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Abstract

The quasi-steady diffusiophoresis of a soft particle composed of an uncharged hard
sphere core and a uniformly charged porous surface layer in a concentric charged
spherical cavity full of a symmetric electrolyte solution with a concentration gradient
is analyzed. By using a regular perturbation method with small fixed charge densities
of the soft particle and cavity wall, the linearized electrokinetic equations relevant to
the fluid velocity field, electric potential profile, and ionic concentration distributions
are solved. A closed-form formula for the diffusiophoretic (electrophoretic and
chemiphoretic) velocity of the soft particle is obtained as a function of the ratios of
core-to-particle radii, particle-to-cavity radii, particle radius to the Debye screening
length, and particle radius to porous layer permeation length. In typical cases, the
confining charged cavity wall significantly influences the diffusiophoresis of the soft
particle.

The fluid flow caused by the diffusioosmosis (electroosmosis and chemiosmosis)
along the cavity wall can considerably change the diffusiophoretic velocity of the
particle and even reverse its direction. In general, the diffusiohoretic velocity decreases
with increasing core-to-particle radius ratio, particle-to-cavity radius ratio, and ratio of

particle radius to porous layer permeation length, but increases with increasing ratio of
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particle radius to the Debye length.

Keywords: diffusiophoresis; diffusioosmosis; charged soft particle; boundary effect;

arbitrary electric double layer
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Chapter 1

Introduction

1.1 Diffusiophoresis

Diffusiophoresis refers to the motion of colloid particles under imposed solute
concentration gradients [1-8] and provides the mechanisms for numerous applications
in the characterization, separation, transport, and manipulation of particles in
microfluidics [9-14] and layered two-dimensional nanocolloid/liquid crystals [15,16],
as well as in the autonomous motion of micromotors [17—19]. In a nonionic solution,
the particle interacts with solute molecules via the Van der Waals and dipole attractive
forces, and diffusi-ophoresis proceeds toward the regions where there is a higher solute
concentration [20]. For the diffusiophoresis of a charged particle in an electrolyte
solution, the particle—ion interaction is dominated by electrostatics and the range of its
electric double layer with a thickness of the order of the Debye screening length [21].
In the past, the diffusiophoretic motion of a hard particle (which is impermeable to ionic
fluids) [22,23], a porous particle (which is permeable) [24], and a soft particle (which
has a hard core covered by a porous layer) [25-28] with an arbitrary electric double
layer thickness were studied analytically (by assuming a weak applied electrolyte

concentration gradient) and experimentally.
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In various applications of diffusiophoresis, the colloid particles are rarely
unbounded, and it is important to understand whether boundaries significantly affect
the particle mobility [5,29]. In the limiting case of a very thin double layer, the
normalized fluid velocity field around a hard sphere undergoing diffusiophoresis is
identical to that of one undergoing electrophoresis, and the already extensively studied
boundary effect on electrophoretic motion can be used to explain the effect on
diffusiophoretic motion [10]. On the other hand, the boundary effect of diffusiophoresis
is different from that of electrophoresis when a double layer polarization is incorporated.
By using a boundary collocation technique, the diffusiophoretic motion of a hard sphere
with a thin polarized double layer near one or two plates [30] and along the axis of a
microtube [31,32] was examined. Also, the diffusiophoresis of a charged sphere in a
charged spherical cavity can be used to model diffusiophoretic motions in lab-on-a-chip
devices and dead-end pores involving self-regulated drug delivery [33,34].

1.2 Soft particle

The surface of a colloidal particle is generally not hard and smooth as assumed in
many theoretical models, instead, it often comprises a complex structure that plays a
crucial role in colloidal stability. For instance, surface layers formed by the adsorption
of long-chain polymers are commonly employed to enhance colloidal stability against

flocculation, producing an extended, gel-like polymeric layer that penetrates into the
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suspending medium. Even model colloids such as silica and polystyrene latex exhibit

such “hairy” surfaces. Biological cells present even greater complexity, featuring

permeable, rough interfaces with appendages ranging from nanometer-scale protein

molecules to micrometer-scale cilia. To capture these complexities, colloidal particles

are often modeled as soft or composite particles, consisting of a central rigid core

surrounded by an outer porous shell; in the limiting case where the core vanishes, the

structure effectively becomes a fully permeable particle, analogous to polymer coils or

colloidal flocs.

In fact, the diffusiophoresis of a charged hard or porous sphere with a thin

polarized or an arbitrary double layer situated at the center of a charged spherical cavity

[35,36] and the diffusiophoresis of a charged soft sphere with an arbitrary double layer

inside a nonconcentric uncharged spherical cavity [37] have been studied theoretically.

However, the effect of a charged boundary on the diffusiophoretic motion of a soft

particle has not been investigated. In this thesis, the diffusiophoresis of a charged soft

spherical particle inside a concentric charged spherical cavity with an arbitrary electric

double layer thickness is analyzed. The fluid velocity field, electric potential profile,

and ionic concentration distributions are determined as the power series of the small

fixed charge densities of the soft sphere and cavity wall. An explicit formula for the

diffusiophoretic mobility of the soft sphere is obtained as a function of the relevant
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parameters.
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Chapter 2
Electrokinetic Equations and Boundary Conditions

As shown in Figure 1, we consider the diffusiophoresis of a soft spherical particle
of radius a, consisting of an uncharged hard sphere core of radius 7, and a charged
porous surface layer of thickness a —7,, situated at the center of a charged spherical
cavity of radius H occupied by a symmetric electrolyte solution in a quasi-steady state.
A linear electrolyte concentration profile n”(z)=n"(0)+ ‘Vnw‘ z is imposed along the
cavity wall with a constant gradient Va” inthe Z direction, and the induced particle

velocity U in this direction needing to be determined. The origin of the spherical

coordinates (r,60,¢) is attached to the particle center (at z=0), and the problem is

independent of ¢ (symmetric about the Z axis).

Vng

Figure 1. Geometric sketch for the diffusiophoresis of a charged soft sphere in a

concentric charged spherical cavity.
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2.1 Perturbation method

The normalized electrolyte concentration gradient « = a‘Vnw‘ /n*(0) is taken to

be positive but small, so that the system deviates slightly from equilibrium. Therefore,

the cationic and anionic concentration profiles », (r,0) and n_(r,0), respectively; the

dynamic pressure distribution p(r,#) ; and the electrical potential distribution (7, 6)

can be decomposed into the following:

n, =n'Y +on,, (1)
p=p“+d, )
y =y +oy, 3)

where #n'(r), p“Y(r), and y“¥(r) are the equilibrium profiles of the ionic
concentrations, dynamic pressure, and electrical potential, respectively, and on,(r,6),

p(r,0),and Oy(r,0) are the pertinent small perturbations.

2.2 Differential governing equations
The small perturbed quantities, on, , Jp, and Sy, and the fluid velocity
v(7,6) are governed by the linearized ionic continuity equations, modified Stokes—

Brinkman equations, and Poisson—Boltzmann equation, respectively, as follows (being

discussed in Appendix B):

Ze o kT .
Visu, =+ Vou Vo —EV'VW( 1, &)

+

(V2= 2h(r)Vxv = —%v < [V2SUV ' + V2 OV Sy 5)

> Ze Ze 1//(°‘” Ze l//(eq)
Vs =2 sy + Zes —(Su, — ZeS - . (6
V=" {(op_ + Zeosy)expl T 1—(ou, — Zedy)exp| T 1} (6)
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In the previous equations, the ionic electrochemical potential energy perturbations

are as follows:

kT
5,ui=W&1iiZe5l//, (7)

+

Furthermore, 4™ is the flow penetration length or the square root of the permeability

in the porous surface layer of the soft sphere; D, are the ionic diffusivities in the fluid;
Z s the valence of the symmetric electrolyte (which is positive); 77 and & are the
viscosity and dielectric permittivity, respectively, of the fluid; and A(r) equals unity if
1y <r<a and zero otherwise. The pressure term in Equation (5) disappears owing to
the application of a curl to the momentum equation; the fluid velocity V also satisfies
the continuity equation; and the constants D,, 77, and & inside and outside the

porous layer are considered to be the same.

2.3 Boundary conditions

The boundary conditions of the small perturbed quantities along the interface
between the hard sphere core and the porous surface layer and at the particle surface
are as follows [25]:

r=r: e -Vou =0, e -Vou =0, v=0, ®)

r=a: Oy, Voy, S, VOu,, V,and e, -t are continuous, 9)
where T is the hydrodynamic stress tensor of the fluid, e, is the unit vector in the 7

direction, and Equation (8) takes a reference frame traveling with the soft particle.

The boundary conditions at the cavity wall are as follows [35]:

r=b: 51//=—k—Tﬂa£cos¢9, (10)
Ze a
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5,ui:kT(1$,B)azcos¢9,if a<r<b, (1)
a

v=-Ue, (12)
where o = a‘Vn‘”‘/n“’(O) , B=(D,-D)/D,+D.), and e, is the unit vector in the
Z direction. Equations (10a) and (10b) for the induced perturbed electrical potential
and the ionic electrochemical potential energies result from the electrolyte
concentration gradient imposed along the cavity wall and the equality of the anion and

cation fluxes in the particle-free fluid. Equation (10c) for the stationary cavity also takes

the same reference frame as Equation (8).

doi:10.6342/NTU202502508



Chapter 3
Solution of the Diffusiophoretic Velocity

3.1 Equilibrium electrical potential profile
The equilibrium electrical potential profile of a soft spherical particle, whose

porous surface layer has a constant space charge density Q, situated at the center of a

spherical cavity, having a constant surface charge density O, satisfying the continuity

of electrical potential and current at the particle surface (7 = a ) and the Gauss condition
at the hard core surface (7 =r,) and cavity wall (» =) , can be obtained as follows

(being discussed in Appendix B):

. — — —3 —2— ——2 —3
l//( Y :l//eqm (I’)Q-{-l//eqlo(}")G‘FO(Q 9Q O-aQG 36 )a (13)
where
kTe™ £Q2ry-a 20
Weqn (1) = {[e™ (saa = 1)(a7y +1) =" (wa + )7, = D] [ (1 1)
2ZeAxr
(14)
+e™ (kb +1)]} for a<r<b,
Voot () = M {l +e ) (b + )(rry — D[e™ (ka —1) — 2" ]
w0t 2ZeAwr A ‘
— e ) (i — ) (a7 + D[e” (s + 1) — 2e% ] + 0 sz =1y (19)
x (&b + 1) (xry + 1)+ k[b—ry(xkb—1)— a(xb —1)(xr, —1)]} for r,<r<a,
2kT(xb)*e ") .
Weqlo(r)z Jed 1 {rr, cosh[ x(r — r;y)] + sinh[ x(r — 1)1}, (16)
A=e*"(xb—1)(rr, +1)—e (xb +1)(x7, — 1), (17)
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Both Q=ZeQ/ex’kT and o =Zeo/ekkT  are dimensionless, whereas
k=(2Z%¢’n7 | ekT)"* is the Debye screening parameter. For the case of a symmetric
electrolyte, the second-order terms O(@z,@g,gz) in Equation (13) disappear.

The substitution of Equations (13)-(16) into the Gauss condition at » =5 yields

arelation between the surface charge density o and the zeta potential  of the cavity

wall:
o = {(1— x’ar,)sinh[x(a —r,)]— x(a —r,) cosh[x(a —r,)]} BO
+ex” {(1*br, —1)sinh[ k(b — ;)] + &(b — 1, ) cosh[ k(b — 1, )} B o
where
B = {k*bsinh[x(b—r, )]+ >br, cosh[x(b—r,)]} . (19)

Namely, after the substitution of Equation (18), Equation (13) is also valid for the

(eq)

solution of ™" in the case of a cavity wall with a constant zeta potential.

3.2 Solution of the perturbed variables
When the parameters O and o are small, in order to solve for the perturbed
quantities Oi,, Sy, V., v,, and Jgp with the diffusiophoretic velocity U of the
soft spherical particle, these variables can be expressed as power expansions of O and
o , such as the following:
— — —2 —— —2
uv=U,0+U,,0c+U,Q +U,,Qoc+U, 0 +---, (20)

where the to-be-determined coefficients U., U., U, U, , U

o> Ues> Uy» U, » Uy, etc. do not depend
on O and o but are dependent on the core-to-particle radius ratio 7,/a , the
particle-to-cavity radius ratio a/b, the ratio of the particle radius to the permeation

length in the porous layer Aa, and the electrokinetic particle radius &a . There are

10
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zeroth-order terms of O and o in the expansions of oy and &y, , as shown in
Equations (10) and (11).

