請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98299完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葛煥彰 | zh_TW |
| dc.contributor.advisor | Huan-Jang Keh | en |
| dc.contributor.author | 陳威銍 | zh_TW |
| dc.contributor.author | Wei-Zhi Chen | en |
| dc.date.accessioned | 2025-08-01T16:07:45Z | - |
| dc.date.available | 2025-08-02 | - |
| dc.date.copyright | 2025-08-01 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-28 | - |
| dc.identifier.citation | 1. Dukhin, S.S.; Derjaguin, B.V. In Surface and Colloid Science; Matijevic, E., Ed.; Wiley: New York, NY, USA, 1974; Volume 7.
2. Prieve, D.C.; Anderson, J.L.; Ebel, J.P.; Lowell, M.E. Motion of a particle generated by chemical gradients. Part 2. Electrolytes. J. Fluid Mech. 1984, 148, 247–269. 3. Pawar, Y.; Solomentsev, Y.E.; Anderson, J.L. Polarization effects on diffusiophoresis in electrolyte gradients. J. Colloid Interface Sci. 1993, 155, 488–498. 4. Khair, A.S. Diffusiophoresis of colloidal particles in neutral solute gradients atfinite Péclet number. J. Fluid Mech. 2013, 731, 64–94. 5. Keh, H.J. Diffusiophoresis of charged particles and diffusioosmosis of electrolyte solutions. Curr. Opin. Colloid Interface Sci. 2016, 24, 13–22. 6. Prieve, D.C.; Malone, S.M.; Khair, A.S.; Stout, R.F.; Kanj, M.Y. Diffusiophoresis of charged colloidal particles in the limit of very high salinity. Proc. Natl. Acad. Sci. USA 2019, 116, 18257–18262. 7. Shin, S. Diffusiophoretic separation of colloids in microfluidic flows. Phys. Fluids 2020, 32, 101302. 8. Lee, S.; Lee, J.; Ault, J.T. The role of variable zeta potential on diffusiophoretic and diffusioosmotic transport. Colloids Surf. A 2023, 659, 130775. 9. Smith, R.E.; Prieve, D.C. Accelerated deposition of latex particles onto a rapidly dissolving steel surface. Chem. Eng. Sci. 1982, 37, 1213–1223. 10. Anderson, J.L. Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 1989, 21, 61–99. 11. Abecassis, B.; Cottin-Bizonne, C.; Ybert, C.; Ajdari, A.; Bocquet, L. Osmotic manipulation of particles for microfluidic applications. New J. Phys. 2009, 11, 075022. 12. Wanunu, M.; Morrison, W.; Rabin, Y.; Grosberg, A.Y.; Meller, A. Electrostatic focusing of unlabeled DNA into nanoscale pores using a salt gradient. Nat. Nanotechnol. 2010, 5, 160–165. 13. Hatlo, M.M.; Panja, D.; van Roij, R. Translocation of DNA molecules through nanopores with salt gradients: The role of osmotic flow. Phys. Rev. Lett. 2011, 107, 68101. 14. Velegol, D.; Garg, A.; Guha, R.; Kar, A.; Kumar, M. Origins of concentration gradients for diffusiophoresis. Soft Matter 2016, 12, 4686–4703. 15. Shen, T.Z.; Hong, S.H.; Song, J.K. Electro-optical switching of graphene-oxideliquid crystals with an extremely large Kerr coefficient. Nat. Mater. 2014, 13, 394–399. 16. Shen, T.Z.; Perera, K.N.A.; Masud, A.R.; Priyadharshana, P.A.N.S.; Park, J.-Y.; Wang, Q.-H.; Hong, S.H.; Song, J.K. A dual-frequency photonic crystal nanocolloid with hue- and brightness-tunable structural colors. Cell Rep. Phys. Sci. 2023, 4, 101343. 17. Sen, A.; Ibele, M.; Hong, Y .; Velegol, D. Chemo and phototactic nano/microbots. Faraday Discuss. 2009, 143, 15–27. 18. Brown, A.; Poon, W. Ionic effects in self-propelled Pt-coated Janus swimmers. Soft Matter. 2014, 10, 4016–4027. 19. Oshanin, G.; Popescu, M.N.; Dietrich, S. Active colloids in the context of chemical kinetics. J. Phys. A Math. Theor. 2017, 50, 134001. 20. Staffeld, P.O.; Quinn, J.A. Diffusion-induced banding of colloid particles via diffusiophoresis 2. Non-electrolytes. J. Colloid Interface Sci. 1989, 130, 88–100. 21. Bohinc, K.; Bossa, G.V.; May, S. Incorporation of ion and solvent structure into mean-field modeling of the electric double layer. Adv. Colloid Interface Sci. 2017, 249, 220–233. 22. Prieve, D.C.; Roman, R. Diffusiophoresis of a rigid sphere through a viscous electrolyte solution. J. Chem. Soc. Faraday Trans. 2 1987, 83, 1287–1306. 23. Keh, H.J.; Wei, Y.K. Diffusiophoretic mobility of spherical particles at low potential and arbitrary double-layer thickness. Langmuir 2000, 16, 5289–5294. 