G        − −

+ −= + − + , (C25)  

** 1/2 5/2

1/2 1/2 1( , ) 2 [ ( ) ( 2) ( )] (cos )n n n nr r rK r n K r P      −

+ − −= − − , (C26)  

*** 2 1/2

1( , ) [( 1) (cos )sec (cos )]n

n n nA r r n G P   − −

+= − + + , (C27)  

***

2( , ) ( , ) ( , ) tann n nB r B r B r    = + , (C28)  

*** 1/2

1( , ) [( 1) (cos )sec (cos )]n

n n nC r r n G P   −

+= − + + , (C29)  

***

2( , ) ( , ) ( , ) tann n nD r D r D r    = + , (C30)  
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**** 2 1/2 2 1/2

1( , ) [(2 1) (cos )csc ( 1) (cos )csc cot (cos )]n

n n n nA r r n G n G P      − − −

+= − − − + + , (C31)  

****

2( , ) ( , ) ( , ) cotn n nB r B r B r    = − , (C32)  

**** 1/2 2 1/2

1( , ) [(2 1) (cos )csc ( 1) (cos )csc cot (cos )]n

n n n nC r r n G n G P      − −

+= − + − + + , (C33)  

****

2( , ) ( , ) ( , ) cotn n nD r D r D r    = − , (C34)  

where nP  is the Legendre polynomial of order n.  

For the slow translation of a soft spherical particle inside a concentric spherical 

cavity ( 0d = ), the exact solution of its drag force in Eq. (B16) was obtained explicitly 

with (Keh and Chou 2004)  

2 4 2

22 5 6 0 76 [60 (2 3 )cosh( )
U

D s s s s


     


= − − + −


  

)]sinh()32( 7
2

608
3  −−++ ssss , (C35)  

where  

2

22 19 0 20 2112 (9 2 )cosh( )s s s s s      = + − − −   

2

23 0 19 203(2 )sinh( )s s s s   + + − − ; (C36)  

32
0 += s ,      

535
5 15  −+=s ,      

535
6 456  −+=s ,  

535
7 45  −+=s ,      

535
8 156  −+=s ,  

532345
19 31060158  −++−=s ,  

6523456
20 49)18(1018094  +−−++−=s ,  

8 7 6 5 2 3 4 2 2 6 6

21 4 9 60 2 (5 63) 3 (3 20 90) 4 6s              = − + + − − − + + + ,  
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62356
22 2)18(52720  +−+−=s ,  

8 7 6 5 2 3 4 2 6

23 8 15 20 2 (5 36) (3 20 90) 2s            = − + + − − − + + , (C37)  

a = , b = , and c = .  