The substitution of these expansions and Equation (13) into Equations (4)—(12)
yields results for 0w, o, (to the orders O and E), V., v,,and Jdp (to the orders

éz, Qo , and o’ ) as follows:

kT

oy :Z—a FW00+FW01Q+ l0(7]0039 (21
O ,—kT(l-Fﬂ)a[Foo"‘ 01Q+ ,105]0059 (22)
kT
=[(UgFoo, — 2:30‘ Olr)Q WU,oFoor — 2505 10r)‘7+(U02 oor T 77 02r)Q
kT kT 29
+(U11F00r+77 7ol lr)QG+(U20F00r+77 anor)G Jeos @,
tané? 0
L —— — (), (24)
ckT —
=1 {( pOO 7’ ﬂ POl _%Kzaﬂa‘//eqmFy/oo)Q
&&T
+(U,F, p00 2:3 plo_ﬁ’( aﬂa‘//eqlo .//00)0'
kT kT —2
+ (Ul 00+ na’ anoz“'%"'zaa‘//eqmem)Q (25)
kT kT

+[U11Fp00 +Wanll + E’Czaa(‘//eqmem + ‘//eq1oFy/01)]QO'

kT kT —2
+(UyF 00 + o —aF +Ekzaal//eq10Fy/10)O' jcosd,

where the dimensionless functions £, (r), F,.(r), F,(r),and F, (r) withiandj

Mif ijr

equal to 0, 1, and 2 are given by Equations (A1)-(A8) and (A20)-(A23) in Appendix A.

11
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3.3 Forces acting on the particle

The electrical force acting on the soft spherical particle can be expressed as [35]
F, = 2na2gj0“[v5w w ] _ e sin@do. (26)

The substitution of Equations (13) and (21) into the previous equation results in this

force to the second orders,

dnkTaas dFoo dv o = dF,e AW dFm dv .0 =
F = 2F, vy T O+ (2F, o +a—22) 9 514 (2F, w01y T eqor
e 37e {=pI( voo T dr) dar O+( yoo T4 dr) ar ol+(2F, yo t dr) ar 0
(27)
dF d dF dr. .. d
HQFy +a= ) =S 4 F,  + g L W) 55428, +a )L e

The drag force exerted by the fluid on the soft spherical particle can be expressed

as
F, = 2na’ ‘[)n{—5p1+77[VV+(VV)T]}r:a ‘e, sin &0, (28)
where I isthe unit dyadic. Substituting Equations (23)-(25) into the previous equation,

we obtain

kT —
F, =—4n{{naU, Cy, _70518 02 (Ka) afF, OOl/jerl]Q

kT _
HnaU,,Cyy, _7aﬂC102 376 (Ka) apF, oo‘//eqlo]

kT ekT —
HnaU,Cyp, +7acozz +§(Ka)2 aFy/Oll//erI]Qz (29)

kT —_
+HnaU,,Cyy, +70£C112 37e (Ka) a(F, vo1lWeqio T 1ol//eqo1)]Q0'

kT ckT _
HnalU,,Cy, + 7 aCyy, + % (Ka)z aFl//IO'//quO ]O-z $a®, -

12
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where the dimensionless coefficients Cyp,, Cyips Cions Cozns Cippand Csg, . also

appearing in Equations (A1), (A3), (AS5), and (A7), are given by Equations (A35) and

(A43).

13
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3.4 Diffusiophoretic velocity of the particle
Applying the constraint that the total force on the diffusiophoretic soft sphere is
zero to the summation of Equations (27) and (29), we obtain the following:

ZepU"

_ 3ZeC F R dFy/oo Weq@l
01_m{ elop Téa [K’a vooWeqon —(2F, 00 +a dr — ) - (30)

ZepU' dF dy 10

o~ 3eakTC,,, 13ZeCy, +ea’ aFWOO'//equ (2F, 0 + d.,;oo )T}r:a > 31
~ZeU" dF dy,
0 = Syt BZeCon + e@ €A,y = QF +a= ) =) s (32)
002
—ZeU" dF dy,
1 m{3zeclm +éa [KzaF.,/m‘//eqm +K2aFu/01'//eq10 (2F, + y;m )qul
(33)
dr, 1//e
_(2F.//01 —WOI) a0 ]}, -
r
—ZeU" dF dy,
U = WBZ@CM +ga2[K2aFw10V/eq10 (2F,,+ d'/;lo) — (34)
002
where
« sa kT,
U == (—
na (Ze) (35)

which is a characteristic particle velocity. After the substitution of Equation (18),
Equation (20) is also valid for the diffusiophoretic velocity of the particle in the case of
a cavity wall with a constant zeta potential. Equations (30)-(34) for the limit 7, =0
reduce to the diffusiophoretic velocity of a charged porous spherical particle within a
charged spherical cavity obtained earlier, and analytical expressions are available in
some limiting cases [36].

In Equation (20) for the diffusiophoretic velocity of the soft spherical particle

within the spherical cavity, the first-order terms O(é, 5‘) and second-order terms

O(éz,ég,gz) denote the contributions from electrophoresis that are caused by the

induced electric field in Equation (10) and chemiphoresis, respectively. The fixed
14
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charge at the cavity wall changes the particle motion through the wall-corrected
electrical potential distribution and diffusioosmosis-induced (electroosmosis-induced
and chemiosmosis-induced) recirculating flows generated by the interaction of the

imposed electrolyte concentration gradient with the electrical double layer adjacent to
the wall. The terms U01Z2+ U, QZ and U 105 +U 2052 are the diffusiophoretic
velocity of a charged soft particle in an uncharged cavity (o = 0) and the translational
velocity of an uncharged soft particle (9 =0) in a charged cavity induced by

diffusioosmosis, respectively. Equations (30) and (31) agrees with the electrophoretic
velocity of a soft spherical particle within a charged cavity available in the literature

[38].
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Chapter 4

Results and Discussion

4.1 Porous particle velocities

4.1.1 First-order electrophoretic velocities
The analytical formulae for the diffusiophoretic velocity of a charged soft
spherical particle within a concentric charged spherical cavity are obtained in Equations

(20) and (30)—(35), and the graphical results will be given here. The normalized first-
order (electrophoretic) velocities U,,/ BU" and U,,/ U~ for the special case of a
porous spherical particle (7, = 0) within a concentric charged cavity as calculated from

Equations (30 and (31) are plotted in Figures 2 and 3, respectively, as functions of the
hydrodynamic resistance parameter Aa, the particle-to-cavity radius ratio a/b, and
the electrokinetic particle radius kKa. These normalized velocities are always positive;

therefore, the sign of the product SO determines the direction of the electrophoresis
and the sign of Lo determines the direction of the contribution from the

electroosmosis at the cavity wall to the particle velocity.

For the fixed values of a/b and Aa, both U,,/BU" and U,,/BU" are the

monotonically increasing functions of xa from zero at xka=0. For the specified

values of a/b and xa, both U, /pU" and U,/BU" are the monotonically
decreasing functions of Aa as expected, but U,,/ fU" may strongly depend on Aa ,

while U,,/pU" is only weakly dependent on Aa . For fixed Aa and xa, both

16
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U, /BU" and U,,/BU" are the monotonically decreasing functions of a/b as

expected, and U,,/BU" equals 1 and 0if a/b equals 0 and 1, respectively.

17
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Figure 2. Normalized velocity U,,/pU" for the electrophoresis of a charged porous
sphere (7, =0) in a spherical cavity: (a) a/b=0.5;(b) Aa=10;(c) xu=1.
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Figure 3. Normalized velocity U,,/BU" for a porous sphere (7,=0) in a charged
spherical cavity with electroosmosis: (a) a/b=0.5;(b) Aa=10;and (¢) xu=1.
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The normalized net first-order velocity U,/QBU" (with U, =U, 0+U,,c ) of a
charged porous particle inside a charged cavity is plotted versus the fixed charge density
ratio o/ é (equaling xo/Q) in Figure 4 (in straight lines with the slope U,,/ fU")
for different values of a/b, Aa,and xa. The electroosmotic flow at the cavity wall
enhances/reduces this electrophoretic velocity if the fixed charge densities 0 and o
are in the same/opposite signs. If the magnitude of o/Q is large, the wall effect can
be significant. When the value of o/Q is negative and the magnitude is great, the
velocity direction of the confined particle may be opposite to the direction of the
electrophoresis in an unbounded fluid. The magnitude of U,/ OpU" in general

decreases with the increases in Aa and a/b, but increases with an increase in xa.
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Figure 4. Normalized velocity U,/ QpU” for the electrophoresis of a charged porous

sphere (7, = 0) in a charged spherical cavity versus the fixed charge density ratio c/0:
(a) a/b=05 and xau=1;(b) Aa=10 and a/b=05;and(¢) xu =1 and Aa=10.
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4.1.2 Second-order chemiphoretic velocities
The normalized second-order velocities U,,/U", U,,/U", and U,,/U" of a

charged porous sphere inside a charged cavity caused by the chemiphoretic and wall-
induced chemiosmotic effects as calculated from Equations (32)-(34) are plotted in
Figures 5, 6, and 7, respectively, as functions of the parameters a/b, Aa, and xa.
All these second-order velocities are monotonically decreasing functions of Aa as
expected, but none of them is a monotonic function of a/b (local extrema appear at

moderate values of a/b), keeping the other parameters unchanged.
For the specified values of a/b and Aa, the value of U,,/U" increases

monotonically with an increase in xa, whereas U, /U and U,,/U may not be

monotonic functions of xa . As expected, Uy, /U =U, /U =U, /U =0 in the limits

a/b=1 and xa =0, while U, /U =0 in the limit a/b=0. For the given values of
a/b and xa,both U, /U and U,,/U" are strongly dependent on Aa (inversely

proportional to A°a” if Aa is smaller than about 10), while U,,/U" only weakly

depend on Aa.
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Figure 5. Normalized velocity U,,/U" for the chemiphoresis of a charged porous
sphere (7, =0) in a spherical cavity: (a) a/b=0.5;(b) Aa=10;and (¢) xu=1.
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Figure 6. Normalized velocity U,,/U" for a charged porous sphere (r,=0) in a
charged spherical cavity: (a) a/b=0.5;(b) Aa=10;and (¢) xu=1.
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Figure 7. Normalized velocity U,,/U" for a porous sphere (7,=0) in a charged
spherical cavity with chemiosmosis: (a) a/b=0.5;(b) Aa=10;and (¢) xu=1.
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The  normalized net  second-order  velocity U,/ QU (with

—2 — —2
U,=Uy,0 +U, Qo +U, 0 ) of a charged porous particle inside a charged cavity is

plotted versus the fixed charge density ratio o/ é in Figure 8 (in parabolic curves that

concave upward) for various values of the parameters a/b, Aa, and xa. For the

given values of a/b, Aa, and xa, this velocity may reverse its direction twice as

c/0 changes, due to the combined effects of chemiphoresis and wall-induced
chemiosmosis. If the magnitude of c/Q is large, the cavity wall effect on the motion

of the porous sphere is substantial. The magnitude of U, / QZU " generally diminishes
when Aa and a/b increase, but increases with an increasing xa. Figure 8 shows

the normalized chemiphoretic velocity U, /O’'U" for various values of the parameters

al/b, Aa,and xa, as well as the fixed charge densities é and o .
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Figure 8. Normalized velocity U, / QZU " for the chemiphoresis of a charged porous

sphere (7, = 0) in a charged spherical cavity versus the fixed charge density ratio c/0:
(@) a/b=05 and xa=1; (b) Aa=10 and a/b=05; and (¢) xaz=1 and
Aa=10.
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4.1.3 Diffusiophoretic velocity

For the diffusiophoresis of a porous particle in a symmetric electrolyte whose
cation and anion have different diffusivities ( f=-0.2, like the aqueous solution of
NaCl), the plots of U/U" against o with Q=1 and the different values of a/b,

Aa, and xa are given in Figure 9 (a combination of Figures 4 and 8), where the
contributions from electrophoresis and chemiphoresis, as well as from wall-induced

electroosmosis and chemiosmosis, are included. Furthermore, for the fixed values of

al/b, ZAa,and xa, the cavity wall effect is significant as the magnitude of c/Q is

large, and the particle velocity may reverse twice in its direction when c/Q changes.
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Figure 9. Normalized velocity U /U for the diffusiophoresis of a charged porous

sphere (7, =0) in a charged spherical cavity with f=-0.2 and 0 =1 versus the

charge density o : (a) a/b=0.5 and xz=1; (b) da=10 and a/b=0.5; and (c)
xka=1 and Aa=10.
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4.2 Soft particle velocities

Having understood the effect of a concentric charged cavity on the diffusiophoretic
velocity of a charged porous particle, we can examine the general case of a
diffusiophoretic soft particle.