24. Wei, Y.K.; Keh, H.J. Diffusiophoretic mobility of charged porous spheres in electrolyte gradients. J. Colloid Interface Sci. 2004, 269, 240–250. 25. Huang, P.Y.; Keh, H.J. Diffusiophoresis of a spherical soft particle in electrolyte gradients. J. Phys. Chem. B 2012, 116, 7575–7589. 26. Ohshima, H. Diffusiophoretic velocity of a spherical soft particle. Colloid Polym. Sci. 2022, 300, 153–157. 27. Ohshima, H. Diffusiophoresis of a soft particle as a model for biological cells. Colloids Interfaces 2022, 6, 24. 28. Akdeniz, B.; Wood, J.A.; Lammertink, R.G.H. Diffusiophoretic behavior of polyelectrolyte-coated particles. Langmuir 2024, 40, 5934−5944. 29. Joo, S.W.; Lee, S.Y.; Liu, J.; Qian, S. Diffusiophoresis of an elongated cylindrical nanoparticle along the axis of a nanopore. ChemPhysChem 2010, 11, 3281–3290. 30. Chang, Y.C.; Keh, H.J. Diffusiophoresis and electrophoresis of a charged sphere perpendicular to one or two plane walls. J. Colloid Interface Sci. 2008, 322, 634–653. 31. Lee, S.Y.; Yalcin, S.E.; Joo, S.W.; Sharma, A.; Baysal, O.; Qian, S. The effect of axial concentration gradient on electrophoretic motion of a charged spherical particle in a nanopore. Microgravity Sci. Technol. 2010, 22, 329–338. 32. Chiu, H.C.; Keh, H.J. Diffusiophoresis of a charged particle in a microtube. Electrophoresis 2017, 38, 2468–2478. 33. Kar, A.; Chiang, T.-S.; Rivera, I.O.; Sen, A.; Velegol, D. Enhanced transport into and out of dead-end pores. ACS Nano 2015, 9, 746–753. 34. Shin, S.; Um, E.; Sabass, B.; Ault, J.T.; Rahimi, M.; Warren, P.B.; Stone, H.A. Size-dependent control of colloid transport via solute gradients in dead-end channels. Proc. Natl. Acad. Sci. USA 2016, 113, 257–261. 35. Chiu, Y.C.; Keh, H.J. Diffusiophoresis of a charged particle in a charged cavity with arbitrary electric-double-layer thickness. Microfluid. Nanofluid. 2018, 22, 84. 36. Chiu, Y.C.; Keh, H.J. Diffusiophoresis of a charged porous particle in a charged cavity. J. Phys. Chem. B 2018, 122, 9803–9814. 37. Chang, X.; Hsu, W.-L.; Hsu, J.-P.; Tseng, S. Diffusiophoresis of a soft spherical particle in a spherical cavity. J. Phys. Chem. B 2009, 113, 8646–8656. 38. Chen, W.J.; Keh, H.J. Electrophoresis of a charged soft particle in a charged cavity with arbitrary double-layer thickness. J. Phys. Chem. B 2013, 117, 9757–9767. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98299 | - |
| dc.description.abstract | 本研究分析在一個充滿對稱型電解質溶液並具有濃度梯度的同心帶電球形腔體中,由一個不帶電的硬球核心與一個均勻帶電的多孔表面層組成的球形複合軟質粒子的擬穩態擴散泳動現象。藉由對軟質粒子與腔體壁的固定電荷密度進行正規微擾法,求解與流體速度場、電位分佈以及離子濃度分佈相關的線性化電動力方程式。進而獲得了軟質粒子的擴散泳動(包含電泳及化學泳的貢獻)速度的解析結果,此速度為以下幾個無因次群的函數:實心硬核與複合粒子半徑比值(r_0/a) 、複合粒子與帶電空腔半徑比值(b/a) 、複合粒子半徑與電雙層特性厚度(Debye screening length)的比值(κa)以及複合粒子半徑與多孔層滲透長度(porous layer permeation length)的比值(λa)。
在一般狀況下,帶電的腔體壁對複合粒子的擴散泳動行為具有顯著影響。沿著腔體壁產生的擴散滲透(diffusioosmosis),包含電滲透(electroosmosis)和 化學滲透(chemiosmosis) 所造成的流體流動,會大幅改變複合粒子的擴散泳速度,甚至可能使其方向反轉。整體而言,擴散泳速度隨著實心硬核與複合粒子半徑比值、複合粒子與帶電空腔半徑比值、複合粒子半徑與多孔層滲透長度的比值增加而減小,隨著複合粒子半徑與電雙層特性厚度的比值增加而增加。 | zh_TW |
| dc.description.abstract | The quasi-steady diffusiophoresis of a soft particle composed of an uncharged hard sphere core and a uniformly charged porous surface layer in a concentric charged spherical cavity full of a symmetric electrolyte solution with a concentration gradient is analyzed. By using a regular perturbation method with small fixed charge densities of the soft particle and cavity wall, the linearized electrokinetic equations relevant to the fluid velocity field, electric potential profile, and ionic concentration distributions are solved. A closed-form formula for the diffusiophoretic (electrophoretic and chemiphoretic) velocity of the soft particle is obtained as a function of the ratios of core-to-particle radii, particle-to-cavity radii, particle radius to the Debye screening length, and particle radius to porous layer permeation length. In typical cases, the confining charged cavity wall significantly influences the diffusiophoresis of the soft particle.