4.2.1 First-order electrophoretic velocities

The normalized first-order velocities U, /AU  and U,,/BU" for a soft
spherical particle within a concentric charged cavity as calculated from Equations (30)
and (31) are plotted versus the core-to-particle radius ratio 7,/ a for different values

of the hydrodynamic resistance parameter Aa, the particle-to-cavity radius ratio a/b,
and the electrokinetic particle radius xa in Figures 10 and 11, respectively. Likewise,

these normalized velocities are always positive; the sign of the product SQ
determines the direction of the electrophoresis; and the sign of fo determines the

direction of the wall-induced electroosmotic effect on the particle.

Both U,,/pU" and U,,/pU" are monotonically increasing functions of ku

from zero at xa =0, monotonically decreasing functions of Aa, and monotonically
decreasing functions of a/b to zero at a/b=1, keeping the other parameters

unchanged. For the specified values of Aa, xa , and a/b , the normalized

electrophoretic velocity U,,/BU" monotonically decreases with a rise in the radius
ratio 7,/ a, as expected, from the value for a charged porous sphere at 7,/a=0 to
zero for an uncharged rigid (impermeable) sphere at 7,/ a=1. On the other hand, the

normalized velocity U,,/ SU" of the soft particle caused by the electroosmotic effect
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of the charged cavity wall for the given values of a/b, Aa,and xa is generally not

a monotonic function of 7, /a and has a maximum at a relatively large value of 7,/ a.

31
doi:10.6342/NTU202502508



W Aa =0.1

0.0 0.2 0.4 06 08 1.0

n,/a
(a)
10 4 1 L ! : .
] xa=10 [
0.1 3
Uy ‘ E
pU
0.01 4 -
1x10% 5 0.1 E
1x10+ . r . ’ ,\.
0.0 0.2 04 06 08 1.0
n/a
(b)
1 1 1 1
0.12 4 a/b=0.1 -
0.10 -
0.08 -
Uy
,BU‘ 0.06
0.04 -
0.02
0.00 v T y T Y T ¥ T ’
0.0 0.2 0.4 06 08 1.0
n/a
(©

Figure 10. Normalized velocity U,,/BU" for the electrophoresis of a charged soft
sphere in a spherical cavity versus 7,/a: (a) a/b=0.5 and xa=1; (b) la=10
and a/b=0.5;and (¢) xu =1 and Aa=10.
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Figure 11. Normalized velocity U,,/BU" for a soft sphere in a charged spherical

cavity with electroosmosis versus 7,/ a:(a) a/b=0.5 and xa =1;(b) Aa=10 and
a/b=0.5;and (¢) xu =1 and Aa=10.

33
doi:10.6342/NTU202502508



In Figure 12, the normalized net first-order velocity U,/QBU" (with

U, =U, O+U,,o ) of a charged soft particle inside a charged cavity is plotted versus

the fixed charge density ratio o/Q for the different values of 7yl a . Again, the

electroosmotic effect of the cavity wall enhances/reduces this particle velocity if the

fixed charge densities é and o are in the same/opposite signs. When the value of

c/Q is negative and the magnitude is great, the velocity direction of the particle may

be opposite to the direction of the electrophoresis in an unbounded fluid. The value of

U,/ QBU" decreases with an increase in 7,/ a, mainly due to the effect of 7,/a on

the electrophoretic velocity U,/ SU".

0.5 A

U,
opu 05
0.0
0.7
rn/a=1
0.5
T /] T
4 3 -2 1 0

Figure 12. Normalized velocity U, /QBU" for the electrophoresis of a charged soft
sphere in a charged spherical cavity with xku =1, Aa =10, and a/b=0.5 versus the

fixed charge density ratio c/0.
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4.2.2 Second-order chemiphoretic velocities
The normalized second-order velocities U,,/U", U, /U", and U, /U of a

charged soft sphere inside a charged cavity caused by the chemiphoretic and wall-

induced chemiosmotic effects as calculated from Equations (32)-(34) are plotted versus

the core-to-particle radius ratio 7,/a in Figures 13, 14, and 15, respectively, for the
different values of a/b , Aa , and ka . Likewise, all these velocities are

monotonically decreasing functions of Aa that generally increase with an increasing
ka , but none of them depends monotonically on a/b (local extrema appear at

moderate values of a/b), keeping the other parameters unchanged.

For the specified values of a/b, Aa, and xa , the normalized velocities
U,,/U" and U,,/U generally decreases with a rise in the radius ratio 7, /a from
their values for a charged porous sphere at 7, /a=0 to zero for an uncharged rigid
sphere at 7,/a=1. However, the normalized velocity U,,/U" of the soft particle

caused by the chemiosmotic effect of the charged cavity wall for the given values of

a/b, Aa,and xa is generally not a monotonic function of 7,/a.
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Figure 13. Normalized velocity U,,/U" for the chemiphoresis of a charged soft
sphere in a spherical cavity versus 7,/a: (a) a/b=0.5 and xa=1; (b) la=10
and a/b=0.5;and (¢) xu =1 and Aa=10.
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Figure 14. Normalized velocity U,,/U " for a charged soft sphere in a charged
spherical cavity versus 7,/a : (a) a/b=0.5 and xu=1; (b) Aa=10 and
a/b=0.5;and (¢) xu =1 and Aa=10.
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Figure 15. Normalized velocity U,,/U" for a soft sphere in a charged spherical cavity

with chemiosmosis versus 7, /a : (a) a/b=05 and xa=1; (b) Aa=10 and
a/b=0.5;and (¢) xku =1 and Aa=10.
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In Figure 16, the normalized net second-order velocity U,/ QZU* (with

—2 — —2
U,=U,0 +U,,Qc+U, 0 ) of a charged soft particle inside a charged cavity is
plotted versus the fixed charge density ratio o /Q for the various values of rla.

Furthermore, for the given values of a/b, Aa,and xa , this velocity may reverse its

direction twice as o /Q changes, due to the combined effects of chemiphoresis and
. . . =2« .

wall-induced chemiosmosis. In general, the value of U,/Q U decreases with an

increasing 7, /a if o/ Q is positive, but it is not a monotonic function of ryla if

o/Q is negative.
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Figure 16. Normalized velocity U,/ QZU " for the chemiphoresis of a charged soft
sphere in a charged spherical cavity with xu =1, Aa =10, and a/b=0.5 versus the
fixed charge density ratio o/ Q.
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4.2.3 Diffusiophoretic velocity

For the diffusiophoresis of a soft particle in a symmetric electrolyte as mentioned
previously ( S=-0.2), the plots of U/U" against o with O =1 and the different
values of 7,/ a is givenin Figure 17 (a combination of Figures 12 and 16), where the
contributions from electrophoresis and chemiphoresis, as well as from wall-induced
electroosmosis and chemiosmosis, are all included. For the fixed values of é, rla,
alb, Ja,and ka , the cavity wall effect can be significant as the magnitude of o is

large, and the particle velocity may reverse twice in its direction when o changes.

U
U

-0.3 4 =

204 - -

-0.5

Qe

Figure 17. Normalized velocity U /U~ for the diffusiophoresis of a charged soft
sphere in a charged spherical cavity with f=-0.2, xu=1, Aa=10, a/b=0.5 and

0 =1 versus the charge density c
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Chapter 5

Conclusions

In this thesis, the quasi-steady diffusiophoresis of a charged soft spherical particle
at the center of a charged spherical cavity under an applied concentration gradient of a

symmetric electrolyte is analyzed for the arbitrary values of the core-to-particle radius
ratio 7,/ a, the particle-to-cavity radius ratio a/b, the ratio of the particle radius to
the permeation length in the porous surface layer Aa, and the ratio of the particle radius
to the Debye length xa . By using a regular perturbation method with small
dimensionless fixed charge densities O and o of the porous surface layer and cavity

wall, respectively, the linearized electrokinetic differential equations relevant to the
fluid velocity field, electric potential profile, and ionic concentration distributions are
solved. The balance of the electrostatic and hydrodynamic forces acting on the soft

sphere results in an explicit formula, Equation (20) with Equations (30)—(35), for the
diffusiophoretic velocity of the particle in terms of 7,/a, a/b, Aa, and ka up to

the second orders of Q and o .

The diffusioosmotic flow at the cavity wall can substantially change the particle

velocity and even reverse its direction. The normalized electrophoretic and
chemiphoretic velocity components U,,/pSU" and U,,/U" (and also U,,/U" )
depend strongly on Aa , while the normalized -electroosmosis-induced and
chemiosmosis-induced velocity components U,,/BU" and U,,/U  are weak
functions of Aa. The diffusiophoretic velocity generally decreases when 7,/a, a/b,

and Aa increase, but increases with an increasing xa . The contributions to the
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particle velocity from the diffusioosmotic flow taking place along the charged cavity
wall and from the wall-corrected diffusiophoretic force are equivalently important, and

this diffusioosmotic flow can reverse the direction of the particle velocity.
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the electric force acting on the charged soft particle, [N]
the hydrodynamic drag force acting on the charged soft
particle, [N]

unit step function

unit dyadic tensor

Boltzmann’s constant, [J- K'l]
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the pressure distribution, [N-m™]

the equilibrium pressure distribution, [N-m™]

the fixed charge density within porous layer, [C- m_3]
non-dimensional fixed charge density within porous layer
spherical coordinates

the radius of the hard core, [m]

the absolute temperature, [K]

the fluid velocity distribution, [m-s™]

r and @ components, respectively, of v, [m-s”]

the diffusiophoretic velocity of the soft particle, [m-s”]
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U,,U,, .. .
oo the velocities defined in Egs. (30) to (34), [m-s']

UOZ b Ul 1° U20
U* the characteristic particle velocity, [m-s™]
Z the valence of the symmetric electrolyte
Greek letters
a normalized electrolyte concentration gradient
yés defined by (D,-D.)/(D,+D.)
the small deviation from the equilibrium concentration of
on,
type-m ions, [m]
perturbed electrochemical potential energy, the linear
ou,,
combination of 6n, and Sy, [J]
the small deviation from the equilibrium electric potential
oy
distribution, [V]
the small deviation from the equilibrium pressure,
P
[N-m™]
£ the permittivity of the fluid, [C*-J"'-m™]
n the viscosity of the fluid, [kg-m™-s™]
K reciprocal of the Debye screening length, [m™]
reciprocal of the characteristic length of flow penetration
A

inside the porous layer, [m™]
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o the fixed charge density on the spherical cavity, [C-m”]

p non-dimensional fixed charge density of on the cavity

74 the electric potential distribution, [V]

Y the equilibrium electric potential distribution, [V]

W eqo1>¥eqio the functions defined in Egs. (14) to (16), [V]

I zeta potential on the spherical cavity, [V]
Superscripts

(eq) equilibrium state

0 in the bulk solution

* characteristic value
Subscripts

+ the cation

- the anion

m the type- m ions
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Appendix A
Functions in Equations (21)-(25) and Coefficients in

Equation (29)
In Equations (23)-(25),
a a.s ro,o.
OOV(V) Coot + Cona ;+C003(;) +C004(;) if a<r<b, (A1)
Fy, (r)=Cys +(§)3[C006 +Cypyaty(Ar)+ Co B(AF)] if 1, <r<a (A2)
Fooo(r) = Cop (5P +10Cyy, —  if a<r<b, (A3)
r a

Foo(r) = (Aa)’ [ Con ) =Cs 1 if 1y <r<a, (A4)

1 ) | a

“,(r) 11 J (7/')+[ 12__"11“ (r)]_

U gy 3 y 3 gy 7
(AS)

HCpy + 2T O 4G —%J;‘”(r)](f)z if a<r<b,
’ a
F, (r)=Cys +[Cy +C, 7al<zr>+0,gﬂlw>]< i Sy =[O~y IO ]
r
(A6)
12(2a) [ (AT L (1) = BRI NEY  if n<r<a,
r
Fy () =[Cpa =3 I OIEF +205C, =3P N- i a<r<b. (A7)
a

F, (F)——3J(°)() 3Jf)( () +(Aa)’[- C,,s + Cyﬁ( )] if <r<a, (A3)

pii

where (i, j)= (0,1), (1,0) (for the first-order fluid velocity field), (0,2), (1,1), and
(2,0) (for the second-order fluid velocity field), the dimensionless coefficients

Coo1 ~ Cos and C,

ijl

~ C,y are given by Eqations (A34)—(A52),
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a,(x) = x cosh(x)—sinh(x),

B, (x) = x sinh(x) —cosh(x),
79 =[ &y G ndr,
A L)
I = [ @, (4G, (r)dr,

TP )= [ PG, (r)dr

ex’a’ l//e
Gol(r)_ Zer ,,00( ) o ’
ex’a’ %
Glo(l") = Zer #oo( ) a0 )
2 4 d
EK a l//e 01
G,(r)=- W, (r A,
(") Zer 0 () dr
81(' a’ l//e dy,
Gn(r) = [VVm( ) = I/Vl()( ) ;Ol]
8/(2614 dWequ

Gon(r) == Zer o) dr

() =L g (D 1)+ Fy ()]

(A9)

(A10)

(A1)

(A12)

(A13)

(Al14)

(A15)

(A16)

(A17)

(A18)

(A19)

The functions ¢,(x) and f,(x) defined by Equations (A9) and (A10) have no relation

to the parameters « and [ in the main text.

In Equations (21) and (22),

2+
Fuoo(r) oo(r)_ I’); >

F (r)= —rK(O)(a r)+ YE ! >[-7 Kl(f)(r b)+2b3 K(3) (,7)— 2r3r03K(3)(r0,b)
xr

i

+2b°(r +1; )K(O)(a b)+(b* —r)r; K(o)( ,a)] if a<r<b,

1
(0)
F, (r)__rKij (r()’r)_2b3)ﬂ‘2

Hij
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[VoéKl;.S)(V, b)— 2b3r3K;.0)(r0 ,b)+ 2r3r03Ki](.3) (r,,b)"

(A20)

(A21)

(A22)



K(O)(ro,b) 2b’r, K§3)(r0,r)] if r,<r<a,

A (N ()= ) ()
(r) (A23)

+L5 (1) B(r) + Ly (b)C(r) = L (1) D(r) — Ly (D) E(r)}

Fyy(r) =

where (i, j)= (0,1) and (1,0).

3

K
=1+—= A24
r=1+25, (A24)
) =" (143), (A25)
] dyey
K (1,1,) = 3)ijm[ Lyl (A26)
L9(r) = j ke, (k)W (r)dr (A27)
LY (r)=| :Kyl (kr )W, (r)dr, (A28)
A(r) =™ (kb + D[2 + &1y (17, — 2)]+ ™ (kb —1)[2 + &7, (K7, +2)], (A29)
B(r)=e " [e*" (kb —1)(kr +1)— ™ (kb +1)(xr —1)][2+ &7, (K7, +2)], (A30)
C(r)=e™ (kb +1){e’" (kr +)[2+ k1 (k7 — 2)]+ > (7 = D[2 + k7, (K7, +2)]} (A31)

D(r)=e" " [ (kb +1)(xr—1)— e (kb —1)(kr + D)|[(x°r,” +2)sinh(k7, ) — 2k7;, cosh(k7;)] , (A32)

E(r)=[1+xb+e> (xb—1)1[2+ &7, (7, +2)][x7r cosh (&7 )—sinh (xr)]
A33
2e ) (Kr + 1) [xb cosh(xb) —sinh(xh)][(’r, +2)sinh(xr, ) — 2« cosh(k7;)] , ( )

where (7, j)= (0,1) and (1,0).

In Equations (29) and (A1)-(AS8),

Cyoy=—M'2*(b{6A[180a” +(54a’ —5a’h> —4b”) A Ir, +3sinh[A(a —1,)] {1804’
+A%[30a’ —=10a’b” + 1, (=94’ +5a’°b* +4b° +5(3a” —a’b*)r,)]
+A°[144a° —4b° +45a*r, —15a°b’r, —20a’ (b* +91,)]}
+Acosh[A(a—7)]{-540a’ (a+1)—(9a’ —5a°b* —4b° YA (2a’ + 7))
—32%[84a° —20a’b* —4ab’ +1,(9a’ —5a’b* —4b” +15a°r,(—3a’ + b’ +4ar,))]})

(A34)
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Cyp=(aM ) ' 2% (6b[60a° 2’1, +sinh[A(a —1,)]{135a’r, + A*[12a* - 2a°D’°
+75 (=3a’ +3ab’ +(6a” —b)r,)]+3A°[10a° +1,(6a° —b° +15a’r,(-3a+7,))]}
—Acosh[A(a—7)]{135a° (a—r)r, +a(a® —=b*)A* (2a’ +7)
+32°[10a’ +7,(a’ —ab’ +1,(=6a’ +b” +15a*r,))1}])

. (A35)

Cops=(aM) ' 21*(2b’[6a(-10a’ + b*)A’r, + 3sinh[A(a —1,)]{~45ar,
+A%~4a° +2a°D’ + 1] (a* —ab’® +(2a’ +bH)ry)]
+A*[-10a* +4ab’ + 31, (-2a’ + b’ +5a(3a — 1,1} , (A36)
+Acosh[A(a—7)]{135a(a -7, +a(a’ —b A (2a’ +7))
+32%[10a° —4a’b’ +1y(a* —ab’® +3r,(—2a° + b’ + 5a°7,))]}])

Coos=—M "' 2*(3a°bA°[~6a’ Ary + Acosh[A(a 1)1 {3[4a’ +a(a” = b)r,
+(=3d” +b))r 1+ a(a® =b*) 2 (2d° + 1)}

) A37
+sinh[A(a —7,)]{2a’[-6 +(-3a’ +b*)A*] (A37)
+7,[-9a” +3b” + ’r,(3a(a’ —=b*) +(=3a’ +b*)r)]}])

—Af-194 3 5 &£,312  75\y92 _

Cos=M "' 2*(6b{2a[45a° +(6a’ —5a’b* —b*) A7 cosh[A(a ;)]

+2[21a°A* +b°A* +5a° (=9 +b°A*)]sinh[A(a - 1,)] , (A38)

H3a' AP +20° 2 —5a°A(18+ B A0)r })

Cooe=(@M) ' 2 (12br,{a’ (3a’ —5a’b” +2b°)A” + Acosh[A(a —r1,)][-135a° (a—1,)
+a(=6a’ +5a°b* +b’) A1 =347 (a—1,)(6a’ —5a°h* —b” —15a'r,)]
+sinh[A(a —7)][135a’ + 2*r,(3a( - 64’ + 5a°b* +b°) + (21a’ = 5a°b* = b™)ry)) ’
+34°(21a° -5a°h* = b +15a’r,(=3a+1,))]})

(A39)

Cyor=(a*M) ' 27 (6b] — 24’ (3a® - 5a’h* +2b°)A* cosh (Ar)
+1,{6[ -21a°A* +b° A% +5a’ (-9 +b°A*)]cosh (1a)
+6al[45a’ +(6a’ —5a’b* —b*)A*]sinh (1a)
3a°2* +2b° A7 = 5a° (18 + b* A*)|[-3 Asinh (A1, )r;, +cosh (Ar,)3+ A*r)T}])

: (A40)

Cos=(@’M) "' 27 (6b[2a° (3’ —5a’h* +2b°) A" sinh(Ar,)
+1,{6aA[-6a° A7 +b° 7 +5a’ (-9 +b*A*)]cosh(1a)
+6[454° + (21a° —5a’h* —b)A*]sinh(Aa)
+3a’A* +2b°2* = 5a° (18 +b*A*)|[-3A cosh(Ar, ), +sinh(Ar, )3+ 411} ])

’ (A41)
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C; =(a*0) 4™ 22 {=3[60a’ T (r,) + 60a* T/ (1,) A
+(28a° +5a°b’ —3b°)J (1) A?
+a(8a’ —5a’b* —3b° )Jl;m (r,)A* cosh(Aa)r,
+3[60a’ T () + 60a* T\ (1) A
+(28a° +5a°b> —3b° )J!.(/.B) (r)A?
+a(8a’ —5a’b* —3b° )Jl;.“) (r,)A*]sinh(ad)r,
+sinh(A7,)[-180a°J " (r)r, —180a’ T (1, ) Ary
+3(2a° —5a’b® +3b° )J;/.”‘) ()1}
+(a—b)*(2a’ +4a’b+6ab® +3b)J P (r)A* (2a’ +17)
+3J P (r)A*{=10a’b* + (2a” —5a°b> +3b°)r, —20a’r; } ]
+cosh(Ar)[180a°J " (r,)r, +180a°J 7 (r,) Ary
-3(2a’ —-5a°p> +3b° )J;/.’B) ()1
—(a—b)’(2a’ +4a’b+6ab® +3b°)J [ ()A*(2a° +13)
+3J7 (i) A {10a°D’ +(=2a° +5a°b> = 3b°)r, +20a°r; } 1}
+@Ba’2’M) 2464’ A [-30{6° T (1) + 2a° (2T (b) + TV (1))}
+Ha’b* (1077 (1) + 2T (b) = 5 (1))
+30° (2" (r,) = 2J 5 () + IV (1)
+2a° (27" (r) #1877 (D) = I (B) + T (D} A% T,
+6sinh[A(a —7,)1[180a°J " ()7,
+327{20a° (J (b)) — I (1)) + (28a” + 5a°b° —3b°) " (1)1,
—6Oa4J;.O) )1y + 20a3J;.0) )7}
+AM4ad* 1207 (b) = J (D) =TT (7)) + a’b* (J (D) =57 (1)
+3a’b’ (= (b)+ T (1) +3a’ (5T (b) - I (b)r,
+3a[5a°b°J " (1) + 36° TV (ry) — 4a’ (2T (1)) + 5 (D)]ry
+(28a’ +5a°b* —3b° )J;O) ()7}
+a’2°{2a’ (57 (b)—J 7 (b))
H3D' I (b)—a’b’ T (b) +a’ (3T (b) + T (D)
+a* (57 (b)—J 2 (D)ry }]
—2Acosh[A(a—r)] [540a3Jij(0) (r,)(a—ry)r,
+94%{20a’ (JV (b) = J 7 (1))
+H=5a’b’J " (1)) =3ab’J" (1) + 4a® (2T (1) + 57 (b)) 1,
+(—28a’ —5a°b’ +3b° )J;.O) (r)r) + 20a4J;.0) ()7}
+3a2*{4a” (1 (b) = J 7 (b) = 2T (1)) + 3’0’ (—=J 0 (D) + T (1))
+a’b* (J (b) + 570 (1) +[-3a’b° T (b)
+a’ B3I (b)—J (b)) +a*b’ T (D)]r;
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+3a° (—SJU(.3) (b)+ Ji](.s) b))y + [—5a2b3Jl.j(.°) ()

—3b5Ji5,°) (r,)+4a’ (2.],‘.(],0) (ry)+ SJ;.” O

+a’A° {—6a3b5Jl.j(,3) (b)+a* (6Jl.j(,3) (b)— 2.]1,](5) b))+ 2a5b3Jl.§5) (b)
+[—3b5Ji](,3) b)+a’ (3Ji](.3) (b)— J;S) b))+ a2b3J,.j(,5) O
+{in](,2) (D)[6A{—180a’ + (=54a’ +5a’b* +4b°) A7},
+Acosh[A(a—7,)]{540a’ (a +7,)

+(9a® —5a°h> —4b* A (2a’ +71;)

+31%[84a’ —20a’b* — 4ab’