The fluid flow caused by the diffusioosmosis (electroosmosis and chemiosmosis) along the cavity wall can considerably change the diffusiophoretic velocity of the particle and even reverse its direction. In general, the diffusiohoretic velocity decreases with increasing core-to-particle radius ratio, particle-to-cavity radius ratio, and ratio of particle radius to porous layer permeation length, but increases with increasing ratio of particle radius to the Debye length. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-01T16:07:45Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-01T16:07:45Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭....................................................... i
摘要...................................................... ii Abstract ...................................................... iii Table of Contents ....................................................... v List of Figures ....................................................... vii Chapter 1 Introduction ....................................................... 1 1.1 Diffusiophoresis ....................................................... 1 1.2 Soft particle ....................................................... 2 Chapter 2 Electrokinetic Equations and Boundary Conditions .............................. 5 2.1 Perturbation method ....................................................... 6 2.2 Differential governing equations....................................................... 6 2.3 Boundary conditions ....................................................... 7 Chapter 3 Solution of the Diffusiophoretic Velocity ................................................. 9 3.1 Equilibrium electrical potential profile ....................................................... 9 3.2 Solution of the perturbed variables ....................................................... 10 3.3 Forces acting on the particle ....................................................... 12 3.4 Diffusiophoretic velocity of the particle ....................................................... 14 Chapter 4 Results and Discussion .......................................................16 4.1 Porous particle velocities ....................................................... 16 4.1.1 First-order electrophoretic velocities ....................................................... 16 4.1.2 Second-order chemiphoretic velocities ....................................................... 22 4.1.3 Diffusiophoretic velocity ....................................................... 28 4.2 Soft particle velocities ....................................................... 30 4.2.1 First-order electrophoretic velocities ....................................................... 30 4.2.2 Second-order chemiphoretic velocities ....................................................... 35 4.2.3 Diffusiophoretic velocity ....................................................... 40 Chapter 5 Conclusions ....................................................... 41 List of Symbols ....................................................... 43 References ....................................................... 47 Appendix A Functions in Equations (21)-(25) and Coefficients in Equation (29)................51 Appendix B Basic Governing Equations in Chapter 2 and Section 3.1 ................ 73 | - |
| dc.language.iso | en | - |
| dc.subject | 擴散滲透 | zh_TW |
| dc.subject | 擴散泳 | zh_TW |
| dc.subject | 邊界效應 | zh_TW |
| dc.subject | 帶電軟質粒子 | zh_TW |
| dc.subject | 任意電雙層厚度 | zh_TW |
| dc.subject | diffusiophoresis | en |
| dc.subject | diffusioosmosis | en |
| dc.subject | arbitrary electric double layer | en |
| dc.subject | boundary effect | en |
| dc.subject | charged soft particle | en |
| dc.title | 帶電球形軟質粒子在帶電球形孔洞中之擴散泳 | zh_TW |
| dc.title | Diffusiophoresis of a Charged Soft Sphere in a Charged Spherical Cavity | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 詹正雄;謝子賢 | zh_TW |
| dc.contributor.oralexamcommittee | Jeng-Shiung Jan;Tzu-Hsien Hsieh | en |
| dc.subject.keyword | 擴散泳,擴散滲透,帶電軟質粒子,邊界效應,任意電雙層厚度, | zh_TW |
| dc.subject.keyword | diffusiophoresis,diffusioosmosis,charged soft particle,boundary effect,arbitrary electric double layer, | en |
| dc.relation.page | 74 | - |
| dc.identifier.doi | 10.6342/NTU202502508 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-29 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2025-08-02 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 2.58 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