+(9a® —5a°bh* —4b°)r,

+15a°*(-3a* +b*)r] +60a’r;) }

—3sinh[A(a —7,)]{180a’ + 1*[30a’ —10a’b’

+(=9a> +5a’b* + 4b° )y +53a’ —a’b*)r; ]

+A%[144a° —4b° + 45a’r, —15a°b’r, —20a° (b* + 97,1} 1}
x{=361[20a°A* —27a’bA* +2b°A* + 5a°b(—18+ b A*)]r,
+3Acosh[A(a—7)][—540a’ {ab+(—a+b)r, +1}
+a—-b)'(4a® +Tab+4b*)A*(2a’ +71)

+31%{4a(10a® —21a’b +10a’b’> + b°)

+(a—-b)'(4a® +Tab +4b*)r,

—3(a—b)*(8a” +9ab +3b*)ry +60a’(a—b)r,}]
—9[180a’(—b+7,)+ A7 {4(10a° —36a’b+10a’b’ +b°)
+3(a—b)*(8a” +9ab +3b*)r, —180a’ (a — b)ry +60a’r; }
+(a—-b)’2"{2a’(8a® +9ab +3b*) —(a—b)(4a’ +Tab +4b° )7}
+(8a® +9ab +3b° )1}’ }]

—N_]2,43a2b3Jij(.0) (r,)A” sinh[A(a —r,)]{a’ A’ (aA cosh[A(a—r,)]
+sinh[A(a —7)]+ Ary) + M ' A*[2aA{l5a

+(2a’ —3ab® +b*)A*}cosh[A(a—1,)]

+2(=7a’A* + B’ A* +3a(-5+b*A%))sinh[A(a —7,)]

—30air, +(a—b)*(a+2b)A°1, ][6aA{60b” + (24’ +20a°b’ —3b°) A7,
—3sinh[A(a —7,)]{—60ab’ + 1*[8a° —50a’b’ +12ab’ +3(2a’ —5a’b’> + 3b°)r,
+60ab’r} 1+ (a—b)’ (2a’ +4a’b+6ab” +3b°)A*(2a’ —ary +1;)} ,
+Acosh[A(a—7,)]{-180ab’(a+7r,)

+a(a—b)’(2a’ +4a’b +6ab” +3b*)1* (2a’ + 7))

+34%[8a’ —30a'b’ +12a°b’ + (2a° —5a’°b* +3ab’)r,

—3(2a’ —5a’b’ +3b°)ry —20ab’ry 111} }7l

(A42)
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Cyr =(Ba’M) ' A*{=36b[ —45a°J " (r,) —45a* T (r,) A
+(—21a’ +5a°b* + b ) (1) A?
+a(—6a’ +5a°h* +b°)J " (r,) A’ |cosh (Aa)r,
+6[90a°bJ ) (1) A’ —a’ {40a°J Y (b) + 5a°b* (47" (b)
=2J (1) + I (B) = T (1) + 26° (=T (b) + 27 (1)
+J 7 (1) +3a°b(2J" (1) =202 (b) = I (b) + T (ry )} A
+6b{—45a’J " (r,)—45a" T (r,) A
+(=21a’ +5a°b* +b°)J P (r) A’
+a(—6a’ +5a°h* +b”)J " (r,) A’} sinh(1a)]r,
+Acosh[A(a —7y)][1 620a3b.]i](.0) (ry)(a—ry)r,
+a’(a—b){2b° (J" (b)=3J (b)) +4a’ T (b)
+a’b* (27 (b) - 6J 7 (b) + 9T (b))
+ab* (27" (b) - 6J 7 (b) +9J (b))
+a'b(—6J7 (b)+4J (b)—3J7 (b))
+a’b* (—6J 7 (b) + 4 (b) =3O (D)} A° (2a” + 1))
+3aA*{4a’[10a°J 7 (b) +b° (-2J " (b)+ T (1))
+5a°D* (JV (b)) + T () + T (1)
=3a’b(5J7 (b)+ I (b)+2J 5 (1,))]
+a’[-2b°(J " (b)—3J7 (b))
+4a°J " (b)—9ab’J " (b)—3a’b(2J ) (b) + J 7 (b))
+a’b’ (2J7 (b)+ 577 (b) +3J ) (b)]r,
—3a[2b° (=T " (b) + TV (b)) +8a° T (b)
—3ab’J ) (b)=3a’b(4J ) (b) + I (b))
+a’b’ (4" (b)+ 5T (b) + IS (B)ry
H10a’b* (3" (b) = 2J (1)) — 4b°J " (1))
+6a’b(4J," (1,) =157 7 (b)) +60a°J " (b)1ry }
—184°{30a’bJ " (r,) — (a — 1)1, [5a’b> BJ " (b) = 2" (1))
—2b°J" (1) +3a’b(4J " (r,) =157, (b))
+30a°J (b)—30a*bJ " (1)1, 1}]
+6b cosh(Ary)[2a’ (3a’ —5a’b* +2b° )J;j“) A"
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+1,{3a°A* +2b° A% = 5a° (18 +b°2*)} (3 (1;)
+Ar,(3J (1) + J (1) A}

—6bsinh(Ar))[2a’ 3’ —5a°b* +2b°)J " (1) A*

+1,{3a°2* +2b°A% = 5a° (18 + b A%)} {37 (r,)

+Ar, (3J;”’)(r0) + J;ﬂ)(ro)/iro)}]

=3sinh[A(a —1,)1[540a°bJ " (1, )r, + a*A°2a°[2b°(—J " (b)
+J P (b)) +8a°J ) (b) - 3ab’J ¥ (b) - 3a’b(4T P (b) + J (b))
+a’b’(4J" (b)+5J" (b)+ J;” (b))]

+a[26°(J\" (b) =377 (b)) - 4a"J  (b)

+9ab’J Y (b) +3a°b(2J P (b) + J (b))

—a’b*(2J" (b) + 57 (b) + 37 (b)Iry

+H2b°(=J" (b) + J7 (b)) +8a°J [ (b)

=3ab’J ) (b) - 3a’b(4J 7 (b) + J (b))

+a’b’ (47" (b) + 570 (B) + IO (b)Iry }

—64*{30a°bJ > (1) + 1, [2b°T (1) + 5a°6° (3T (b) + 2T, (1,))
+a’b(=42J 7 (r,) + 4577 (b))

=30a°J7 (b) +30a’bJ " (r,)3a - 1)1, 1}

+A44a’[10a°T (b) + b° (<2 (b) + I (1)

+5a°b* (J " (b) + T D (b) + T (1)) = 3a°b(5T7 ()

+J0(0) +7J ()] + 1y[3a*{26°(=J " (b) + 7 (b))
+8a°J" (b) =3ab’J " (b) - 3a’b(4J P (b) + J (b))

+a’b’ (4" (b) + 57 (b) + (b))}

+2r, {6ab6Jl.j(.0) (r,)+15a°p’ (—3];0) (h)+ ZJ;.O)(rO))
+9a°b(-4J " (r,) +15J (b))

~90a"J Y (b) +[5a°6° 3T (b) = 2J" (1)) = 2b°J ()
+a’b(42J." () - 4577 (b)) +30a°J ) (b)1r, } 13 1}

(A43)
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C, = (15a°MN)"' 2°(30a°h’ T (1) A N{2a[15a
+(2a’ =3ab® +b’)A*]cosh[A(a —1;)]
+[-30a +2(-7a’ +3ab” +b*)A*]sinh[A(a —7,)] - 30alr,
+(a—-b) (a+2b)A°r,} + 6Ob3J;.0) (A Nry{6ab’ 2> + a’(a—b)* (a +2b)1°
—sinh[A(a —7,)][-45a +3A*(-7a’ +3ab® + b’ +15a°r, — 5ary)
+A%(6a* —=9a°b* —Ta’r, +b’r, +3ab’ (b +1,))]
—Acosh[A(a—r)]|[45a(a—r1,) +a(2a’ —3ab® + b)) A%,
+34°(2a* - 7a’r, + b’r, +ab’ (b +3r,) +a’ (=3b* + 51, )]}
—aSJ;.S) (B)A2N(6aA[180b +(—40a’ +54a’b—5b*) A Ir;
—3sinh[A(a —r,)]{180a(-b +r,)
+A%[2a° (8a’ —15a°b +5b°8a’ —15a°b +5b%)
+a(—4a’ +9a’b—5b* )1} +(8a’ —15a°b +5b”)r; ]
+A°[40a* +15b°r, +24a’ (—6b + 1) — 454’1, (b + 47;)
+20a(b’® +9br; +31))]}
+Acosh[A(a—r)l{a(4a’ —9a’b+5b°)A* (2a’ +7;)
—540ala(b—r,) +1,(b+7,)]+32°[40a’ —15b°r;
+4a* (-21b+1,)=3a’r,(3b+87,) + Sabr, (b =121, )+ 5a° (46> +9bry, +121,)]})
+10a°6J P (b)A7 N(6a(-10a’ +b*) A’r,
—3sinh[A(a —7,)]{45ar, + A*(10a* — 4ab’ + 6a’r, —3b’r, —45a’r;, +15ar;)
+A%4a" —a'r) +ab’r} —b’r; +2a° (b’ + )]}
+Acosh[A(a—r)]{135a(a—r1,)r, +a(a’ =bHA (2a’ +7)
+32°[10a° +a'ry —ab’r, — 6a’r] +3b°r; +a’ (=4b> +157))]})
+1 5a3b3J;3) (B)AN(6aA[20+(6a” —b*)A’Tr,
+sinh[A(a —7,)]{60a + 1*[10a’ + 3ab’r] + 5a’r; —=3b°r; —3a’ (26> +71;)]
+32°[16a° +5a°r, —3b’r, —4a(b” +51)]}
—Acosh[A(a—7)]{60a(a +7,)+a(a’ —b*)A*(2a’ +1y)
+2°[28a* +3a’r, +9b%r} —3a’ (4b> + 51)) + a(=3b1, + 205,)]})
+ab5J;°) (b)A* (@’ A7 M {2a(-3a +b)Acosh[A(a —7,)]+2(3a+b)sinh[A(a—7,)]
+(=3a+2b)Ar,} —5b{-2al[15a + (2a’ —3ab’ +b*)A*|cosh[A(a —7;)]
+2[15a+(7a’ —=3ab® —b*)A*]sinh[A(a —7,)] +30aAr,
—(a-b)’ (a+2b)A°1,} {61[24b" +a’(a’ —12ab> +8b°) A7 1r,
+3sinh[A(a —7,)][6b° (4b—9r,) + a(a—b)*(a+2b)A* (2a’ —ary +7;)
+A%{4a’ (a’ —3ab’ +5b°) +3a(a—b)’ (a+2b)r, +6(9a —4b)b’r; —18b°r; ]
—Acosh[A(a—r,)][18b° (4ab—9ar, + 4br, +9r,)
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+a’(a—b)*(a+2b)A*(2a’ +1,)+31*{4a’ (@’ —3ab” +3b°)
+a’(a—b)’(a+2b)r, —3a(a—b)’ (a+2b)r] +2b*(-9a+4b)r 1))
+30b3J,.j(.“) (,)[Asinh(La)r, {3aA[1800a’h’ —60a’(a’ —4a’b’ +3b°)A°
+(a—b)*(12a” +33a’b+36a’b* + 28a°b’ +4ab* —8b°)A*Ir,
+3A cosh[A(a—7,)[-900a’b*(a* +1;)

+(a—b)Y’A*{2a*(2a’ +2ab—b*)(4a" +5a°b + 6a°b* +2ab’ —2b*)
+(a—b)*(a+b)(a+2b)2a” +ab+2b%)r}

+30a1*{a’(4a® -3a’b—9a’b’ +12ab’ —4b°)

+(=2a’ +3a’b+a’b’ —6ab’ +4b° )i ]

+sinh[A(a —7,)][2700a’h*(a —1,)

+(a—b) (a+b)a+2b)(2a° +ab+2b*)A°(2a’ +1))
—90aA’{a(4a’ —3a’b—19a’b’ +12ab’ — 4b°)

+(a—b)’(2a* +a’b—2ab’ —4b* ), +10ab’r;’}
—3(a—-b)’1*{2a[28a" +35a°b+30a’h

—194*b* —59a°b* —12a°b> + 6ab°® + 6b’]
—(a—b)’(a+b)(a+2b)(2a* +ab+2b")r,

+10a(2a* +a’b—2ab> —4b* ) L 1}

+cosh (A7) (=6a*2°[20a° A% —27a’bA* +2b° 27
+5a°b(—18+b°A%)]r, +sinh[A(a —7,)]{2700a’h’r,
+a—-b)'(a+2b)A°[24° (4a* +11a’b+18a’bh* +10ab’ + 2b*)
—3a(4a* +5a’b+6a’b* +2ab’ —2b* )i,

+(4a* +11a°b +18a’h* +10ab’ +2b*)r; |
+3(a—b)’A'[4ab’(—a" +a’b+18a’b* +10ab’ +2b™)
+(a—b)*(a+2b)(4a* +11a’b+18a’bh* +10ab’ +2b* )r,
+30a’(4a’ +5a’b + 6ab® +3b° )}

~10a(4a* +11a’°b+18a°b* +11ab’ + 4b*)r; |

~90aA’[4a’r, +3a’br, —14a’b’r, + 4b°r,

+30a°b’r] +a(4b° +3b°r, —106°1))]}

+A cosh[A(a—7,)]{—2700a’b> (a —1,)r,

—a(a—-b)*(a+2b)(4a* +5a’b+6a’b* +2ab> —2b")A°(2a’ +71;)
—3(a—b)’A[-4a’(a—-b)b’ (@’ +6a’b—-2b")

+a(a—b)’ (a+2b)(4a* +5a’b+6a’b* +2ab> —2b*)r,
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—(a—b)*(a+2b)(4a* +11a’b +18a’bh* +10ab’ + 2b* )1}

~10a’ (4a’ +5a°b + 6ab” +3b°)r; ]

+90ad’[4a’r, —4a*b’r, —3a’br} +14a’b’r} —3ab’r]

—4b°r; —a°r,(3b+41,) + a’ (4b° +3b°r, —10b°1;)]})

—cosh (Aa)r, (3A[1800a°b’ —60a(a’ +3a’b—14a’b’ +3ab’ + 4b°)A°
+(a—b)’ (32a° +57a’b+51a*b* +12a°b’ — 48a°b* —36ab’ —8b°)A* 1,
+3sinh[A(a —7,)][900a’h’ + (a—b)’(a +b)(a +2b)(2a’ +ab+2b*)A°r;
—30aA’(4a’ +3a’b—29a’b’ +12ab’ + 4b° +30ab’ry)
~2(a—-b)’A*{28a" +77a°b+114a’b* +33a’b’ - 51a’h"

—48a’h’ —16ab°® —2b" +15a(2a* +a’b—2ab’ —4b* )iy ]
+Acosh[A(a—7,)][-2700a°b’ (a +1,)

+(a—b) (a+b)a+2b)2a’ +ab+2b*)A°(2a’ +71;)

+3(a-b)’ 21*{2a(8a’ +22a°b+24a’b’* +5a*b’ —17a’b* —12a°b’ +2ab°® - 2b")
+(a—b)’(a+b)(a+2b)2a” +ab+2b)r,

~10a(2a* +a’b—2ab’ —4b*)r;

+90a1’{4a’ —19a'b’ +12a’h’ +a°(3b—2r,)

+3a’br, + a’b’r, +4b°r, +2a(2b° —3b°r, — 5671 )} )]

-306°J" (r, (A cosh(Aa)r, {3aA[1800a°b’

—60a’(a’ —4a’b’ +3b°) A’

+(a—b)*(12a° +33a*b+36a’h” +28a’h’ + 4ab* —8b°)A* 1,
+3Acosh[A(a—r, )][—900(12193 (a2 + roz)

+(a—b)y’A*{2a° (24’ +2ab—b*)(4a* +5a’b +6a’b* + 2ab’ —2b*)
+(a—b)*(a+b)(a+2b)2a* +ab+2b>)r}}

+30aA’{a’*(4a® —-3a’b—9a’h’ +12ab’ — 4b°)

+(=2a° +3a’b+a’h’ —6ab’ +4b°)r)}]

+sinh[A(a - 1,)][2700a’b’ (a —7,)

+(a—b) (a+b)a+2b)2a* +ab+2b*)1°(2a’ +71;)

~90al*{a(4a’ —3a’b—19a’b’ +12ab’ — 4b°)

+(a-b)’(2a* +a’b—2ab’ —4b*)r, +10ab’r;’}
—3(a-b)*1*{2a(28a’ +35a°b +30a°b* —19a°b’

—59a°b* —12a’b” +6ab°® + 6b")

—(a—b) (a+b)(a+2b)2a’ +ab+2b%)r,

+10a(2a* +a’b—2ab> —4b* )1} ]}

+sinh(Ar, )(=6a*2°[20a°A* —=27a’bA* +2b°A°

+5a’b(—18+ bz/iz)]ro +sinh[A(a —7,)] [2700a2b3r0

+(a—-b) (a+2b)A°{2a’ (4a* +11a’°b +18a’b*> +10ab’ +2b*)
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—-3a(4a* +5a’b+6a’b* +2ab’ - 2b" )i,

+(4a* +11a°b+18a’b* +10ab’ +2b* )1}

3(a—b)*A*{4ab’ (=a* + a’b+18a’h* +10ab’ + 2b")

+(a—b)’ (a+2b)(4a* +11a’b+18a’b* +10ab’ +2b*)r,

+30a’ (4a’ +5a’b +6ab” +3b°)r;

~10a(4a* +11a’b+18a’b* +11ab’ + 4b* )1y}

—-90a1*{4a’r, +3a’br, —14a’b’r, + 4b°r, +30a°b’r;

+a(4b° +3b°r, —10b°7;)} ]

+Acosh[A(a—7)]|[-2700a’b’ (a—1,)r,

—a(a—b)'(a+2b)(4a* +5a’b+6a’b* +2ab’ —2b")A°(2a’ +1,)
-3(a—b)’A*{~4a’(a-b)b’(a’ +6a’b—2b")

+a(a—b) (a+2b)(4a* +5a’b+6a’b’ +2ab’ —2b")r,
—(a—b)*(a+2b)(4a"* +11a’b+18a’b* +10ab’ +2b*)r;

~10a’(4a’ +5a’b +6ab” +3b° )1, }

+90al’{4a’r, —4a*b’r, - 3a’br; +14a’b’r} —3ab’r;

—4b°r; —a’r,(3b+47,) +a’ (4b° +3b°r, —10b°7;)}])

—sinh(1a)r, (34{1800a’h’ — 60a(a’ +3a’b—14a’b’ +3ab’ + 4b°) A’
+(a-b)’ (32a° +57a’b+51a*h* +12a’°h’ — 48a°b* —36ab’ —8b°) A 7,
+3sinh[A(a —7,)][900a’b’ +(a —b)’ (a +b)(a+2b)(2a” +ab +2b*)A’r;
—30a1*(4a’° +3a’h—29a’b’ +12ab” + 4b° +30ab’r})
—2(a—-b)’1*{28a’ +77a°b+114a’b* +33a*p’

—51a’bh* —48a’h’ —16ab°’ —2b" +15a(2a” + a’b—2ab’ — 4b*)r; }]
+Acosh[A(a—7,)][-2700a’h* (a+1,)

+(a—b)’(a+b)(a+2b)2a’ +ab+2b*)A°(2a’ +1;)
+3(a—b)*1*{2a(8a’ +22a°b+24a’b* +54°b’

-17a’b* —12a°b’> +2ab® —2b")

+(a—b)’ (a+b)(a+2b)2a* +ab+2b)r,

~10a2a* +a’b—2ab’ —4b*)r;'}

+90a1*{4a’ —19a*b’ +12a°b° + a°(3b - 2r,)

+3a’°bry +a’b’ry +4b°r, +2a(2b° - 3b°r, - 5b°7;)} D])

(A44)
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C,y = (150) " 2*{2e"*(90r,[(4a’ +3a’b—b*) I\ (1)
+a(a—b)(4a* +ab+b’ )Jl;ﬁ) (r,)A]cosh(Aa)
+/1(—90Jij(.0) () [—4a* +ab’ +3a’br, — b’r, + a’ (3b +41,)]
+3[4ab’J " (b)+40a’ (J (b)—J (1))
+10a*b* (27 (b) - I (B)+ I (1))
+6a°b(=10J7 (b)+ J (b) +5J (1))
+{=9ab’J " (b) + 4b° TV (b) + 5a°b* (J\" (b) +3J P (b) - 2.7 (b))
+2a° (57 (b)=3J ) (b)) +3a°b(=5J 7 (b) +2J O (b))}r;
+3{30°J" (b)+15a"bJ > (b)
=5a’b*(J " (b)+ J7 (b)) +2a° (=5 (b) + I (b))},
+10a(a—b)(4a’ +ab+b* )Jl.j(.o) () 1A
+a—b)[5a’b’J" (b)+5ab"J" (b) - 4b°J " (b)
+5a'b(=3J7 (b)+2J. (b)) +5a°b* (=3J7 (b) + 2J (b))
+2a* (57 (b)=3J ) (b)](2a° + 1, ) A*) cosh[(a — 1) A]
+30[3J,” (1, ){~6a’b+(a—b)’ (2a +b)r,}
+3(a—b)*(2a+b)J S (r)r’ A
+a—b)’2a+b)J\" (r,)(2a’ + 1, )A* Jcosh(Ar,)
+61,[90a°bJ " (1, ) A — {4b°J " (b)
+5a°b* (J O (b) + 27, (1) = 2J ) (b) + T (1))
+10a°2J " (1) + I (B) + I (1))
=3a’b(10J." (1) +5J7 (b) = 2J 7 (b) + 5 (1)} A°
—15{(4a’ +3a’b—-b*)J P (1)
+a(a—b)(4a’> +ab+b’ )J;.“) (ry)A}sinh{Aa}]
-3[30(4a’ +3a’b—b*)J" (1),
+{4b°J" (b)+40a° (J ()= J (1)) —9b° I (b)r,
+30ab’J " (ry)ry” —106° T (1 )7y
~15a*r,(3bJ " (b)+8J." (r,)r;)
—6a’ (106J7 (b)—bJ > (b) +5bJ ) (1) = 57 (b)ry + I (b)ry))
+15a°bry[b* (J " (B) + J 7 (b)) +2J L (r)r* ]
+10a°[6° (2" (b) = I (B) + I (1) + 9B (1 )1y + 4 (ry )y 1142
+{=6a’b"J " (b)-30a’bJ? (b) +10a°b* (J " (b) + J P (b))
+44" (57 (b) = J (b)) +[9ab’ J " (b) — 4b°J [ (b)
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=5a’b*(J"(b) +3J (b) - 27 (b)) +3a’b(5J7 (b) - 2J (b))
+a°(=10J7 (b) +6J > (D)’ +[-3b°J" (b)—15a*bJ > (b)

+5a°6* (J (b) + T (b)) +2a° (5T (b) = TS ()], }A* Isinh[(a — 7,) A]
—30{3J)(r,)[-6a’b + (a—b)* (2a +b)r, ] :
+3(a—b)’ (2a+b)J," (1)’ A

+(a—b)’ (2a+b)J (1,)(2a” +1,°)A*} sinh(Ar,)]}

(A45)
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Cys = GBa’M) A {-6[1 8Oa3J;"‘) (r,)+180a’ (a - b)J,;ﬂ)(ro)l
+3(a—b)’(8a® +9ab +3b’ )J;.“) (r,)A?
+(a—b)*(4a’ +7ab+4b’ )JU(.ﬁ) ()4’ Jcosh (ald)r,
—2Acosh[A(a— ro)][540a3JU(0) (r,)a=b-ryr,
+AYd’[a’D’ {3(4J;°) (b)+ IOJU@ (b)- SJI](.” (h)+ .]f) (b)) - 10.];3) ()}
+2b° 3(J" (b)+ 2 (b)) = 2J (1)} = 9ab’ (27" (b) + I (b) = I (1)
+4a° (6Jl§.3) (b)— 3Jl§.5) (h)— JU(.” (r,)+ 9a5b(—4Jl.(jz) (b)+ Jij(.s)(b) + Jf)(ro))]
+(a—b)*(4a* +Tab+4b° )J;O) (r)r 4347 {3O[a4b3J,§°) (b)
+2a’ (J ;.3) bh)y-J ;.3) (r,)+ a6b(—3J;.2) (h)+2J ;.3 ()]
+(a— b)J;.O) (r)r[(a—b) (4a” +Tab+4b*)—3(a—b)* (8a” +9ab +3b*)r,
+60a’r; 1} ]+ 6(—2]0(.“) (1,){20a°A> =27a’bA> +2b°2°
+5a’b(~18+b°A*)} cosh(Ar,) + 2J;ﬂ)(r0) {20a°A* =27a’bA’
+2b° 2% +5a°b(—18+b* A7)} sinh(Ar,)
+2{=180a°bJ " (1) + 2[26°T " (1) + 5a°D* (3J " (B) + J " (1)
—9a5b(3J,;°) (r,)+ SJ;Z) (b)) +10a° (ZJU(.O) (r,)+ 3J,;-3) (b))]A°
+a’[2b°(—J, i](.o) (h)+J ij(.z) (b)) +3ab’(J ij@ (h)y-J ;3) (b))
+3a5b(.];.2) bh)y-J ;.5) (b)) +2a°(~J, !.(/.3) (b)+J ;}.5 (b))
+a’h’ (—J;.O) (h)— SJ;Z) (b)+ 5']1‘]('3) (b)+ Jl.(is) (b)1A7,
+{1 80a3JU(.’B) (r,)+180a’(a— b)J;“) ()4
+3(a—b)’(8a” +9ab +3b )J;ﬂ) (r)A?
+(a-b)*(4a” +Tab+ 4b2)Jl.(].") (,)A’}sinh(al)r,
+sinh[A(a - 1,)][180a°J" (r, )y + A {a’[2b° (=T, (b) + J 7 (b))
+a’h’ (14Jij(.°’ (b)+ lOJU(.Z) (b)+ SJ;” (b)+ JU@ (h)— IOJ;” ()
—3a5b(14J1.J(.2) (h)+ J;.S) (h)- SJU@ (r))
+4a° (7Jij(.3) (b)— JZ.J(.S) (h)— 2Jy(-3) () —3ab’ (ZJI;O) (b)+ Jl.f) (b)— Jl.j@ (r))]
+(a— b)3J;0) (r)ri[-(a—b)(4a* +Tab+4b>) +(8a” +9ab +3b7)r, |}
+32%{1 O[a3b3J,.](.°) (h)— 3a5bJ;.2) (b)+2a° (Jf) (b)— Jf) (r,))] ’
+J,§-O) (r)r[(a=b) (8a® +9ab +3b*) +20a’r,(=3a+3b+71,)]} )}

(A46)
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Cye = (Ba’ M) {2[64°1,2°{90a°bJ ) (1,)
—[9a°b(J (b)=3J (1) +20a°T ) (1;)
+26°(3J" (b) +J (1)) +5a°b* (=3J ) (b) + 7 (1)1 A?
+a’[2b° (=T (b)) + I (b)) +3ab’ (O (b) - IS (b))
+3a’b(J 7 (b)—=J (b)) +2a° (=T (b)+ IO (b))
+a’b’ (=J" (b) =57 (b) + 57 (b)+ J” ()] A"}
—61,{—270a°bJ " (r,) - 270a*bJ " (1) A
+6(10a° —36a’b+10a’b> +b°)J (1, )A°
+6a(10a° —21a’b+10a’b’ +b°)J ) (r,) A’
+3a’(a—b)*(8a’ +9ab+3b*)J;" (r,) A*
+a’(a—b)*(4a” +7Tab+ 4b2)J;ﬁ) (,)A°} cosh(1a)
+2{1620a°bJ " (r,a —ry)r, —18[2ab"J " (r,)r,
+5a’b>(3J3" (b)—4J " (i )ry’ =26°T L (r)ry” +9a°b(8J" (1) = 5 (b))’
+10a’ (3bJ (1) + 2" (1)1, =37 (b)r;)
+a’r, (=42bJ." (r,) +45bJ 7 (b) =20 " (r)r, +30J 5 (b)ry )
=5a"bry {b* (3" (b)—4J " (1) + 6. (1, )y’ } 147
+3a[4a’(10a° —21a’b+10a°b’ +b°)J 7 (1;)
+a’ (2b° 3" (b) = 4J" (1) + 37 (b)) = 9ab’ (275" (b) = 2J3" (1) + J (b))
+9a°b(2J\" (1) —4J.7 (b) + J.° (b))
+a’b’(12J;" (b) = 20" (r,) +30J.7 (b) ~ 15 (b) +3J” (b))
—4a°(2J}" (r,) = 6J5" (b)+3J. (b))},
+3a{2b°(J\" (b) - J P (b)) +3ab’ (2J." (b) = 2T (1) + I (b))
+3a°b(=10J(ry) + 14T (b) + I (b)) +4a° (4T, (1) =TT (b) + I (b))
—a’b’ (147 (b) = 207 (1) +10J 7 (b) + 5T (b) + I (b)) 1y
=2{2b°J" (1) + 50D (=3J " (b) + 4, (1) + a’b(=42J (1) + 4577 (b))
+10a°(2J () =375 (D)}’ 14"
+a’[2a’ (a—b)*(4a” +Tab+4b*)J ) (1)
+2b°(3J () - 4T (r,) +3J 57 (b))
—9ab’(2J" (b)=2J" (1) + J (b)) +9a°b(2J " (r,) —4J P (b) + I (b))
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+a’b* (127 (b) =207 (r,) +30J7 (b) 157 (b) + 3J (b))

~4a° (27" (1) - 6" (b) +3J . (b)) }r," 1A% s cosh[(a — ;) A]
=3{12ab°J " (), A* +164" T (1) A° =30a"bJ [ (1) A°

—4b° TP (1) A’ G+1,2 A7) =2a’b° (J ) (b) = J7 (D) A* (B +1,°A%)

~a’br, A’[-144J " (r,) +90J.7 (b)

—b* (147" (b) = 20J " (1) + 10,7 (b) + 577 (b) + (b)) A* 13+ 1,° A7)
+4a’ A 1077 (1) + (20,7 (1) — 67 (b) +3J ) (b))ry A7]

+3a"bry? *[-180J." (1) +10b* (=3 (b) + 4J " (1, ) A’

+3b* (27 () =2 (ry) + (b)) A* ]+ a’b[540 (1, )i,

+30r,{b> 3 (b) - 4J " (1)) + 6" (r )} A°

+b*{46° T (1) - 9b* (27" (b) = 2J." (1) + I (b))r,

+10G3J5" (b) = 4J" (r,)r,’ 1 A*

=b*1 {b(6J." (b) —8J " (r,) +6J (b))

+3(2J," ()= 2J," (1) + J " (b)) } A°]

+3a’ R, A'[20Q2J;" (r,) =3 (b))r,

+b(10J5" (r,) —14J7 (b) = J " (b)) 3 +1,° 2] (A47)
+a’ A'[-144bJ ) (1) + 206 T (1) A2

—9b(2J;" (r,) = 4J 7 (b) +J O (b))ry’ A

—4(4J" (1) =TI (b)Y + T (D)1, B+1,7 A7)

+a’ A’ [-6b° T () At =20(2J." (1) = 3T (b)r, B3+ 1,2 A7)
+18b{=10J" (r,) +(=14J." (r,) +15J 2 (b))r,” A%}
+b° 22 {4077 (ry) + (=12 (b) +20J " (1,) - 30> ()
+157(b) =37 (b))r,’ A*}1} sinh[(a — 1) A]
+67,{[-270a’bJ l.j(.ﬂ '(r,)—270a*bJ ;“) (A

+6(10a° —36a°b +10a’b” +b°)J " (1) A*

+6a(10a° —21a°b+10a’b> +b°)J (1) A’
+3a’(a—b)*(8a* +9ab + 3b2)JU(.ﬁ) (r)A*
+a’(a—b)*(4a’ +Tab+4b*)J " (r,) A’ ]sinh(1a)
+20a°A% =27a°bA* +2b° A

+5a°b(=18+ B> AN[3J () A+ I (1, )3+ 1,2 A7)} cosh(Ar;)
—3J57 () A+ JP (1 )(3+ 1, A7)y sinh(Ar )1} 1}
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Cyr = (a’AM )" {6 cosh (Aa)[r,A{l 80(13ng0) (r,)
=2[2b° (ry) + 5a°b* (<37, (b) +4J." (1))
+9a’b(-8J," (r,) +5J,” (b))
+10a°(2J" (1) =3J () + 3 (1, )1A?
+a’[26° (=S (b) + TP (b)) +a’b’ (14" (b) = 207, (1, )
+10J7 (b) +5J (b) + J (b) =10J. (1))
+3ab>(-2J" (b) +2J." (r,) = J " (b) + I (1))
—4a’ (47 (1) =1J) (b)+ J (b) + 2 (1))
+3a’b(10J," (r,) ~14J7 (b) = IV (b) + 57 (, D1A*}
+{1 80a3Jl§"’) (r)(=b+ry))+1 80a3Jy(.ﬂ)(r0)r02/1
+J3% (1, )[4(10a° =36a°b +10a’b’ +b°)
+3(a—b)’(8a’ +9ab +3b*)r, + 60a’r,’ 1A’
+3(a—b)’(8a” +9ab + 3b )Jl;.ﬁ) (1) A°
+(a—b)*(8a* +9ab +3b* )JU(“) (n)2a’ +1,)A*} cosh(Ar,)
—{180a°J (1, )(=b +1,) +180a°J ) (1, )1’ A
+J (17, )[4(10a° —36a°b +10a’h> +b°)
+3(a—b)’(8a’ +9ab +3b*)r, + 60a’r,’ 1A’
+3(a—b)’(8a” +9ab + 3b2)Jl;.“) (r)ry A2
+(a—b)’(8a” +9ab+3b*)(2a’ +1,")J " (r,) A"} sinh(Ar, )]
+24[6J (1)1, {20a° A% =27a’bA°* +2b°2° + 5a°b(=18+ b7 A7)}
+ar,A{-~540a’bJ " (r,) + 6[2b°J " (1)
+5a°b* (=3J;" (b)+4J." (1,))
+10a°(2J;"(r,) =3 (b)+3J (1))
=3a’b(14J}" (r,) ~15J.7 () +10J57 (r, )] A°
+a’[9ab’ (27" (b)=2J." (1) + J (b)
—J (1) =9a°b(2J" (r,) = 4J 7 (b) + T (b) + T (1))
+4a® (27, (1) = 6J,7 (b)+3J" (b)+ J;” (1))
+2b°(=3J" () +4J." (r,) =3J.7 (b) + 27 (1,))
+a’b* (=127 (b)+20J"(r;) —30J7 (b)
+1577(b) =37 (b) +10J (1, ))]A*} sinh (Aa)

68
doi:10.6342/NTU202502508



+cosh(Ar,){=540a’bJ " (1), + 6[26°T 7 (1, )1,
+9a’b(-3J" (r,) + 557 (b)r,
+10a°(36J 7 (ry) + 20, (ry )y =3J5 (b)ry )
+5a°bry (b*(=3J5" (b)+ J " (1)) = 65 (1, )iy 1A
H-2a*{20a°J ) (r,) +2b° (=3J" (b) + I (1;))
+5a°b* (3J Y (b)+ I3 (1)) = 9a°b(J (b) + 3T (1))}
+3a*{2b°(J}" (b) - J P (b)) +3ab’ (—J " (b) + I (b))
+a’b’ (J" (b)+5J 2 (b) =57 (b) - J (b))
+2a°(J) (b) = I (b)) +3a°b(=J 7 (b) + J > (b))},
+2{2b° T (1) +5a°D* (3J" (b) + T (1))
+9a°b(-3J" (r,) + 557 (b))
+10a°(2J3" (r,) =35 (b)) }1,* 14
(
+a’(a—b)* (26" (J" (b) - J P (b))
+6a’b’ (—J7 (b)+ J;” (b))
+ab’(J" (b)—4J7 (b)+3J (b)) +2a* (J (b) — J;” (b))
—a’b(3J P (b)—4J ) (b)+ J (b))} (2a® +1,") A°
—{—540a3Jl.(,.a) (r)a(b—r1,)+br,]+540a* (a — b)J;ﬁ) (r)r,’ 2
+3J57 (1 )[4a(10a° - 21a°b +10a’h* +b°)
+(a—b)*(4a’ +Tab+4b")r,
+60a’(a —b)r,’1A° +3(a—b)* (4a” +Tab +4b*)J P (r,)r,)’ A°
+(a—b)'(4a’ +Tab+4b>)J\" (r,)(2a’ +1,")A*} sinh(Aa)}
+{31,> A180a°bJ " (1) = 2{26° T, (ry) + 5a°b* (=3 " (b) + T (1))
+9a°b(=3J" (1) + 577 (b)) +10a°(2J." (r,) =3J ) (b))} A°
+a’ (2b°(=J3" (b)+ J; (b)) +3ab’ (J, (b) = J (b)) +3a°b(J ;" (b) — J ;> (b))
+2a°(=J () + I (b)) +a’b* (—J " (b) =577 (b) + 5T (b) + I (b))} A*]
+[—54Oa3J,.j(.ﬂ) (r){a(b—r,)+br,} +540a’ (a - b)Jl;"‘) (r)r’A
+3J7(1,){4a(10a° - 21a°b +10a°h* + b°)
+(a—b)'(4a” +Tab+4b* ), +60a’ (a—b)r,’ s 1’
+3(a—b)*(4a’ +Tab + 4b )J,-,(-a) (1) A’
+(a—b)*(4a’ +Tab+4b*)J P (r,)(2a’ +1,")A*|sinh(Aa)} sinh(Ar,)]}

(A48)
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Cys = (@AM)™! {2r02[—6J;“)(r0){20a6/12 —27a°bA*
+2b°A* +5a’b(—18+b° A7)} + {540a4bJ,§.O) (r)A
—6a[2b6J;.°) () + 54°p (—3Jl.§.°)(b) + 4Jl;.0)(r0))
+1 Oaé(ZJU(.(’) () — 3Jy(3) (b)+ 3J;.3) (7))
-3a’b(1 4J;.0) ()1 SJI;Z) (b)+ IOJ;.” (rNA’
+a’[a’h’ (12J,;°) (b)— 20J5.°)(r0) + 3OJ,-§~2) (b)
—15J§3) (b)+ 3J;5) (h)-1 OJS) (r,))+2b° (3J;°)(b)
_4'11'/('0) () +3J ;.2) (h)-2J ;.3) (1)) +9ab’ (-2J ;.0) (b)
+2Ji,(-0) (r)— ‘]1]('3) (b)+ J;.” () + 9a5b(2Jl.j(.0) (r)— 4J;.2)(b)
+J;.5) (b)+ Jl.f) (7)) — 4a6(2J;0) () — 6Jl§.3)(b) + 3Jl.§5)(b)
+J,.j.3) (r,))]A’} cosh(Aa) +3{-180a’ J;O) ()
+2[2b°J" (1) +5a°b* (=3J," (b) + 4, (1,))
+9a’b(-8J ij(‘()) () +5J ;.2) (b))
+104° (2J;.O) (r)— 3J;,3) (b)+ 3J;.3) (r A’
+a’[2b° (Jl.j(.o) (b)— J;.Z)(b)) —a’b’(1 4Jl.](.°) (b)
—ZOJ;O) () + IOJ;Z) (b)+ SJ;.”(b) + J;S)(b) - IOJ;.”(rO))
+3a5b(—10J,.j(.°) (r)+ 14J;2) (b)+ JU(.S) (b)— 5Jl.j.3) (%))
+3ab’ (2J,;°) (b)— 2J;.°) (ry) + Jf) (h)— Jf) (7))
+4a’(4J ;0) (r)—=7J, ;3 (b)+J ;5 '(b)+2J ;3 '(r,))]A*} sinh(Aa)]
+2 cosh(Ar,)[3r,° A% {-1 80a3le.j(.°)(r0)
+2[2b6J1.;O> (r,)+5a’p’ (—3Jl;O> (b)+ J;O) (%))
+9a5b(—3J;.°) () + SJ;Z) (b)) +10a’ (2Jl§.°) (ry)— 3Jl§.3) (b)A°
+a’[2b° (Jij(.o) (b)— J;z) (b)) +3ab’ (—J;O) (b)+ Jf) (b))
+a’b’ (J;O) (b)+ SJ;.” (h)— SJ;S) (b)— J;S) (b))
+2a° (JU@ (b)— J;S) (b)) + 3a5b(—J¥§2) (b)+ Jij(.s) (b))]A*
+2{=540a°J " (r, ) a(b— 1)+ bry1+540a* (a = b) J P (r, ), A
+3Jl;“) (r)[4a(10a’ -21a’°b +10a’’ +b°)
+(a—b)*(4a’ +Tab+4b*)r, +60a’ (a —b)r,’ 1A’
+3(a—b)*(4a’ +7ab+4b )Jl.j(.ﬂ) ()2 A
+(a-b)"(4a’ +7ab+4b* )J,;“) (r)(2a’ +1,°)A*} cosh(Aa)
=3{1 80a3J;“) (r)(=b+1r)+ 180a3J4§.ﬁ) (1) A
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+J,7 (1, [4(10a° —36a’b+10a°b’ +b°)

+3(a—b)’ (8a’ +9ab +3b*)r, +60a’r, 1A’

+3(a—b)’(8a” +9ab +3b )J;ﬂ) (N

+(a—b) (8a® +9ab+3b*)J " (1r,)(2a" +1,") A"} sinh(Aa)]
—2[-540a°bJ " (ry )iy A+ 642b°J " (1 ),

+9a°b(=3J" (1) + 57 (b)r, +10a° (3bJ (r,)

+2J.7 (r)ry =37 (b)ry)

+5a°bry[b* (=3, (b) + J (1)) = 6. (r) )i A’
+-2a’[20a° T () +2b° (=3J" (b) + J (1))

+5a°b* 3J (b) + S (1)) = 9a°b(J O () +3J () (1,)]
+3a’[26° (S (b) = J P (b)) +3ab’ (=J " (b) + J (b))
+a’b’ (J " (b)+5J7 (b) =57 (b) - J (b))

+2a°(J (b) = I (b)) +3a’b(=J 7 (b) + J ;" (b)),
+2[26°J " (1) + 5a°D* (=3 " (b) + ;" (1))

+9a’h(=3J" (1) +5J7 (b))

+10a° (27" () =37 (b)), 1 A°

+a’(a—b)’[26*(J " (b) - T2 (b))

+6a°b* (I (b)+ ) (b))

+ab* (J " (b)-4J P (b)+3J ) (b))

+2a* (I (b) =IO (b))

-a’b(3J P (b)—4J D (b)+J)" (b)](2a” + 1, ) A
+2{=540a’ " (r)la(b—1,) + br; ]

+540a° (a—b)J y@ ()2

+3J37(r, [4a(10a® —21a’b +10a’h’ +b°)

+(a—b)'(4a’ +Tab +4b*)r,

+60a’ (a —b)r,’ 1A% +3(a—b)*(4a” + Tab + 4b° )J;.“) (A
+(a—b)"(4a’ +Tab+4b*)J P (r,)(2a’ +1,") A*} cosh(Aa)
=3{180a’J" (1,)(=b + 1) +180a’ I\ (ry )1y’ A

+J7 (1, )[4(10a° —364°h +10a°b’ +b°) ’
+3(a—b)’ (8a® +9ab +3b*)r, + 60a’r,’ 147

+3(a—bY (8a® +9ab+3b>)J\” (r )1y’ A°

+(a—b) (8a” +9ab+3b*)J (1r,)(2a’ +1,")A*} sinh(Aa)]sinh(r, 1)}

(A49)
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where (7, /)= (0,1), (1,0), (0,2), (1,1),and (2,0),
M =-122"[20a°A* =27a’bA* +2b° 2% +5a°b(~18 +b*A))]r;
+47 cosh[A(a—1)]{(a—b)*(4a’ +Tab+4b")A*(2a’ +1,)
+32°[40a" —84a°h+40a’b’ +4ab’ +(a—b)' (4a” +Tab+4b%)r,
—3(a—b) (8a’ +9ab+3b* )y +60a’(a—b)r; 1-540a’[ab+71,(—a+b+7,)]} , (A50)
-32%sinh[A(a -7,)]{180a° (= b +7,) +(a—b)’ A*[2a° (8a’ +9ab +3b*)
—~(a—b)(4a’ +Tab+4b>)r; +(8a’ +9ab+3b>)r; |
+2°[4(10a° -36a’h +10a’’ +b°) + 31, ((a —b)’ (8a +9ab +3b*)
+20a’r,(=3a+3b+1))]}

N =2*30ab’r,A +(a—b) (a+b)2a’ +ab+2b")r, A’
+Aa[-30ab’ + (4a° —3a’b—5a’h* + 6ab’ —2b°)A*]cosh[(a — 1A (AS1)
~-30ab’ +(4a° +3a’b—15a’b’ + 6ab’ +2b") A’ ]sinh[(a -1, ) 1]}

0 =2¢"“" 1 2aA[-270a’b+6(10a° —21a°b +10a°h* + b*) A?
+a*(a—b)*(4a’ +7Tab+4b*)A* Jcosh[A(a—7,)]
~6[-90a’h+2(10a° —36a’b+10a’’ +b°) A’
+a’(a-b)’ (8a* +9ab+3b*)A*|sinh[A(a -1,)]
+1,[-122{20a° A =27a°bA° +2b° 27 + 5a°b(~18 +b* A7)}
+Acosh[A(a—r,)]{540a’ (a—b)+3(a—b)*(4a’ + Tab+4b*)A* » (A52)
~9[60a’ +(a—b)’(8a” +9ab+3b*) A’ 1r,
+A7[180a’ (a—b) +(a—b)*(4a’ +Tab+4b*)A* 11}
+3sinh[A(a —7,)]{-180a’ —3(a—b)’ (8a’ +9ab +3b*)A*
+A°1,[180a (a—b)+(a—b)' (4a” + Tab+4b*) 1’
+{~60a’ - (a—b) (8’ +9ab+3b*) 271, 1} 1}
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Appendix B
Basic Governing Equations in Chapter 2

and Section 3.1

Starting with the steady state mass transport differential equation in the absence of

chemical reaction, the conservation of ionic species is governed by
V-J, =0, (B1)
where, for dilute electrolyte solution, the ionic fluxes follow the Nernst-Plank equation

with a convection term,

Zen
V). B2
i V) (B2)

J,=nu-D,(Vn, +

Since the electrochemical potential is defined as 1, = ) + kT Inn, + Zey , its gradient

is accordingly given by

Vn,

Vu, =kT +ZeVy . (B3)

+

Substitute Equations (B2) and (B3) into Equation (B1), the ionic continuity equation is
V-[niu—ni&V/,ti]:O. (B4)
kT
Combining Equations (B4), (1) and (7), we can obtain Equation (4).
The Poisson equation for a symmetric electrolyte solution modified to account for

the fixed charge density in the porous layer can be expressed as
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Vi = —é[Ze(n +—n-)+h(r)Q]. (BS)

At equilibrium, ionic concentrations obey the Boltzmann distribution

Zel// (eq)
kT

I (B6)

n™ = ny exp[F

Substitute Equations (1), (3) and (B6) into Equation (B5), we can obtain the governing
equation for the perturbed electrical potential shown in Equation (6), and the governing

equation for the equilibrium electrical potential is given by

Zen; Zey ¥ Zey ¥
ViV = -0 | exp| — —ex . B
v € { P kT P kT (B7)

Solving Equation (B7) with appropriate boundary conditions yields the equilibrium

electrical potential profile provided in Equations (13)-(17) [38].
For quasi-steady low Reynolds number flow, the Stokes-Brinkman equation
modified to incorporate electrostatic effect takes the form
nVu—nA’h(ryu=Vp+Ze(n, —n_)Vy . (B8)
Within the porous layer, where #A(r)=1, Equation (B8) becomes the modified
Brinkman equation; outside the porous layer, where A(r»)=0, Equation (B8) reduces
to the Stokes equation modified with electrostatic effect. With the substitution of

Equations (1)-(3) into Equation (B8), we obtain Equations (5).
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